
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 42, 346-398 (1991)

Average Case Completeness

YURI GUREVICH*

Electrical Engineering and Computer Science Department,
The University of Michigan, Ann Arbor,

Michigan 48109-2122

Received April 28, 1988; revised October 3, 1989

We explain and advance Levin’s theory of average case completeness. In particular, we
exhibit examples of problems complete in the average case and prove a limitation on the
power of deterministic reductions. 0 1991 Academic Press, Inc.

INTRODUCTION

Many NP hard problems are practically important and have to be solved in one
way or another in spite of NP hardness. There are different approaches in the
literature to this challenge: approximate algorithms, probabilistic algorithms, etc.
The approach, adapted in this paper, is to forget about the worst case and to
concentrate on the average case.

For simplicity, we speak about decision problems, rather than search problems,
and restrict attention to algorithms that solve all instances of the problem in ques-
tion. The first restriction is completely superfluous: the whole theory is readily
generalizable to search problems. The second restriction may be relaxed as well.

We assume that a decision problem D comes together with a function p that
assigns probabilities to instances of D; the pair (D, ,u) is called a randomized deci-
sion problem. How can one take advantage of probabilities? One possibility is to
seek algorithms that almost always run in polynomial time. The common for-
malization of running almost always in Ptime is that for each n, the probability of
hard instances of size n (where the running time exceeds the given polynomial in
n bound) is bounded by an inverse polynomial of n. Powerful algorithms of that kind
were devised for the Hamiltonian Circuit Problem; see [3] and references therein.
Another approach is to seek algorithms whose expected running time is polynomial.
An algorithm of that kind for Hamiltonian Circuit Problem with a fixed edge
probability has been devised in [Ill. Leonid Levin [16] suggested a natural
liberalization of the second approach where an algorithm is considered fast if the
expectation of some fixed root of the running time is polynomial. Algorithms that
almost always run in Ptime (i.e., polynomial time) may be and often are slow in

* Partially supported by NSF Grant DCR 85-03275.

346
0022-OOOO/91 $3.00
Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

AVERAGE CASE COMPLETENESS 347

Levin’s sense. Levin’s approach allows a nice reduction theory which is the subject
of this paper.

The new reduction theory generalizes the reduction theory for NP problems.
The role of NP plays a class RNP of randomized decision problems (D, 11) such
that D is NP and the probability function p satisfies a certain technical condition
(see Section 1) that is usually satisfied in practice. In his exceedingly terse paper
[163, Levin generalized polynomial time reductions to fit RNP problems and found
a natural RNP complete problem, Randomized Tiling. To work correctly, a reduc-
tion should not diminish too much the probability of a given instance. As a result,
reducing RNP problems is much more difftcult than reducing NP problems.
A priori, it is not clear that there exist complete RNP problems.

Levin’s completeness proof is ingenious and complicated. The main part of the
proof is devoted to establishing the completeness of a randomized (and bounded)
version of the halting problem; the reduction of Randomized Halting to
Randomized Tiling is relatively routine, but also not trivial. One contribution of
this paper is a direct and simple proof of the Ptime completeness of Randomized
Halting (Section 4).

David Johnson [13] provided some intuition behind Levin’s definitions and
proofs; he challenged readers to find additional complete RNP problems. The first
additional Ptime complete RNP problems are presented in Sections 5 and 6 below.
One of them is Randomized Post Correspondence Problem:

Insfance. A nonempty list (u,, II,), (u,~, II,) of pairs of binary strings, and the
unary notation 1” for a positive integer n.

Question. Do there exist a number k < n and a function F from [1 . . k] to
[1 . ..s] such that the concatenation of strings CI~(,,, z+(~, coincides with the
concatenation of strings uFcI), uFck)?

Probability. The probability function is given by the following experiment:
Draw independently positive integers n and s with respect to the uniform proba-
bility distribution on positive integers, and then draw independently binary strings
11 ,) L’ ,) . . .’ u,, v, with respect to the uniform probability on binary strings.

The uniform (or standard, or default) probabilities on positive integers and
binary strings are described in Section 2.

We have also found that many apparently difficult RNP problems cannot, to all
practical purposes, be proved Ptime complete for RNP. Let us explain this. Call a
probability function p flat if there exists E >O such that p(x) < 2 “‘, i.e..
-log p(x) 3 n”, for all instances x of sufficiently large size n. Call a randomized
decision problem (D, 11) flat if p is flat. Let DEXP (resp. NEXP) be the class of
decision problems decidable in deterministic (resp. nondeterministic) exponential
time. In Section 8, we prove that if D is DEXP, ,U is flat and (D, p) is hard for RNP
with respect to polynomial time reductions, then DEXP =NEXP. Thus, a flat
problem cannot be proved Ptime complete for RNP unless DEXP = NEXP. The
natural randomizations of usual NP complete problems very often are flat. For

348 YURI GUREVICH

example, every RNP graph probiem is flat if the probability distribution on n-vertex
graphs is determined by the edge-probability f(n) with n --* +’ <f(n) < 1 - n-* +’
for some constant E > 0.

The idea of the incompleteness theorem is as follows. A NEXP problem D, can
be turned into a very sparse RNP problem (01, pl) whose positive instances x have
enormous (with regard to the size) probabilities. Given such an x, a reduction f of
(0,) pi) to a flat problem (D, ,u) produces an instance f(x) of a high probability
and therefore a small size. It turns out that a deterministic exponential time proce-
dure for D together with a polynomial time procedure for computing f give a
deterministic exponential time procedure for D,.

The incompleteness theorem survives the generalization to reductions com-
putable in average polynomial time; actually, the incompleteness theorem of
Section 8 is stated and proved for average polynomial time reductions. The theorem
survives the generalization to Turing (as opposite to many-one) reductions.
However, it does not survive the generalization to coin-flipping reductions. The
proof fails because, instead of producing one instanceS of a high probability and
a small size, a randomizing reduction produces a multitude of instances of a small
probability and a large size. Ramarathnam Venkatesan and his advisor Leonid
Levin found [22] a natural randomized graph-coloring problem, which is flat and
complete with respect to coin-flipping polynomial-time reductions; such reductions
are considered in Section 9. Rich additional information on the theory of average
case complexity can be found in [11; also see [9].

An important question is whether the current state of RNP theory is sufficient to
identify problems that are difficult on average. Why, in spite of the introduction of
randomized reductions, there are still only a few RNP complete problems known?
Is the setting not exactly right or are average-case completeness proofs inherently
too difficult? It is possible that many problems difficult on average are not complete
for the whole RNP but are complete for natural subclasses. In this connection, NP
problems with small (log-size or, alternatively, polylog-size) witnesses cry for
attention. The worst-case complexity for problems with small witnesses was a
subject of study recently [19,20]. But the case of statistically small witnesses is
even more interesting. Note, for example, that in the case of uniform probability
distribution over graphs with n vertices, the expected maximal clique size is about
2 log n.

This article contains a number of additional results and is organized as follows.

Section 1: The notion of polynomiality on average is defined and discussed.
Then the analogs AP and RNP of the classes P and NP are introduced.

Section 2: Default probability functions on numbers and strings are introduced
and discussed. Also, examples of RNP problems are given.

Section 3: Polynomial-time reducibility is defined and studied.
Section 4: A direct and simple proof of the polynomial-time completeness of

Randomized Halting for RNP is given.

AVERAGE CASE COMPLETENESS 349

Section 5: Randomized Post Correspondence Problem is proved polynomial-
time complete for RNP.

Section 6: Some additional RNP complete problems are given.
Section 7: Reducibility in average polynomial time is defined and studied.
Section 8: The incompleteness theorem is proved.
Section 9: Randomizing polynomial-time reductions are defined and studied.
Section 10: Sparse RNP problems are studied.
Appendix: The original completeness proof of Levin is reconstructed. (The

Appendix is a result of cooperation of the author and his student David McCauley.)

In the meantime the reduction theory for average case complexity was substantially
advanced and cleaned up somewhat; see [1,251 and also [9,26].

1. POLYNOMIALITY ON AVERAGE; CLASSES AP AND RNP

The main purpose of this section is to define the analogs for P and NP in the
case of randomized decision problems. Some definitions are revised later in
Section 9.

We start with terminology and notation. As usual, an alphabet is an ordered
finite set of symbols, the letter Z is reserved to denote alphabets, and Z* is the set
of all C-strings. Order C* first by length and then lexicographically; for brevity,
that order is called lexicographical. C-strings are assigned natural numbers (starting
from 0) with respect to the lexicographical order. The empty string is denoted r.
The successor of a string x is denoted .X + . The alphabet (0, 1) is called the hinar?.
alphabet.

It is often assumed that, in principle, any decision problem D is the decision
problem for some language L in some alphabet C:

Instance. A C-string ~1.
Question. Does w belong to L?

In applications, instances may be graphs or whatever, but usually there is no
problem in coding them by strings.

For technical reasons, we need a more general notion of a decision problem over
strings such that the domain (i.e., the set of instances) may be a proper (and not
necessarily recognizable in polynomial time) subset of some C*. We suppose that,
in principal, every decision problem D is given by an alphabet C(D) (or Z,), the
domain dom(D) E C;S, and a language L(D) (or L,) over C(D):

Instance. An element w of dam(D).

Question. Does w belong to L(D)?

If D is a decision problem and Xc C 2;, then the restriction D (X of D to X is the
decision problem with alphabet C(D), domain D n X, and language L(D). Thus, an

358 YURI GUREVICH

binary strings and every p*(x) < 1. Let dx = 2p2 Ix’. By the definition of polynomial
time computability with k = 2 1 x 1 + 1, there is a Ptime computable function N’(x)
such that every value of N’ is a binary function and 1 p*(x) - N’(x)1 < (dx)/2.
Round N’(x) down to 2 1 XI + 1 digits; if the last digit is a 1, then add (dx)/2. The
result N(x) is a binary fraction with at most 2 1 x 1 digits after the binary point, and
[p*(x)-N(x)1 <dx.

Define

Then 4p?(x) = 1 + Nx + 2CecyCx dy if x #e, and therefore

,:;_m_ 4/q(x) = 1 + 1 + 2 1 2”/2*” = 4.
It>1

Finally, note that 4pi(x) > p(x). Indeed, 4pi(e) > p*(e+) - de+ + 1 > p(e), and if
xfe then

4pl(x) = N(x+) - N(x) + 2 dx > (p*(x+) - dx) - (p*(x) + dx) + 2 dx = p(x).

Q.E.D.

For future references, note that, for the probability function pi constructed in the
proof of Lemma 1.6, each binary fraction pi(x), written without trailing zeroes, has
at most 2+2 lx+1<4+2 1x1 digits.

2. STANDARD PROBABILITY FUNCTIONS AND EXAMPLES OF RNP PROBLEMS

In the first part of this section, we define standard (or default) probability func-
tions on finite sets, the set of natural numbers, and the set of strings over a given
alphabet. There are two reasons for us to introduce standard probability functions.
One is to use them to define natural probability functions on more complicated
objects; the use of standard probability functions hopefully supports the claim of
naturality. The other reason is brevity. We can speak simply about a random
natural number or a random binary string meaning the randomness with respect to
the corresponding standard probability function.

The uniform probability function, assigning equal probabilities to all sample
points, is our obvious choice for a standard probability function on any (non-
empty) finite set. The choice of a default probability function on positive integers
is not so obvious. We follow Levin [161:

DEFINITION. The standard probability of a positive integer n is proportional
to C2.

AVERAGE CASE COMPLETENESS 351

(For simplicity, we ignore the empty string.) Additional arguments in favor of (ii)
vs (i) may be found in [9]. Condition (ii) may be too restrictive as well. Consider,
for example, a function f such that f(x) = 2’“’ if 1 XI is even, and f(x) = I x
otherwise. Suppose that, for each even n, the p[H, < 22’ “I. One would expect that
f is linear on p-average, but condition (ii) is not satisfied. This leads us to the
official definition:

DEFINITION. f is linear on ,u-average if the expectation C, +<,f(x) I .Y / ’ /L(S)
converges, and f is polynomial on p-average if it is bounded by a polynomial of a
function that is linear on p-average.

Thus, f is polynomial on p-average if and only if:

(iii) There exists E >O such that CrzL,(J~)‘. /xl -’ .P(,Y) < m, or
(iii’) There exists an integer k > 0 such that C.rZc (,f~)“~ / x / ’ . p(x) < x

We say that E (resp. k) witnesses the polynomiality of .f on p-average if (iii)
(resp. (iii’)) holds.

Condition (ii) has some advantage over condition (iii) because often one knows
probability functions on instances of the same size and does not care about the
probabilities of different sizes. The following proposition shows that, for many usual
probability functions, the two conditions are equivalent.

PROPOSITION 1.1. Let p be a probability function on some C* and suppose that
there exists a polynomial p such that, for everll n, either p[H,,] = 0 or
,u[H,,] >p(n) ‘. Then conditions (ii) and (iii) are equivalent.

Proof It is easy to see that (ii) implies (iii). We prove the other implication.
Suppose (iii). Then there exist E and c such that

z[
n

n > 0
-" c (fx)"p(x)]=c<m.

1 x (= n

We may restrict attention to n > 0 such that p[/ x I = n] > 0. For each such n,

C (fxYAx)dw
1x1 =n

C (fx)” dx) d cn/p[I x I = nl d cnp(n).
I*‘=n

Set 6 = s/2. We may restrict attention to strings x such that (fx)” >,p(n). Then
(f-x)” = (fx)” . (fx) pa 6 (fx)” .p(n) ~ ’ and therefore, for every n,

[1 (fx)” p,,(x)] .p(n)-’ 6 [cn .p(n)] .p(n)-’ = cn. Q.E.D.
’ .r I = n

352 YURI GUREVICH

The following sufficient condition for (iii) is useful sometimes:

(iv) There exists an integer k > 0 such that CX+af(~). I x 1 -k. p(x) < cc.

Condition (iv) implies condition (iii’) with the same witness k. To prove this, note
that we care only about those nonempty strings x where (fx)‘lk. 1 x) -’ > 1. On
those strings (fx)‘jk. 1 x) -’ <f(x). 1 x 1 -k.

Until now, we looked into sufficient conditions for (iii). Here is a necessary
condition:

(v) The expectation C,,X,, , log,,,f(x) .p(x) converges.

Why do we prefer condition (iii) to condition (v)? This question is related to
another question, addressed in Section 2: Which probability functions on positive
integers are natural? Condition (iii) tits well probability functions on positive
integers which are inverse polynomials. Condition (v) is too liberal in that case. For
example, suppose that p(x) is proportional to nd32-“, where n = (xl, so that
p[H,] is proportional to the inverse polynomial ne3. Then a fast-growing function
f(x)= Jxp’ satisfies (v). Also, Proposition 1.1 fails if polynomiality on average is
defined with respect to (v). This ends our discussion on the correct definition of
polynomiality on average. A continuation of this discussion may be found in [9].

Next we give a useful criterion of polynomiality on average [22].

DEFINITION. A function p from some C* to nonnegative reals is a rarity function
for a probability function ,u on Z* if the expectation of p is finite.

PROPOSITION 1.2. Let f be a function from some Z* to nonnegative reals and p
be a probability function on C *. The function f is polynomial on p-average tf and only
tf there exists a rarity function p for p such that f (x) is bounded by a polynomial of
two arguments, 1 x I and p(x).

Proof It k witnesses that f is polynomial on average, define p(x)=
(fx)l’k.I~J-l, then f(x)=(p(x)l~l)~. Iff(x) is bounded by a polynomial of 1x1
and p(x), then there exists a positive integer k such that, for sufficiently large x, we
have f (x) 6 (I x I P(x))~, so that (fx)‘lk . Ix I ~ ’ <p(x) and therefore k witnesses that
f is polynomial on average. Q.E.D.

LEMMA 1.1. Let p be a probability function on some Z*, andf, g be functions
from .Z* to nonnegative reals, and r be a positive real. If f and g are polynomial on
p-average then so are max(f, g), f ‘, f x g, and f + g.

Proof Let L = 1x1. We may suppose that, for some E, both expectations
E[f”/L] and E[g&/L] are finite. Let h(x) = max(f (x), g(x)). Then

AVERAGE CASE COMPLETENESS 353

E[h”/L] = c (hx)” .I x I ’ . p(x)

=,~x~v (hx)“. lxl-’ ./4x)+ c @xl’:. IX -’ ./.4x)
fr < 0.Y

=~~~~~(~x)“..l~~‘.~(x)+ 2 (P)“‘l-~l ‘./4x)
,< ,Y<X\

< E[f”/L] + E[g”/L] < a.

The rest is obvious. Q.E.D.

DEFINITION. ,f is polynomial on u-average on a subset X of C* if there exists c > 0
such that

DEFINITION. A randomized decision problem (D, u) is decidable in APtime if
some Turing machine decides D within time polynomial on average with respect to
I*. AP is the class of randomized decision problems decidable in APtime. A function
,f’from some CF to some ,Z’T is computable in APtime with respect to a probability
function p, on ,Z’T if some Turing machine computes f within time polynomial on
average with respect to p 1.

AP is the analog for P. The letter A stands for “average.”

LEMMA 1.2. Suppose that u, is a probability function on some CT, f’is a function
fiiom .ZT to some CT, and uz(y) = &IX = r‘ ,u, (x) is the induced probability .function
on ET.

1. Let T be a function from Z: to nonnegative reals. [f / fx I is polynomial on
PI-average and T is polynomial on ul,-average then the composition h = Taf is polyno-
mial on u,-average.

2. Let g be a function from CT to some C, *. If f is computable in APtime wrt
u, and g is computable in APtime wrt u2 then the composition g of is computable in
APtime wrt pr.

Proof, (1) Let k witness that T is polynomial on pZ-average. For every positive
m3 1,

r;< (TY)“~.~ yl-‘Ayb-

-+ 1 (TY)“~“. I yI-‘~“r.pz(.lJ)< a
” + P

"km.IfXI~"m.~,(X)<~.

354 YURI GUREVICH

We can safely ignore strings x such that x = e or jjc = e. If) fx 1 is polynomially
bounded and m is such that 1 fx 1 ‘INI < (x / for sufficiently Iong x, then km witnesses
that h is polynomial on pi-average:

1 (hx)likm.)xlp ./l,(x)< co.

In the general case. Let m witness that) fx) is polynomial on pi-average:

Let

R(X) = (hx)1/2km. 1 fx I -“““,

so that the expectation ,!?[a’], with respect to pi, is finite. Let

P(X)=IfXI”*m.IXI-l’*,

so that the expectation EC/?‘], with respect to pl, is finite. Then the expectations
E[cr* + /?“I and E[c$] are finite. Hence

(2) The computation of g of splits into two parts: Computing y =f(x) and
then computing g(u). We need to show only that the second part can be done in
APtime with respect to pl. We know that g(y) is computable in time T(y) polyno-
mial on p,-average. Now use (1). Q.E.D.

For a technical reason, we are interested in probability distributions that are
Ptime computable. It is possible, as in [17] to restrict attention to probability dis-
tributions with rational values; such an approach is justified later in this section.
But it seems to us more appropriate to extend the notion of Ptime computability
to real-valued functions. For simplicity, we restrict attention to functions with
values in the real interval [0, 11.

DEFINITION (cf. [141). A function f from some Z* to the interval 10, 1] of reals
is computable in polynomial time if there exists a polynomial time algorithm A(x, lk)
such that, for every C-string x and every positive integer k, A(x, lk) is a binary
fraction and I f(x) - A(x, lk)l < (4)“.

LEMMA 1.3 [Blass and Gurevich].
1. If fund g are Ptime computable functions from some C* to the real interval

[0, 11, then f + g, f-g, and f x g are Ptime computable as well.

AVERAGE CASE COMPLETENESS 355

2. Let ,f he a monotone function from some C* to the real interval [0, l] and
let A(x, lk) witness the Ptime computability off There exists a witness B(x, 1”) to
Ptime computability qff such that, for every k, B is monotone in x.

Proof (1) is easy.

(2) Without loss of generality, f is increasing. Fix k; to simplify notation, we
omit the argument 1 k. View a Z-string x as a positive integer (say, 1 plus the num-
ber of x in the lexicographical order of C-strings). Here is an algorithm computing
the desired B(x):

1. Find the least integer p such that x d 2P.

2. For every qdp, set B(2Y)=max{A(2’): r<q).

3. Halt if p = 0; otherwise set a = 2p ~ ’ and b = 2”.

4. While B(x) is undefined do:

(a) If B(a) = B(b) then set B(x) = A(x) and halt, else set c’= L(b - a)/2 J.

(b) If A(c)< B(a) then set B(c)= B(a), else if A(c)> B(b) then set
B(c) = B(b), else set B(c) = A(c).

(c) If x < c then set b = c, else set a = c. Q.E.D.

Remark. The Ptime computability off does not guarantee the computability
(let alone Ptime computability) of the kth digit of fx. For, let M be a Turing
machine that computes a function b(x) from binary strings to {0, 11 such that the
sets {x:b(x)=O}, {x:b(x)=l} are recursively inseparable. Let T(x) be the time
that M works on instance x; T(x) is infinite if M does not halt on x. If M halts on
x, let

,f(x) = O.O(Ol)“” 1 and g(x) = O.O(10)“‘. h(x).

Otherwise, let

f(x) = O.O(Ol)” and g(x) = O.O(10) X.

Obviously, f and g are Ptime computable. Let h = f + g. If b(x) = 0 then h(x) = O.O...
and if b(x) = 1, then h(x) = 0.1. Thus, computing the first digit of h (after the binary
point) would separate the inseparable sets.

By Lemma 1.3, a probability function p is Ptime computable if the corresponding
probability distribution p* is Ptime computable. The converse is not necessarily
true:

LEMMA 1.4 [2]. There exists a Ptime computable probability function u such that
the probability distribution u * is not Ptime computable unless P = NP.

356 YURI GUREVICH

ProoJ Construct a Ptime computable binary relation R on binary strings such
Ix/ = (yl for all (x, y) E R and the language L = (x : 3y(xRy)} is NP complete.
Construct a Ptime computable probability function v on binary strings such that
every v(x) is a binary fraction, and v(x) = 0 t-) (x) is odd.

Define a probability function p on binary strings w as follows. If 1 w (is even then
p(w) = 0. Suppose that w = xby, where 1 x I = (y I and b is a binary bit. If b = 0 then
p(w) = [if xRy then v(xy) else 01, and if b = 1 then p(w) = v(xy) -p(xOy).
Obviously, p is Ptime computable and

C~(W)=,~,~,~,~(XOy)+ll(X~Y)= c v(xY)=l.
1-Y + I .YI

If p* is Ptime computable then L is in P:

~Y(xRY) c--) P*W) - p*(xOz) # 0,

where z = 0’“‘. Q.E.D.

DEFINITION. Let p,, ,u2 be probability functions on strings in the same alphabet
2. p2 dominates (resp. weakly dominates) ,u, if there is a function f from .Z* to non-
negative reals such that ~~(x)<f(x) .pz(x) and f is polynomially bounded (resp.
polynomial on pi average). It is possible to require that pi(x)=f(x) .p*(x). The
probability distribution ,uT dominates (resp. weakly dominates) the probability
distribution pr if p2 dominates (resp. weakly dominates) p, .

On first glance, the definition may look a little strange: ,u2 needs a factor to be
equal to pi. But, considering for simplicity positive p, and p2, note that if ,u2
dominates p[then the ratio p1 /pz is bounded by f, whereas there is no a priori
bound on the ratio pJ,u,.

LEMMA 1.5. If pl is weakly dominated by p2 and (D, p2) is AP then (D, pl)
is AP.

Proof: Since (D, p2) is AP, D is decidable within time T(x) such that

for some k. We prove that

for some 1 that is chosen later. Let g witness that pI is dominated by p2, and let
X= {x: g(x).(Tx)“‘d(T~)“~}. Then

AVERAGE CASE COMPLETENESS 357

xIxx (TX)“‘. 1x1-l .P,(X)

= Jx (TX)“‘.g(X). /XI -’ ./L,(x)

< c (Tx)““.Ixl-‘.~?(x)<cc.
* t x

Let x range over the complement of X. Then T”” <g T”‘, T’-’ <g”‘. and
Tl/‘<g . ‘,“‘-‘) Since g is polynomial on PI-average, there isj such that

Choose I such that k/(1 - k) < l/j.

An alternative proof of Lemma 1.5 is given in Section 7.

Q.E.D.

DEFINITION. RNP is the class of randomized decision problems (D, 11) such that
D is NP and p is dominated or weakly dominated by a probability function 1’ with
Ptime computable probability distribution v*.

RNP is our analog of NP for randomized decision problems. Actually, the
restriction to NP decision problems in the above definition may be rightfully
questioned, but in this paper we stick to it.

Note that the Ptime computability of a probability distribution requires the
Ptime computability of the probabilities of only very special events {J’ : .r <x).
Levin hypothesizes [13] that any natural probability function either has a polyno-
mial time computable distribution, or else is dominated by a function that does.
Johnson writes that it is not difficult to devise encodings that make “each of the
distributions we have discussed in this column” polynomial time computable. Our
experience supports Levin’s hypothesis as well. However, there exist important
probability functions that are not Ptime computable. In particular, information
complexity (i.e., Kolmogorov complexity) gives rise to a recursively enumerable (in
appropriate sense) probability function (say, on binary strings) that dominates any
other recursively enumerable probability function [24]. That maximal probability
function is not Ptime computable and is not dominated by any Ptime computable
probability function.

An important generalization of Ptime computable probability distributions was
introduced recently in [11; they are so-called sampluble distributions. See the
discussion in [9] in this connection.

LEMMA 1.6. For every probability function p with a Ptime computable probability
distribution p(* there is a positive probability function p, such that ~7 is Ptime com-
putable and every value of pI is a finite binary fraction and p(x) = O(p,(x)).

ProoJ To simplify somewhat the exposition, we assume that p is defined on

358 YURI GUREVICH

binary strings and every p*(x) < 1. Let dx = 2p2 Ix’. By the definition of polynomial
time computability with k = 2 1 x 1 + 1, there is a Ptime computable function N’(x)
such that every value of N’ is a binary function and 1 p*(x) - N’(x)1 < (dx)/2.
Round N’(x) down to 2 1 XI + 1 digits; if the last digit is a 1, then add (dx)/2. The
result N(x) is a binary fraction with at most 2 1 x 1 digits after the binary point, and
[p*(x)-N(x)1 <dx.

Define

Then 4p?(x) = 1 + Nx + 2CecyCx dy if x #e, and therefore

,:;_m_ 4/q(x) = 1 + 1 + 2 1 2”/2*” = 4.
It>1

Finally, note that 4pi(x) > p(x). Indeed, 4pi(e) > p*(e+) - de+ + 1 > p(e), and if
xfe then

4pl(x) = N(x+) - N(x) + 2 dx > (p*(x+) - dx) - (p*(x) + dx) + 2 dx = p(x).

Q.E.D.

For future references, note that, for the probability function pi constructed in the
proof of Lemma 1.6, each binary fraction pi(x), written without trailing zeroes, has
at most 2+2 lx+1<4+2 1x1 digits.

2. STANDARD PROBABILITY FUNCTIONS AND EXAMPLES OF RNP PROBLEMS

In the first part of this section, we define standard (or default) probability func-
tions on finite sets, the set of natural numbers, and the set of strings over a given
alphabet. There are two reasons for us to introduce standard probability functions.
One is to use them to define natural probability functions on more complicated
objects; the use of standard probability functions hopefully supports the claim of
naturality. The other reason is brevity. We can speak simply about a random
natural number or a random binary string meaning the randomness with respect to
the corresponding standard probability function.

The uniform probability function, assigning equal probabilities to all sample
points, is our obvious choice for a standard probability function on any (non-
empty) finite set. The choice of a default probability function on positive integers
is not so obvious. We follow Levin [161:

DEFINITION. The standard probability of a positive integer n is proportional
to C2.

AVERAGECASECOMPLETENESS 359

Discussion. If the desired standard probability function p(n) decreases too
quickly then too much weight is given to small instances. For example if p(n) = 2 ”
then the expectation of 2”12 with respect to p converges and 2”12 appears to be
bounded on average, which is undesirable. Proposition 1.1 justifies restricting atten-
tion to probability functions satisfying the assumption of the proposition. Further,
it is natural to restrict attention to probability functions inversely proportional to
polynomials. It is easy to check that if p and v are inverse polynomials such that
both Cp(n) and Zv(n) converge then any function polynomial on p-average is
polynomial also on v-average. Thus, in a sense, it is immaterial which specific
inverse polynomial to choose. The choice of n m2 is natural.

There are natural probability functions that grow slower than probability func-
tions given by inverse polynomials. Consider, for example, probability functions
proportional to n . (log n)2, n .log n . (log log n)‘, etc. These functions seem less
convenient, but they have their own advantages. For example, adapt, for a moment.
the alternative definition of polynomiality on average based on condition (v) in Sec-
tion 1: A function f is polynomial on p-average if the p-expectation of log,, , ,f’(.u)
converges. Then a relatively fast-growing function .f’(x) = (x (‘Ogz’ ‘I is not polyno-
mial on average with respect to any of the probability functions in question, but it
is polynomial on average with respect to, say, the probability function proportional
to n m3.

If the uniform probability distribution is an ideal (an unreachable ideal in the
case of a countable infinite set of sample points), then one may be interested in even
slower growing probability function. There is no such thing as the slowest growing
probability function. The situation changes however if one restricts attention to
recursively enumerable (in an appropriate sense [24]) probability functions and
does not distinguish between probability function p and v such that p(n) = @v(n))
and v(n) = 0(1(n)). Then there is the slowed growing probability function;
however, it is not dominated or weakly dominated by any Ptime computable
probability function. End of discussion.

DEFINITION. In the case of natural numbers, the standard probability of a
positive n is proportional to K2, and the standard probability of 0 is positive. (The
exact value of the standard probability of 0 will be immaterial.)

DEFINITION. Let C be a k-letter alphabet. The standard probability function on
Z* assigns the probability proportional to n -*k-’ to any strings of length n. (It
corresponds to the following experiment: choose randomly a natural number n, and
then choose randomly a string of length n.)

An alternative natural approach is to identify strings with natural numbers and
use the standard probability function for natural numbers [161. One should be a
little careful though. Suppose, for example, that the alphabet in question is binary
and assign to a binary string w the probability proportional to the inverse of the
square of the number of w in the lexicographical order of binary strings. Then the

360 YURI GUREVICH

probability of the event {w :) W(=n} is about 2-” which is too little. Assigning the
probability proportional to n-‘(log, n))’ to the number n and the string of
number n results in the probability of the event (W : 1 w 1 = n} being roughly
proportional to nM2.

Remark. Sometimes, standard probability functions are called uniform even
though they are not truly uniform.

In the rest of this section, we give some examples of RNP problems. The
probability functions are described by means of appropriate experiments.

Randomized 3-Coloring

Instance. A graph on an initial segment [0 . . (n - l)] of natural numbers.
Question. Is the graph 3-colorable?
Probability. Randomly choose a positive integer n, and then randomly choose

a graph on [O...(n- l)].
The Randomized 3Coloring Problem happens to be AP. The usual backtracking

solves it in about (surprise!) 197 steps on average [23]. The reason is that there are
very simple and probable witnesses to non-colorability, like a clique of 4. The
average time can be further cut down if the algorithm starts with a direct search for
such witnesses.

DEFINITION. Consider a sample space of graphs on the segment [0 .. . (n - l)] of
natural numbers where events “{u, V} is an edge” are independent. Here u and v are
distinct vertices. If each of these n(n - 1)/2 events has the same probability p, we say
that the probability function is given by the edge probability p. If p = 1 then the
probability function is uniform.

Randomized Cliques

Instance. A graph on an initial segment [0 . . ’ (n - 1)] of natural numbers and
a positive integer k < n.

Question. Is there a clique of size > k in the graph?

Probability. Randomly choose a positive integer n, and then randomly choose
a graph on [O...(n- l)].

It is an open problem whether the Randomized Clique Problem is AP. See [21]
in this connection. It is not difficult to devise a backtracking algorithm that inspects
all cliques in lexicographical order and this way finds a clique of the maximal size.
The expected run time of that algorithm is bounded by

(n f e2/Z)(‘-r)‘2 . x(n),

where e is the basis for natural logarithms, 1= log, n, r = log, I, and 7t is a polyno-
mial; a similar estimation is valid if the probability function on n-vertex graphs is

AVERAGE CASE COMPLETENESS 361

given by a fixed edge probability p, except the basis for logarithms is l/p rather
than 2.

Randomized Hamiltonian Circuits with Edge Probability p

Instance. A graph on [O...(n- l)].

Question. Is there a Hamiltonian circuit in the graph?

Probability. Randomly choose a positive integer n, and then choose a graph on
[0 (n - 1)] with respect-to the given edge probability p.

There is a decision algorithm for Randomized Hamiltonian Circuits with expected
run time O(n) for each fixed edge probability p [111. The fact that Randomized
Hamiltonian Circuits with edge probability i is AP is proved in [3].

Randomized Tiling Problem over an Alphabet C

Some delinitions are needed. A tile is a quadruple

V

u w

.Y

of X-strings. A function z from the square [0 . . . (n - 1)] x [0 . . (n - 1)] to a set T
of tiles is a T-tiling of the square if

left[z(i+ l,j)] = right[t(i,j)] and bottom[s(i,,j+ 1)] = top(t(i,j)]

for all appropriate i and j. A function p from [0 ... (j- 1)] to T is a T-row of
length j if each left[p(i+ 1)] =right[p(i)]. Now we are ready to formulate the
problem.

Instance. A finite set T of tiles, the unary notation 1” for a positive integer n,
a positive integer k < n, and a T-row p of some lengthj such that either j = k or else
,j<k and T has no t with left[t]=right[p(j)].

Question. Does there exist a T-tiling z of the square [0 . ’ (n - 1)] x
[O..‘(n- I)] with ~(0, i)=p(i) for all i<j?

Probability. Choose T with respect to your favorite positive probability func-
tion. Choose randomly n, k and p(O). If p(i) has been chosen, i < k - 1 and the
set T, = (t : t E T and left[t] = right[p(i)]} . is not empty, then choose p(i + 1)
randomly from T,.

Randomized Tiling is complete for RNP in an appropriate sense [163; a
reconstruction of Levin’s proof can be found in the Appendix.

362 YURI GUREVICH

3. PTIME REDUCIBILITY

If P=NP then AP includes RNP. Hence it is hard to demonstrate an RNP
problem which is not AP. Instead, one can develop a reduction theory for RNP
problems and demonstrate complete RNP problems. RNP completeness of a ran-
domized decision problem witnesses that the problem is hard in the average case.
This section is devoted to polynomial time reducibility of RNP problems; the
existence of a Ptime complete RNP problem is established in the next section. It is
worth mentioning that the inclusion RNP E AP is not very likely either: by a
theorem of Ben-David and Luby in Section 8 below, it implies that every problem
decidable in nondeterministic exponential time is decidable in deterministic
exponential time.

As usual, we say that a function f reduces a decision problem D, to a decision
problem D, if, for every x~dom(D,), xeL(D1) if and only iff(x)EL(D,).

DEFINITION.

1. A function f transforms a probability function pi into a probability func-
tion p2 if pL2(y) = &=, pi(x) for all sample points y in the domain of &.

2. A function f transforms (D,, pi) into (D2, ,u~) if it reduces
D, 1 {x : pi(x) > 0} to D2 and transforms pi into pZ.

LEMMA 3.1.

1. Suppose that a function f transforms ,ul into a restriction uz 1 Y of uz, R is
the range off and R,= {f(x) : yl(x) >O}. Then ~~1 R,,=uzI Y and there exists
v 2 uI such that f transforms v into ,uz 1 R.

2. Suppose that a function f transforms (D,, uI) into a restriction of (D2, uz)
and (D2, uz) is AP. Iff is computable in polynomial time or in time polynomial on
PI-average then (DI, uI) is AP.

3. Every RNP problem (D, ,u) is Ptime transformable to some RNP problem
(D, , u,) over the binary alphabet.

Proof (1) The first claim is obvious. It is not true though that Y necessarily
coincides with R,; it can be a proper extension of R,.

The desired v is proportional to pi on (x : pi(x) >O}. For every YE R - R,,
(~2 I R)(Y) = I&=, v(x).

(2) Every restriction of an AP problem is AP. For, suppose that a decision
problem D is decidable in time T(x) polynomial on average with respect to some
probability function p and let X be a collection of instances of D of some probability
p(X) > 0. If k witness that T is polynomial on p-average, then

X;X(Tx)l”(u[X)(x)=u(X)-‘. 1 (Tx)“~.~(x)<co.
x E x

AVERAGE CASE COMPLETENESS 363

Hence we may assume that f transforms (II,, pL1) to (Dz, p2) itself. Let A be a
decision algorithm for O2 whose run time is polynomial on p*-average. To decide
an instance x of D,, compute f(x) and then apply A to f(x). By Lemma 1.2, the
run time of A on f(x) is polynomial on PI-average.

(3) Let C be the alphabet of D. If C is unary and a is the only letter of C,
define f(a”) = 1”; otherwise let f take the n th C-string to the n th binary string. The
desired D, is the decision problem for the language {f(x) : x E t(D) }, and the
desired pI(y) = p(f -‘(y)). If p is dominated by some v with Ptime computable I’*
and vl(J) = v(,f p l(y)), then v is dominated by v, and v T is Ptime computable.

Q.E.D.

Let p1 d ~1~ denote that pLI is dominated by p2, and let p, A p2 denote that f’
transforms p, into pL2.

DEFINITION. p2 dominates ,u, with respect to a,function f, symbolically p, 6’ p2,
if there exists some v > p, such that f transforms v into a restriction of p2.

LEMMA 3.2. p2 dominates ,u, with respect to a one-to-one function ,f if and on!,,
lf the probability ,function v(x) proportional to pLz(fx) dominates p,

Proof: First, suppose that p2 dominates p, wrt ,f: Then there exists v 1 3 p, such
that ,f transforms v, to a restriction pI 1 Y of p2. We have

v,(-x) = (pzl Y)(fx) = /NT pL?(fx) =A Y) ' d.x),

so that v >, v, > pl. Second, suppose that v >, ~1~. Since f transforms v to /.L~, pI
dominates ~1, wrt ,f: Q.E.D.

LEMMA 3.3. Let f be a Ptime computable function from some 2: to some 2’;.

1. If p, L v,<pL? for some v2 then p, <-‘pLz.

2. Suppose that f: Z: -+ CT is honest, i.e., / x / is bounded by a polynomial of
l.f.xI. Ifp, $’ pl then there is v2 such that p, L v,6p2.

Proof: (1) Without loss of generality, we may suppose that p?(y) = 0 for every
J’ such that v2(y) = 0. For, let p be the restriction of pI to {u : v,(y) > 0).
Obviously, p dominates v2. Suppose that some v dominates p, andf transforms v
to a restriction of ,u. Then f transforms v to a restriction of k2 and therefore
p1 Gp2.

Since pL2 dominates v2, there exists a polynomially bounded function g such that
v2(y)=g(y).p2(y). Define:

r,(x)= [ifvJJx)>O then pl(x).(g(fx))~‘,elseO].

Since / fx 1 and g(y) are polynomially bounded, g(fx) is polynomially bounded
and therefore p, d v 1. We check that f transforms v, into p2. If v2(y) =0 then

364 YURI GUREVICH

Cf.x=y ~i(x)=O=~~(y), and if v,(y)>0 then g(y)>0 and Cfr=~.vI(x)=
(Cr,=y~~(~)).(gY)-‘=v2(Y)~(gY)-‘=~*(Y).

(2) By Lemma 3.1(l), there exists v1 such that pi <vi f ~~1 Y, where Y
comprises points f(x) with p,(x) > 0. Without loss of generality, ,u2 1 Y= pz, for if
Ill-L,v,~~~IYthen~,_f_,v,g~,,. Define:

g(x) = [if pi(x) > 0 then p,(x)/v,(x), else l]

v*(y)= c PI(X)
fx = y

4~) = W2(y) > 0 then v~(Y)/P~(Y), else 1 I.
Obviously, g is polynomially bounded, pl =g f v1 ,f transforms pi into v2, and
v2 = h . pLz. We need only prove that h is polynomially bounded. Restrict attention
to y E Y. We have

c ~l(Y)=VZ(Y)=h(Y).~*(Y)=h(Y). c v,(x)=h(y). c (l?x)-‘9+)~
fx=y .fx = y .fx =.v

Thus, (hy) - ’ is the conditional expectation E[(gx) - ’ 1 fx = y 1. Since g is polyno-
mially bounded and S is honest, there exists a polynomial q such that
g(x)dq(IfxO. Then kx)p’~l/q(lfxI), and (hy)-‘=E[(gx)-‘Ifx=y]Z
Vd.h and 4~) <q(y). Q.E.D.

Remark. The honesty condition cannot be dropped in Lemma 3.3(2). Consider
a function y =f(x) that takes a binary string x into the number)x I written in the
binary notation. For every i > 1, f transforms the probability function ai propor-
tional to 1x1 pi to the probability function /Ii(y) proportional to y-‘. Since
a2 d a3, a2 <f p3. But f transforms a2 into /I2 which is not dominated by p3.

DEFINITION. A Ptime computable function f reduces (DI, ,ul) to (D,, p2) if f
reduces D, / (x : pi(x) > 0} to D2 and pi df ,u*.

LEMMA 3.4.

1. Zf (DI, pl) Ptime reduces to (D2, pLz) and (D2, p2) is AP then (Dl, pI) is
AP.

2. The Ptime reducibility relation on randomized decision problems is transitive.

ProoJ (1) Suppose that a Ptime computable function f reduces (Dl, pl) to
(D2, p2). Then there exists a probability function v 3 p, such that f transforms v
into a restriction of ,u2. Suppose that (D2, p2) is AP. By Lemma 3.1(2), (DI, v)
is AP. By Lemma 1.5, (DI, pI) is AP.

(2) Suppose that f Ptime reduces (D,, pi) to (D2, PJ and g Ptime reduces
(D2, pLz) to (D3, 1~~). There exists a probability function v, >p, such that f trans-
forms vi into a restriction p; of p2, and there exists a probability function v2 2 ,uL2
such that g transforms v2 to a restriction ph of Pi. If pi(x)>0 then vi(x) >O,

AVERAGE CASE COMPLETENESS 365

.&(fx) > 0 and pLz(jx) > 0; hence the composition g ofreduces D, ({x : p,(x) > 0) to
D,. We have

By Lemma 3.3(1), there exists v 3 vI such that f reduces v to a restriction vi of \12.
Thus,

Obviously, g transforms V; to a restriction p; of PL;. Hence gof reduces ,nL1 to ~1,.
Q.E.D.

DEFINITION. A randomized decision problem (D, p) is Ptime hard for RNP if
every RNP problem Ptime reduces to (D, p), and (D, p) is Ptime complete,for RNP
if it is RNP and Ptime hard for RNP.

It is not obvious that there are Ptime complete problems for RNP.

4. RANDOMIZED HALTING PROBLEM

In this section, we prove that an arbitrary RNP problem reduces to a
randomized version of the bounded halting problem for an appropriate nondeter-
ministic Turing machine (shortly, NTM); for brevity, the adjective ,,bounded” is
omitted. We restrict attention to NTMs with binary input alphabet (unless the
contrary is said explicitly).

Randomized Halting Problem RH(M),for an NTM M

Instance. A binary string ~01” with n > 1 w 1.

Question. Is there a halting computation of M on w with at most n steps?
Probability. Proportional to n - 32 ~ ‘, where k = 1 w 1.

The probability function of RH(M) corresponds to the follcwing experiment.
First, randomly choose a positive integer n, then randomly choose a natural
number k <n, and then randomly choose a binary string of length k.

DEFINITION. A positive integer n is longevous for an input w of an NTM M if
every halting computation of M on w has f n steps. A function g(w) is a longeuiq
guard for M if, for every input w, g(w) is a number longevous for w. If g is a
longevity guard for M, let RH(M, g) be the restriction of RH(M) to instances
)$I01 fi(u’),

THEOREM 4.1. For every RNP problem (D, p) there exist an NTM M and u
longevity guard g for M such that (D, p) Ptime reduces to RH(M, g).

366 YURI GUREVICH

Proof: By the definition of RNP problems in Section 1, the probability function
p is dominated by some probability function pi with Ptime computable distribution
pf. By the definition of Ptime reducibility, (D, p) Ptime reduces to (D, pi). By
Lemma 3.4(2), we may assume that p = p,. By Lemma 3.1(3), we may assume that
instances of D are binary strings. By Lemma 1.6, we may assume that every value
of p is a positive binary fraction.

By the definition of RNP problems, the decision problem D is NP. Therefore
there exists an NTM A, such that:

l A, has a halting computation on an arbitrary input w if and only if w is
a positive instance of D, and

l A, has a polynomially bounded longevity guard.

Let x’ be the shortest binary string with p*(x) < 0 .x’l <p*(x+). Recall that x+
is the successor of x in the lexicographical order. Then

O.x’l -2-‘““‘~~*(x)<~*(x+)<O~x’l +2+‘l’,

and therefore 2 x 2-‘““’ > p(x). Set

x” = [if 2-l”’ > p(x) then Ox, else lx’],

so that 2-l”“’ > ,u(x)/~.
The desired reduction is

f(x) = x”O1 g(x”),

where g is a longevity guard for the desired NTM A4. Now we describe the desired
NTM M. Given a binary bit b followed by a string w, A4 executes the following
algorithm:

1. If b=O then
if 2-l”’ <p(w) then loop forever else simulate A, on w.

2. Find the unique x with p*(x) < 0. wl < p*(x+).
3. If 2-l”’ > p(x) or x’ # w then loop forever, else simulate A, on x.

A4 has a halting computation on x” if and only if x is a positive instance of D.
Ptime computability of p* is used on step 2. It is easy to see that A4 has a longevity
guard g such that g(x”) is bounded by a polynomial of 1 x 1 (though not necessarily
bounded by a polynomial of 1 x” I).

Finally, the probability function v of RH(M, g) dominates p with respect to J
For, v(fx) is proportional to g(x”) -’ 2 - I**’ which exceeds g(x”)-3p(x)/2. Q.E.D.

COROLLARIES.

1. There is an NTM M such that RH(M) is Ptime complete for RNP.
2. Let v be any positive probability function over NTMs. The following

randomized decision problem is Ptime hard for RNP:

AVERAGE CASE COMPLETENESS 367

Instance. An NTM M and an instance ~01” of RH(M).

Question. Is there a halting computation of M on u’ with at most n steps?

Probabiliry. Choose M with respect to v and then choose an instance of RH(M)
as above.

Proqf: (1) Choose M to be a universal NTM. (2) Clear. Q.E.D.

Remark. Theorem 4.1 implies a similar theorem for the case of, say, ternary
input alphabet. The proof illustrates how reductions of RNP problems differ from
reductions of NP problems. The desired reduction transforms an instance x01”’ for
the given RH(M, g) to an instance ~01” for a new RH(M’, g’); here .X is a binary
string and y is a ternary string. Of course, x is also a ternary string, but y cannot
be taken equal to x because the domination condition will be violated: The
probability that a random ternary string happens to be binary approaches 0
exponentially (in the length of the string) fast. One possibility is to choose y in such
a way that the number of x in the lexicographical order of binary strings equals the
number of y in the lexicographical order of ternary strings.

In the rest of this section, we restrict attention to NTMs with a single tape, that
is bounded on the left and unbounded to the right, and a single head; the input is
left justified on the tape in the initial moment. Note that Theorem 4.1 survives the
restriction. The following two lemmas are useful.

LEMMA 4.1. Let F, G be Ptime computable functions from binary strings to binar!
strings such that /F(w)] = O(log, 1 w I) and 1 G(w)/ = O(log, 1 w I). For ever)
RH(M,, g,), there exist an NTM M and a longevity guard g ,for M such that
RH(M,, g,) Ptime reduces to the restriction qf RH(M, g) to instances ~01” where)t’
starts with F(w) and ends with G(w).

Proof Given an input w, the desired M checks whether w has the form
F(w) UC(W). In the positive case, M simulates M, on u; otherwise it loops. The
desired reduction takes ~01” to F(u) u(G(u) Ol”(“‘), where p is an appropriate
polynomial. The domination requirement is obviously satisfied. Q.E.D.

DEFINITION. An input w is stable for an NTM M if, for every natural number
IZ, the following statements are equivalent:

1. There exists x such that M has a halting computation on wx with at most
n steps, and

2. For every x, M has a halting computation on wx with at most n steps.

LEMMA 4.2. For every RH(M,, g,), there exist an NTM M and a longevity guard
g for M such that RH(M,, go) Ptime reduces to the restriction of RH(M, g) to stable
instances (i.e., to instances wO1 g(w) where w is stable for M). Moreover, it may /W

368 YURI GUREVICH

required that 0 and 1 are the only tape symbols of A4 (with 0 serving also as the
blank).

Remark. Note that a machine with binary input alphabet may have many tape
symbols; in particular, the blank may differ from input symbols. The proof of
Lemma 4.2 can be simplified if the restriction on the tape alphabet is removed.

ProoJ Code tape symbols of M,, with binary strings of some fixed length 1 such
that the string l’, called $ in this proof, is not a code. The desired M works as
follows.

1. M verifies that the initial tape has a prefix
$Oa,a,Oa,a,...Oakak$$

for some k and some binary digits a,, ak with a, = 1; if not then M loops.
2. Let m be the positive integer with binary notation a, a2 . . . ak, and u be the

string b, b, ..‘b,,, such that the initial tape has a prefix $Oa,a,0a2a2 ~~.Oaka,$$u.
Using the sequence of positions 2, 5, 8, 3k - 1 of the string $. . . $8 as a counter,
M transforms

$0a,a,0a2a,... Oa,a,$$u into u$Oa,a,Oa,a,...Oakak$$.

3. Using a counter again, M transforms

u$Oa, a, Oa,a, . . . Oa,a,$$ into $03k$~,~, ‘.. v,$,

where each vi is the code for bi.

4. Using the codes for tape symbols, M simulates M0 pushing the rightmost
$ to the right if necessary.

The desired reduction is

where a, a, . . . ak is the binary notation for 1 u 1, and p is an appropriate polynomial.
We ignore the case of u = e. It is obvious that the string v = $Oa, a, . . . Oakak$$u is
stable for M. To check the domination condition, note that 1 v 1 =) u (+ O(log, 1 u I).

Q.E.D.

5. RANDOMIZED POST CORRESPONDENCE PROBLEM

In this section, a randomized version of the bounded Post Correspondence
Problem (PCP) is defined and proved Ptime complete for RNP. PCP is a well-
known undecidable decision problem [121; it can be stated as follows.

Post Correspondence Problem

Instance. A nonempty list L = ((u,, v,), (u,, v,)) of pairs of strings.

AVERAGE CASE COMPLETENESS 369

Question. Does there exist a function F from some nonempty interval [1 . k]
of integers to the interval [1 . . . s] such that the concatenation of strings
UF(1)3 ‘..> U,(k) coincides with the concatenation of strings un,), u,(~)?

If UF(I)...UF(k)= U,(l)“.Ufi-(,), and k > 0 then F is called a solution of length k for
the given instance L of PCP. According to Garey and Johnson [7] a bounded
version of PCP has been proved NP complete by Constable, Hunt, and Sahni [6].
For brevity, we omit the adjective “bounded” in the following definition.

Randomized Post Correspondence Problem (RPCP)

Instance. A nonempty list L= ((u,, u,), (u,, u,)) of pairs of binary strings,
and the unary notation 1” for a positive integer n.

Question. Is there a solution of length at most n for L?

Probability. Randomly and independently choose positive integers n and s, then
randomly and independently choose binary strings u,, c, , u,, L’,.

In accordance with Section 2, the random choices are made with respect to the
default, or standard, probability functions on positive integers and binary strings
which were defined in Section 2. It is clear that RPCP is RNP. Call an instance
(L, 1”) of RPCP robust if either L has no solution or it has a solution of length
< n. Let RRPCP be the restriction of RPCP to robust instances.

THEOREM 5.1. RRPCP is Ptime hard for RNP.

Proof The proof is an adaptation of the standard undecidability proof for PCP
[121; the difficulty is that the desired reduction should have the domination
property.

Suppose that M is an arbitrary Ptime guarded NTM and g is a longevity guard
for M. By Theorem 4.1, it suffices to reduce RH(M, g) to RRPCP. Let (D, p) be the
restriction of RH(M, g) to instances ~01” such that w is not empty and starts with
a 1; by Lemma 4.1, it suffices to reduce (D, p) to RRPCP. Let B be the number of
control states of A4 and z be the number of tape symbols of M.

LEMMA 5.1. Let w be a nonempty binary string and I be the least even integer
such that 2”- 6”2 3 1 w (+ o + 2r + 2. There exists a set S qf binary strings qf length
1 satisfying the following requirements.

1. No S-string is a substring of w.

2. If a nonempty suffix 2 of an S-string x is a prefix qf an S-string ,I', then
;zuy= ,' _ .

3. Every S-string starts M’ith 01.

4. (SI =a+2T+2.

Proof: Let R be the regular set OlOO(O0 + ll)* 11. The string w has d / W/ sub-
strings of length 1. The definition of 1 allows us to choose a set S of R-strings of
length I that satisfies requirements (1) and (4). Then requirement (3) is satisfied.

370 YURI GUREVICH

To prove that requirement 2 is satisfied as well, suppose by contradiction that
x=a,..,a,ES, 1 <i<l, and y=bl ...bl=ai...a,+im,ES. Since x, y belong to R,
they satisfy the following: If 1 <j< I and j is odd then j < 1, a,j= aj+, , and
bj=bj-+l. Ifi=IthenO=b,=a,=1;hencei<1.Sinceai=b,=Oandai+,=b,=1,
i is even. Since i + 1 is odd, ai+ r = ai+ z = 1. But aj+ z = 6, = 0. This gives the desired
contradiction. Q.E.D.

LEMMA 5.2. Every binary string x that does not start with 01 and is different from
0 is a concatenation of strings 00, 000, 1, and 10.

Proof: We prove the lemma by induction on (xl. The case 1x1 d 3 is easy.
Suppose that 1 x 1 > 3. It suffices to prove the existence of strings y, z such that
x = yz, y is one of the 4 strings 000, 00, 1, 10 and z does not start with 01 and is
different from 0.

If x starts with: then the desired y is:

0000 00
0001 000
001 00
100 1
101 10
11 1 Q.E.D.

In Section 4, at the beginning and right before Lemma 4.1, we restricted the class
of NTMs under consideration. Without loss of generality, we may suppose
additionally that our A4 uses a blank symbol which is different from input symbols
and that, on every step, the head of M prints a nonblank symbol in the currently
scanned cell and moves one cell to the left or right. It follows that the nonblank
portion of the tape is always an initial segment of the tape. In addition, we may
suppose that there is only one halting state, and in any halting configuration the
first, i.e., the leftmost, blank is observed.

Let w be an instance of D and let I and S be as in Lemma 5.1. Use cr members
of S to code state symbols of M, and let s, h be the codes for the initial and the
halting states of M respectively. Use 22 additional members of S to assign two
binary codes x’ and A”’ to each tape symbol X of M. In particular, we have 0’, 0”,
l’, 1”; let B’ and B” be the two codes for the blank symbol B of M. We use X+
as a variable over (xl, X”). Finally, let % and s0 be the two remaining members
of s.

For every w, let L = L(w) be an instance of PCP comprising the following pairs
of binary strings:

LO. (%, % w&Y()).
Ll. The four pairs (u, v) such that UE (000, 00, 1, lo} and v is obtained from

u by replacing symbols 0, 1 with strings 0’, 1’ respectively.
L2. The pair (so, sB’).
L3. Pairs (X’, X”), (X”, X’) for every tape symbol X of M.

AVERAGE CASECOMPLETENESS 371

L4.1. Pairs (pX+, Y’q) for each instruction [PX + q YR] of M.
L4.2. Pairs (Z’pX+, qZ’ Y’) for each instruction [pX -+ qYL] of M.
L4.3. Pairs (pB+, Y’qB’) for each instruction [PB -+ qYR] of M.
L4.4. Pairs (Z+pB+, qZ’ Y’B’) for each instruction [pB -+ qYL] of M.
L5. Pairs (X+/z, h).
L6. Pairs (hB+B’, B’).

It is convenient to view the problem of solving L as a derivation problem with pairs
LO-L6 as rules of inference. In this connection, we need a few definitions.

Two binary strings are compatible if one of them is a prefix of the other. Pairs
(si, y,) and (.x2, y2) of strings are equivalent if there exist strings u, u, and xj, .v3
such that X, =uxJ, y, =uy3, x2=ux3, and y,= uy3. A pair (x,11) of binary stings
is unary if either x or y is empty. It is easy to see that every pair of compatible
strings is equivalent to a unary pair.

A pair (x, , y,) yields a pair (x,, y2) in one step if there is a pair (u, t.) in LO-L6
such that (x,u, y,u) is equivalent to (x,, y2). The yield relation on pairs is the
transitive closure of the yield-in-one-step relation. We identify a string x with the
unary pair (e, x). This extends the yield relation to strings.

LEMMA 5.3. L(w) has a solution of length 1 + k tf and only [fwsO yields the ernpt!!
string e in k steps.

Proof: L has a solution of length 1 + k if and only if e yields e in 1 + k steps.
Since (%, %ws,) is the only compatible pair in L, e yields e in 1 + k steps if and
only if wsO yields e in k steps. Q.E.D.

For each binary string x, let x’ (resp. x”) be the binary string obtained from s
by replacing each 0 with 0’ (resp. 0”) and each 1 with 1’ (resp. 1”).

LEMMA 5.4.

1. wsO yields sow’ in < (w 1 steps.

2. Any derivation of e from wsO splits into two parts: a derivation qf sOwI and
a subsequent derivation of e from sow’.

Proof: (1) Use Lemma 5.2 and rules L2.
(2) Consider the given derivation. First some pair (u, wsOu’) is derived by

means of Ll-rules and then some other rule (x, y) is applied to that pair. Obviously
x belongs to S and ux is a prefix of wsOu’.

Recall that S satisfies the four requirements of Lemma 5.1. If ux is a prefix of MS
then x is a substring of u’ which contradicts requirement 1. Hence / ux / >) MI /
The string u’ is a concatenation sI ... sk where each s, is either 0’ or 1’. Let li’O = M‘
and VV,+ , = WJ, for 0 < i< k, and let i be the least number such that
1 wil < 1 ux 1 d 1 wi+ 1 1. Then a nonempty suffix of .Y is a prefix of si. Since S satisfies
requirement 2 of Lemma 5.1, u = kvi.

312 YURI GUREVICH

If i> 0 then (u, ws,,~‘) is equivalent to a nonempty concatenation of strings 0’
and 1’. Only rules L3 are applicable to concatenations of strings 0’ and l’, and all
rules L3 are length preserving. It follows that, in the case i > 0, the pair (u, wsOu’)
does not derive e. Hence i = 0, u = w and (u, wsO u’) is equivalent to s0 w’. Q.E.D.

If x is a string of state or tape symbols of M, let x+ denote any of the binary
strings obtained from x by replacing each occurrence of every symbol by an
S-string that codes the symbol.

LEMMA 5.5. There exists exactly one derivation of length 1 w 1 + 1 from sO WI, and
the result of that derivation is sw”B’.

Proof: Apply the L2-rule to derive w’sB’ from s0 w’. Then use 1 w 1 applications
of L3-rules to derive sw”B’ from w’sB’. The uniqueness is obvious. Q.E.D.

If at moment t (i.e., after t steps of computation), the state of M is q, the head
of M is at cell number i, and the first blank is in cell number j, then the
configuration of M at moment t may be represented by a string xqy, called the
instantaneous description or ID, where x and y are the strings in the segments
[1 . . . (i - l)] and [i . .j] of the tape respectively. We identify states of M with
their binary codes. Thus, the initial ID of M on input w is swB.

LEMMA 5.6. Let t’ = max(t, 1 w I).

1. There exists a polynomial p, such that if an ID xqy is reachable from the
initial ID swB in t steps then every sw+B+ yields some x+qy+ within p,(t’) steps.

2. There exists a polynomial p2 such that if M has a halting computation of
length t then every SW +B+ yields the empty string within p2(t’) steps.

Proof: (1) An easy induction on t. The simulation of a step of M from a con-
figuration x,q, y, comprises of 6 Ix1 (applications of L3-rules, followed by one
application of an L4-rule, followed by) y) - 1 applications of L3-rules. It remains
to note that the length of the ID at moment t is bounded by t’+ 1.

(2) If a halting configuration xhB is reachable in t steps, then, by (1), some
x+hB+ is derivable from any SW + B + in < pl(t) steps. If y = zX, where X is a tape
symbol of M, then y+hB+ yields z+hB+ by means of Iz(applications of rules L3,
followed by one application of an LS-rule, followed by an additional application of
an L3-rule. This shows that x+hB+ yields hB+ and allows to estimate the derivation
length. Finally, hB+ yields e by means of one application of an L-rule. Q.E.D.

It is easy to see that any derivation from any SW + B+ can use only rules L3-L6.
For, consider the collection K of strings x and unary pairs (x, e) such that x is a
concatenation of the codes for state and tape symbols. K contains all strings
sw+B+, and is closed under rules L3-L6, and only rules L3-L6 are applicable to
members of K.

AVERAGE CASE COMPLETENESS 373

LEMMA 5.1.

1. Every string, derivedfrom any SW + Bt by means of rules L3-L4 has the,form
x;qy+x:, where x,x,qy is a reachable ID of M, or the form y: xcqy :, where
xqy, y, is a reachable ID of M.

2. If some sw+B+ yields e then M halts on ~3.

Proof: (1) Induction on the length of the derivation.
(2) Suppose that sw+B+ yields e. Since no L3 or L4 rule shortens strings,

rules L5 or L6 should be used in the derivation. Hence sw+B+ yields some string
X$ hu+x: or y: x+hy :. By (l), there is a halting computation of A4 on w. Q.E.D.

LEMMA 5.8. There exists a polynomial p such that, for every instance ~01” of D,
the following statements are equivalent:

1. M has a halting computation of length <m on w.

2. L(~v) has a solution of length <p(m).

3. L(w) has a solution.

4. A4 has a halting computation on w.

Proof. First we prove that (1) implies (2) for an appropirate p. Suppose that M
has an m-step halting computation on w. By Lemma 5.3, we need to show that wso
yields e in <p(m) steps for some polynomial p. By Lemma 5.4(l), wsO yields sow’
in a number of steps which is at most 1 w 1 and therefore less than m. By Lemma 5.5,
sow’ yields sw”B’ in / w 1 + 1 < m steps. Now use Lemma 5.6.

Obviously, (2) implies (3).
To prove that (3) implies (4), suppose that L(w) has a solution. By Lemma 5.3,

M’S* yields e. By Lemma 5.4(2), s,,w’ yields e. By Lemma 5.5, sw”B’ yields e. Now
use Lemma 5.7(2).

Since (D, cl) is a restriction of RH(M, g), m is longevous for)v. Hence (4) implies
(1). Q.E.D.

Let p be as in Lemma 5.8. The desired reduction reduction of (D, ,u) to RRPCP is

f(wolrn)=(L(w), 1P”“‘).

By Lemma 5.8, ~01” is a positive instance of D if and only if f (wOlm) is a positive
instance of RRPCP. It remains to check that the probability function v of RRPCP
dominates p. Since (D, p) is a restriction of RH(M, g), ~(~01~) is proportional to
m-32-i”‘i. We must prove that, for some polynomial r, r(m) x v(f (w01”‘)) exceeds
m-32-i~vI.

Let 6(x) be the default probability of a binary string x. Let u range over the
binary strings of L(w) different from %ws,. v(f (wOlnt)) is the product of p(m) ’
and 6(%ws0) and all 6(u). It suffices to prove that:

374 YURI GUREVICH

l There exists a polynomial Y, such that ri(m) xp(m))* > m 3,
l there exists a polynomial r2 such that r*(m) x 6(%ws,) > 2-l”‘, and
l there exists a polynomial yg such that r3(m) x 6(u) > 1 for all u.

All three claims are easy. Use the fact the length I of S-strings is O(log, I w I).
Theorem 4.1 is proved. Q.E.D.

COROLLARY. RPCP is Ptime complete for RNP.

Remark 5.1. The reason for introducing robust instances was to make the
completeness proof a little easier. It is possible also that the robustness may be
helpful in reducing RPCP to other problems. In this connection, let us note that the
definition of robust instances (L, 1”) may be strengthened by requiring that every
solution for L should be of length < n. Theorem 5.1 remains true and the particular
reduction, described in the proof of Theorem 5.1, is fine. Lemma 5.7 should be
strengthened by asserting that longer derivations correspond to longer computa-
tions.

Remark 5.2. In the classical reduction of the halting problem to PCP [121, an
input w of the given Turing machine appears in a coded form in the corresponding
instance of PCP. We must use an essentially uncoded form of w in order to take
care about probabilities. Rules L2 are used to rewrite w in a coded form. The four
L2-rules cannot be replaced by two simpler rules (0,O’) and (1, 1’) because the new
rules may be applicable in inappropriate situations.

In the rest of this section, we slightly modify the proof of Theorem 5.1 and prove
the RNP hardness of another form of RPCP; that result is used in the next section.
Let x- ’ denote the reverse of binary string x.

LEMMA 5.1’. Let w be a nonempty binary string and 1 be the least even integer
such that 2”- 6)‘2 3 2 1 w 1 + a + 2r + 2. There exists a set S of binary strings of length
1 satisfying the four requirements of Lemma 5.1 plus the following two additional
requirements:

5. For no S-string x, x-l is a substring of w.
6. If x, y, z are s-strings then z-l is not a substring of xy.

Proof: Let R be as in the proof of Lemma 5.1. The number of substrings of w
of length 1 plus the number of substrings of w-’ of length 1 is at most 2 1 w 1. The
definition of 1 allows us to choose a set S of R-strings of length 1 that satisfies
requirements (l), (4), and (5). Requirement (3) is obviously satisfied. The same
proof as before establishes that S satisfies requirement (2).

By contradiction, suppose that x, y, z witness that S fails to satisfy requirement
(6). Let xy=a,...a,,andz-‘=b, ...b,=a,...a,+ip,. Sincez-‘starts with 11 and
x starts with 0100, i > 4. If i is odd then xy has a 1 in the odd position I+ i- 2
followed by a 0 in the even position 1+ i - 1 which is impossible. Hence i is even.

AVERAGE CASE COMPLETENESS 375

By induction onj, i<j<l+l, wecheck that ai=l. Ifj=ithen aj=b,=l. Ifjis
odd and uj = 1 then aI + , =l becausex,yER.Ifjisevenandui=l thenj-i+l
isodd,j-i+l<j-4+1<1--2and b,_,+l=l; henceb, ,=l becausezERand
hence ai+ 1 = I. In particular, a,, I = 1 which is impossible. Q.E.D.

The proof of Theorem 5.1 remains valid if Lemma 5.1 is replaced with
Lemma 5.1’.

Define the length of a pair (x, y) of binary strings to be the difference 1 y / - / s I.
Call an instance L of PCP positively biased if 1 U, . . uk 1 < 1 v, . L’~ 1 whenever
24, .‘. uk and u, . vk are compatible and each (ui, a,) belongs to L,.

LEMMA 5.9, The instances qf PCP constructed in the modtfied proof qf Theorem
5.1 are positively biused.

Proof By contradiction, suppose that an instance L(w) is not positively biased.
Then e yields a negative pair N. Then wsO yields N. An argument similar to the
proof of Lemma 5.4(2) establishes that ,rOti~’ yields N. By Lemma 5.5, SM:“B’ yields
N. As it has been proved, any derivation from sw”B’ uses only rules L3-16. Length-
decreasing rules should be used in order to derive N. All length decreasing rules
involve h. By Lemma 5.7, some u + hv + yields N. Here ut’ is a string of tape symbols.
It is easy to see that u+hv+ does not yield any negative pair. Q.E.D.

We say that an instance L of PCP is palindrome sensitive if there is no
palindrome U, . ..u~v.‘...u,-’ where each (ui, vi) belongs to L and 1 U, . . zik / #
Iv, . ..vJ.

THEOREM 5.2. The restriction of RPCP to instances (L, 1”) such that L is
palindrome sensitive is hard for RNP.

Proof. It suffices to check that instances L(w) constructed in the modified
proof of Theorem 5.1 are palindrome sensitive. Without loss of generality, we may
suppose that (u’(3 1. By contradiction suppose that pairs (u,, u,), (uk, ck)
witness the failure of palindrome sensitivity of some L(w). We know that U, = ‘10

and ~>,=%MJs,,. Let u=u,...u~ and v=v~...u~. By Lemma5.9, ~%u~<~%M~s~L’/.
Hence there exists a palindrome x such that ux = u’sOc and wsO yields x by means
of rules Ll-L6. It follows that v is a nonempty concatenation of S-strings. It is easy
to see that .Y starts with a reverse r, of an S-string. By the choice of S, r, cannot
be a substring of u’. Hence u’ is a proper prefix of ur, .

First suppose that II is a proper prefix of w, so that x has a suffix .q,v and therefore
it has a prefix r, rz, where r2 is a reverse of an S-string. But then r2 is a substring
of the concatenation s”v of S-strings which contradicts the choice of S.

Thus, w is a prefix of U. Then x is a suffix of sOr. If only L2-rules, which increase
the positive balance, were used to derive x then 1 x 1 2 21 and s is the concatenation
of a suffix of an S-string and at least two s-strings. By the choice of S, such a

376 YURI GUREVICH

concatenation cannot be a palindrome. Thus, at least one of the rules L3-L6 was
used to derive x. The left string of any such rule starts with an S string. By the
choice of S (use requirements 1 and 2), x is a concatenation of S-strings. Hence x
is not a palindrome. Q.E.D.

6. ADDITIONAL RNP COMPLETE PROBLEMS

Randomized Palindrome Problem

Instance. A context-free grammar with productions

T+ u,Tv, I ... (u,Tv,~I e,

and the unary notation 1” for a positive integer number n. Here ui and vi are binary
strings, and e is the empty string.

Question. Is it possible to derive a nonempty palindrome (in terminal symbols 0
and 1) in at most n steps?

Probability. Randomly and independently choose positive integers n and s, then
randomly and independently choose binary strings ui , ul, u,, u,.

THEOREM 6.1. Randomized Palindrome Problem is Ptime complete for RNP.

Proof: It is obvious that the problem is RNP. To prove that it is hard for RNP,
we reduce the palindrome sensitive version of PCP (see Theorem 5.2) to
Randomized Palindrome Problem. Given a palindrome sensitive instance
L= ((u,, VI), .*., (u,, v,)) of PCP and some l”, the desired reduction produces a
grammar G with productions

and the unary notation for n + 1. The domination requirement is obvious. We must
check that L has a solution of length dn if and only if G produces a nonempty
palindrome in at most n + 1 steps.

It is clear that every solution

UF(l) ... UF(k) = UF(1) . . OF(k)

for L gives rise to a (k + 1)-step derivation of the Palindrome

uF(I)...unk)uF(:)...uF(:).

Suppose that G produces a nonempty Palindrome

UF(l, ... OF%& --G(i)

AVERAGE CASE COMPLETENESS 377

in k + 1 steps. Since L is palindrome sensitive,

UP(l) . . . UF(k) = UF(,) . . UP(k). Q.E.D.

It is easier to find complete RNP problems of logical nature. In this connection,
we give two relatively straightforward theorems.

Let q5 be a first-order sentence with order relation <, a unary predicate symbol
P, and a collection cr of additional predicate symbols. Restrict attention to finite
structures S with order such that the universe of S is an initial segment [0 . n - 1]
of natural numbers and the order is standard. Define the randomized sati$abilit?:
problem RSAT(q5):

Instance. The unary notation for a positive integer n, a natural number k <n,
and a unary relation P, on [0 . . . k - 11.

Question. Is there a model for q5 on [0 .. . n - l] such that P coincides with P,,
on [O...k- l]?

Probability. The probability of the given instance is proportional to n --32k and
corresponds to the following experiment: Randomly choose n, then randomly
choose k, then randomly choose P,.

Obviously, RSAT (4) is RNP.

THEOREM 6.2. For every RNP problem (D, p), there exists a first-order sentence
4(P) such that (D, p) reduces to RSA T(d).

Proqf: Use Theorem 4.1. Q.E.D.

Remark. Utilizing known undecidability proofs, one can put severe syntactical
restrictions on 4.

Let $ be a sentence in the first-order language of arithmetic enriched with an
additional unary relation P. Define the randomized arithmetical satisfiabilit?,
problem RAS($):

Instance. The unary notation for a positive integer n, a natural number k <n.
and a unary relation P, on [0 . . . k - 11.

Question. Is there an extension P of P, to [0 . . n - l] such that $(P) holds in
the arithmetic modulo n?

Probability. Proportional to n-32k.

Obviously, every RAS($(P)) is RNP.

THEOREM 6.2. [Gurevich and Shelah, 111. Every RNP problem Ptime reduces to
some RAS(~5).

Pro@ Use Theorem 6.1. Q.E.D.

378 YURI GUREVICH

7. APTIME REDUCIBILITY

In this section, the expression pu, < p2 denotes that pi is weakly dominated by pLz.
The notions of weak domination and rarity function were defined in Section 1.

LEMMA 7.1. Let p1 <pL2.

1. Zf p is a rarity function for pLz, then there exists E > 0 such that pE is a rarity
function for p, .

2. Every function polynomial on p,-average is polynomial on p,-average.

3. Every function computable in APtime with respect to pz is so with respect
to Pt.

4. Zf (D, pLz) is AP then (D, pl) is AP.

5. Zf pz<p3 then pl <p3.

ProojY (1) Since pi < p2, there exists a linear on pi-average function g such that
some g’ witnesses that pi < pL2. Let E = l/(j+ 1). We prove that pE is a rarity
function for p,. It suffices to prove that J$,CXjC,gCXj p(x)“p,(x) finite. But
p(x)“>g(x) if and only if p(x)““+ l’>g(x)j if and only if p(x)‘-“(j+‘)>g(x)j if
and only if p(x) > p(x)“g(x)‘. Further,

c P(X)” PI(X) G c PwgwP2(x)~~ P(X) P*(X) < co. P(.Y)” > n(.y) P(X)“>dX) x

(2) is exactly Lemma 1.5. We give here an alternative proof. Suppose that a
function f is polynomial on p,-average. By Proposition 1.2, there exists a rarity
function p for pLz such that f (x) is bounded by a polynomial of 1 XI and p(x). By
(l), some pljk is a rarity function for pi. Obviously, f(x) is bounded by a polyno-
mial of 1x1 and p(x) ilk. By Proposition 1.2, f is polynomial on p,-average.

(3) By (2), time polynomial in PI-average is polynomial in pi average.

(4) To decide D means to compute the characteristic function of D. Use (3)

(5) Let f and g witness that ,ui d pL2 and pclz d pL3 respectively. By (2), g is
polynomial on pi-average. By Lemma 1.1, the product f(x)g(x) is polynomial on
pi-average. But the product witnesses that pi < p3 :

f(x) g(x) /Q(x) Gf (x) r%(x) G p,(x). Q.E.D.

DEFINITION. A randomized decision problem (0, , pi) is weakly transformable
into a randomized decision problem (D2, p(2) if some APtime computable function
reduces D, 1 {x : pi(x) > 0} to D2, and transforms pi into Pi.

AVERAGE CASE COMPLETENESS 379

LEMMA 7.2. Zf an APtime function f transforms (0, , p,) into a restriction of
(D,, ,uz) and (D,, p2) is AP then (Dl, pl) is AP.

Proof: This is Lemma 3.1(2). Q.E.D.

LEMMA 7.3.

1. p2 dominates pl with respect to a one-to-one APtime function f zf and only
(f’ the probability function v(x) proportional to ,uz(fx) weakly dominates p, .

2. Suppose that a function f transforms p, into some v2 which is weakly
dominated by pz. If f is polynomial on p,-average then p2 dominates p, with respect
to a function J

ProqjI (1) Similar to the proof of Lemma 3.2.

(2) As in the proof of Lemma 3.3(l), we may assume that pz(y) = 0 whenever
v*(y) = 0. Let g witness that v2 d pLz : g is polynomial on v,-average and
VAY) =gLv) .P~(Y). Define v1 as in the proof of Lemma 3.3(l). We have
~,(x)=g(f(.~))~v~(x). By Lemma 1.2(l), the function g(f(x)) is polynomial on
p,-average, and therefore 11, 6 v, . It remains to check that ,f transforms v, into p2 ;
this is done exactly as in the proof of Lemma 3.3(1). Q.E.D.

DEFINITION. A function f reduces (Dl, p,) to (D2, pLz) in APtime if ,f reduces
D, 1 (x : prx > 0} to D,, f is computable in time polynomial on ,ur-average, and pz
dominates p, with respect to J

LEMMA 7.4.

1. Jf (Dl,pl) APtime reduces to (D2,p2) and (D2,p2) is AP then (D,,p!)
is A P.

2. APtime reducibility is transitive.

Prooj: (1) Suppose that a function f reduces (0, , pr) to (D2, p2) in APtime and
(D,, p2) is AP. Then there exists a probability function v > ,u, such that ,f
transforms v into a restriction of pLz. Suppose that (D,, p2) is AP. At this point the
similarity to the proof of Lemma 3.4(1) ends. We cannot use Lemma 7.2 to deduce
that (Dl, v) is AP because we do not know whether f is polynomial on v-average;
we know only that f is polynomial on PI-average.

Define X’= {x:~,(x)zv(x)}, X”= {x:~,(x)<v(x)}, $,=pL,IX’ and
11; = 11, / X”. It suffices to prove that both (Dl, CL’,) and (Dl, pL;I) are AP.

The case of PL;. Let v’ = v 1 X’. We have v’ Q ,u’, < p,. By Lemma 7.1, f is polyno-
mial on v/-average. The function f transforms v’ to a restriction of pr. By
Lemma 7.2, (D,, v’) is AP. Since ,u, dv, ,M’, dv’. By Lemma 7.1, (01, ,u’,) is AP.

380 YURIGUREVICH

The case of pi. Define vZ(y) = c,..=, &‘(x). Then v*(y) G&=~ v(x) and there-
fore v2 d pz. By Lemma 7.1, (D,, v2) is AP. By Lemma 7.2, (0,) ~1) is AP.

(2) The proof is similar to that of Lemma 3.4(2). Q.E.D.

8. INCOMPLETENESS

We give a sufficient condition for a randomized decision problem to be incom-
plete for RNP with respect to APtime reductions.

DEFINITION. A probability function n on some C* is flat if there exists a real
number E > 0 such that

pL(X)<2-n”, i.e., - log, p(x) 2 nE

for every Z-string x of sufficiently big length n. A randomized decision problem
(D, p) is flat if p is.

The intuition is that all values of a flat probability function are relatively small;
none of them juts out.

In this section, the term “exponential” is used in a broader sense, and a function
f from some Z* to nonnegative reals is exponential (or exponentially bounded) if
there is a polynomial p with f(x) < 2 p(lsl). The decision problem D for a language
L(D) over some alphabet C(D) is DEXPtime (resp. NEXPtime) if some exponen-
tial-time deterministic (respectively nondeterministic) Turing machine decides D.
Obviously, every NP problem is DEXPtime.

THEOREM 8.1. Let (D, p) be a flat randomized decision problem where D is
DEXPtime. If (D, p) is APtime hard for RNP then NEXPtime = DEXPtime.

Proof We assume that (D, p) is APtime hard for RNP and show that an
arbitrary NEXPtime decision problem D, is DEXPtime decidable. Without loss of
generality, instances of D, are binary strings. Let x range over binary string and
n = 1 x I. We turn D, into a randomized decision problem (Do, pO) by assigning to
each x the default probability ,u,Jx) proportional to n-*2-“.

Fix a polynomial p(n) > n such that some 2 P’“‘-time-bounded NTM decides Do.
For every binary string x, let x’ be the binary string of length 2p(n) obtained from
x0 by adding a tail of ones. Let D1 be the decision problem for the language
{x’ : XEL(D,)}, and let n1 be the probability function on binary strings such that
pi(x’)=p,,(x) and pi(y) =0 if there is no x such that y=x’.

LEMMA 8.1. If a function g from binary strings to nonnegative reals is polynomial
on pZ-average then g(x’) is exponential in n.

AVERAGE CASE COMPLETENESS 381

Proof It suffices to consider the case when g is linear on average. For some C,
we have

c>&w.I Yl -‘~~L1(Y)=~g(x’)~I-~‘l~‘~~,(~~‘).
I .r

Hence, for each x, g(x’) < c 2p’n) ‘12~2~. Q.E.D.

Since (D,, CL,) is RNP, there is an APtime reduction,fof (O,, p,) to (D, p). This
gives the following decision algorithm for D,: Given x, compute x’, then compute
f(x’), and then solve the instance f(x’) of D. We need to prove only that the
instance f(x’) of D is decidable in time exponential in n. Since D is DEXPtime, it
suffices to show that 1 f(x’)l is bounded by a polynomial of n. Since f is APtime,
p weakly dominates p1 with respect tof; i.e., there exist a probability function v and
a polynomial on pI-average function g such that g(x’) v(x’) = p,(x’) and .f trans-
forms v into a restriction p I Z of ,U of some probability c. Then

g(-u’) ~PL(.f~‘)IC =g(x’) . (p I Z)(ji’) =g(x’). 1 v(f) >g(x’) v(x’) = p,(d).
/I’ = fr’

Since g(x’) is exponential in n (Lemma 8.1) and (p, (x’)) ’ is exponential in n,
there exists some polynomial q(n) such that p(f.Y) > 2-~(~), i.e., -log, p(,f:U’) -=c
q(n). Since ~1 is flat, there is k such that

I .fx’ I Ilk 6 -log, p(P) < q(n), i.e., / fx’ I < q(n)“. Q.E.D.

The following lemma illustrates how prevalent flat probability functions are.

LEMMA 8.2. Let p be any probability function on graphs such that, for each n, the
restriction of p to graphs with n vertices is determined by edge-probabilityf(n) such
that

n -*+‘<f(n)< 1 -n *+’

.for some fixed E > 0. Then ,u is ji’at.

Proof Let r = nzpE. For every graph G with n vertices,

p(G) < (1 _ l/r)“‘“-‘“2= [(l _ l/r)‘]“(” 1) (2rle f~(n~- IM2r).

Hence

- log, p(G) > n(n - 1)/(2r) c n”/2. Q.E.D.

COROLLARY. Let p be any probability function on graphs such that, for each n,
the restriction of p to graphs with n vertices is determined by an edge-probabilitv f‘(n).

382 YURI GUREVICH

The p-randomization of Hamiltonian Circuit Problem is not APtime hard for RNP
unless NEXPtime = DEXtime.

Proof sketch. Choose a sufficiently small E > 0 and design algorithms which
solve HCP in expected polynomial time if the edge probability is at most np2+E or
at least 1 - n -* +‘. Use these algorithms to reduce the p-randomization of HCP to
a flat problem. Q.E.D.

The randomized halting problems RH(M) for an NTM M is not flat because an
input w for A4 may be very short comparative to the prescribed number n of steps.
For every r > 1, the restriction of RH(M) to inputs ~01” such that 1 w Ir > n is flat.
Similarly, the Randomized Post Correspondence Problem and Randomized Tiling
Problem are not flat, but their natural restrictions are flat. For example, the restric-
tion of Randomized Tiling to inputs (T, l”, k, p} such that p is of length 3 n”’ for
some fixed r is flat.

The following theorem of Ben-David and Michael Luby [4] shows that the
question DEXPtime = ? NEXPtime is related to the question whether AP includes
RNP. See [l] in this connection.

THEOREM 8.2. If AP includes RNP then DEXPtime = NEXPtime.

Proof Let E be the decision problem for some NEXPtime language L(E). Let
x range over instances of E and n be the number of x in the lexicographical order
of instances of E. Let D be the decision problem for language L(D) =
(1”: x E L(E)} over the unary alphabet, and let p(1”) be the standard probability
of natural number n. Obviously, (D, ,a) is RNP.

Suppose that AP includes RNP. Then some algorithm A decides D in time T
polynomial on p-average. We prove that E is DEXPtime. It suffices to prove that
T(1”) is bounded by a polynomial of n. For, in this case, the obvious algorithm for
E-given x, compute l”, and then use A to solve l”-works in time bounded by
an exponential function of 1 x 1.

Let k witness that T is polynomial on p-average:

There is a constant c such that for all n:

(T(l”)‘~k.np’.n-2<c i.e., T(1”) < (cn’)“.

9. RANDOMIZING REDUCTIONS

Q.E.D.

The proof of the incompleteness theorem, Theorem 8.1, does not give any indica-
tion that flat RNP problems are easier on average. The incompleteness theorem
seems to hint that Ptime and even APtime reductions are not sufficiently strong. It

AVERAGE CASE COMPLETENESS 383

is natural at this point to raise the question of polynomial-time (or average polyno-
mial-time) Turing reductions [7]. However, the incompleteness theorem survives
the transition from many-one to Turing reductions; we omit the proof. Levin
found a way to deal with the phenomenon of flatness [17]. He proposed to use
randomizing (coin-flipping) Ptime reductions (RPtime reductions). A flat problem
RP time complete for RNP can be found in [22].

In this section, we give a possible formalization of a simple version of RPtime
reductions and then prove RPtime completeness of a flat version of Randomized
Halting Problem for RNP. For simplicity, we restrict attention to decision
problems in the binary alphabet. The proof of Lemma 3.1(3) shows how strings in
larger alphabets can be coded by binary strings in a manner that respects
probabilities.

One may want to use more liberal reductions that are randomized, Turing, and
APtime at the same time. Different aspects of coin-flipping may be liberalized as
well. Coins may be biased, the number of coin flips need not necessarily be polyno-
mially bounded, etc. Also, reductions may be allowed to be incorrect in rare cases.
We prefer to use the simplest reductions sufficient for our purposes.

DEFINITION. A dilutor is a Ptime computable function from binary strings to
natural numbers. If p is a dilator then the p-dilation (D,, ,u,,) of a randomized
decision problem (D, p) is the following randomized decision problem:

Instance, A pair (x, v) of binary strings where / y / =p(x).

Question. Is x a positive instance of D?

Probability. p,,(x, y) = p(x) .2-l J1.

In the rest of this section, p, q, and Y are dilators. Note that the definition of dilations
of randomized decision problems defines also dilations of decisions problems and of
probability functions. To simplify notation, the q-dilation of the p-dilation of a
randomized decision problem (D, p) is denoted (D,,, pLpy). The following lemma
shows that the effect of such double dilation can be achieved by a single dilation.

LEMMA 9.1. For all dilators p and q, there exist a dilator r and a function ,f which
transforms (D,, ~1 to CD,,, PJ.

Prooj Construct a dilator r such that r(x) >p(x) + q(x, v) for all y with
I ~‘1 =p(x). If 1 w I = r(x), setf(x, w) = ((x, u), u) where uu is the initial segment of it’
such that 1 U) =p(x) and 1 u I= q(x, u). We need to check only that ,f transforms p,
to ppy. Let x, U, and u be binary strings such that I u I = p(x) and I v / = q(x, u), and
let k = r(x) - (p(x) + q(x, u)). Every preimage of ((x, u), u) with respect tofhas the
form (x, UOY), where I y) = k. Obviously,

2 PAX, UVY) = 1 c1,&, uu) .2 k = Ppq((X3 u), v). Q.E.D.
I \l=k 1 l,l=k

384 YURI GUREVICH

Until now, the analog of P in the average complexity theory was the class AP of
randomized decision problems (D, p) such that some deterministic Turing machine
decides D within time polynomial on p-average. The use of randomizing algorithms
gives rise to a more liberal analog of P.

DEFINITION. RAP is the class of randomized decision problems (D, p) such that
some dilation of (D, ,a) is AP.

RAP is a class of randomized decision problems (D, p) such that some randomizing
(coin-flipping) Turing machine decides D within time polynomial on p-average. For
simplicity, we require that the coin is unbiased, that the number of coin tosses is
polynomially bounded, and that all computations on the same input generate the
same number of coin tosses. Does RAP properly include AP? We do not know.

DEFINITION. A randomized decision problem (D, p) RPtime reduces to a ran-
domized decision problem (E, v) if some dilation of (D, p) Ptime reduces to (E, v).

An RPtime reduction is a coin-flipping Ptime reduction.

LEMMA 9.2.
1. If v dominates p then, for every p, vp dominates pLp.

2. If a Ptime computable function f transforms (D, p) to a restriction of (E, v)
then, for every p, some Ptime computable function g transforms some (D,, pLq) to a
restriction of (E,, vp).

3. If (D, ,a) RPtime reduces to (E, v) then, for every q, some dilation of (D, p)
Ptime reduces to (E,, v4).

4. RPtime reducibility is transitive.

5. If a randomized decision problem RPtime reduces to an RAP problem then
it also is RAP.

ProoJ (1) Let f witness that v dominates p, so that p(x) =f (x) . v(x). Then

/L,(x,y)=~(x).2-‘“‘=f(x).v(x).2-’~’=f(X).Vp(X,y).

(2) Without loss of generality, f transforms p to v itself. For, let v’ be the
restriction of v such that f transforms p to v’. Then vb is a restriction of v,. It
follows that, if some g transforms some (D,, p4) to (E,, vi) or to a restriction of
(E,, vi) then g transforms (D,, pLq) to a restriction of (E,, vp).

Choose the desired q such that q(x) >p(fx). For every instance (x, y) of D,, let
g(x, y) = (fx, z) where z is the prefix of y of length p(fx). Obviously, g reduces D,
to E,. We prove that g transforms hy to vp. Let (u, z) be an instance of E,. Every
preimage of (u, z) with respect to g has the form (x, zv) where f(x) = u and

AVERAGE CASE COMPLETENESS 385

1~1 =4(x)-p(u). Let x range overf-l(u), k=q(x)-p(u), and u range over binary
strings of length k.

.g, &(X, zu) = 1 p(x) 2 - ‘:I . c 2 ~-jc = v,(u, 2).
x Ii

(3) Suppose some (D,, p,) Ptime reduces to (E v). Then there exist a
probability function /I and a Ptime computable functionJ‘such that b dominates p,,
and f transforms (D,, B) to a restriction of (E, v). By (2) there exist a dilator r
and a Ptime computable transformation of (Dpr, 8,) to a restriction of (E,, v~,). It
remains to prove that some dilation of (D, p) Ptime reduces to (Dpr, 8,).

By (1), pr dominates pLpr; hence (Dpr,pLpr) Ptime reduces to (Dpr, fl,). It remains
to prove that some dilation of (D, p) Ptime reduces to (Dp,., p,,,). Now use
Lemma 9.1.

(4) Suppose some (A, c() RPtime reduces to (B, /I) which RPtime reduces to
(C, y). Then some (B,, B,) Ptime reduces to (C, y). By (3), some dilation (A,, , x,,)
Ptime reduces to (B,, /I,) and therefore to (C, y).

(5) Suppose that (D, p) RPtime reduces to (./Z, V) and a q-dilation of (E. v) is
AP. By (3) some (D,, p,) Ptime reduces to (E,, ry) and therefore is AP. Q.E.D.

RPtime reductions allow us to have prettier versions of randomized halting
problems. Fix any function n(i) from natural numbers to natural numbers such
that:

l 71 is Ptime computable,
l 7c is nondecreasing; i.e., i <j implies n(i) < rr(j),
l the function n-‘(n) = mini(rr(i) > n) is polynomially bounded.

For an NTM M, let RH,(M) be the following version of the randomized halting
problem for M:

Instance. A binary string MI of some length 1.

Question. Is there a halting computation of M on with at most n(f) steps?

Probabifit?: The probability of an instance MI is the default probability I 22 ~’ of
the binary string W.

THEOREM 9.1. Every RNP problem (D, p) RPtime reduces to RH,(M) ,for some
NTM M.

Proof: Let M be an NTM and g be a longevity guard for M. By Lemma 4.2, we
may suppose that (D, p) is the restriction of RH(M, g) to stable instances.

Construct a dilator p such that rc(1 WI +p(wOl”)) 3 n. It s&ices to prove that
(D,, pp) Ptime reduces to RH,(M). The desired reduction is

f(wol", y)= wy.

386 YURI GUREVICH

First we check that f takes positive instances to positive instances and negative
instances to negative instances. Let w be a stable input for M, n = g(w), and y be
a binary string of length ~(~01”). An instance (wOl”, y) of D, is positive if and only
if there exist a halting computation of M on w of length <n. Since n is longevous
for w and x(1 wy 1) > n, M has a halting computation on w of length Q n if and only
if it has a halting computation on w of length < rc(1 wy 1). Since w is stable, M has
a halting computation of length < rc(1 wy 1) on w if and only if it has a halting com-
putation of length <rc(I wy 1) on wy if and only if wy is a positive instance of
RI-MW.

Next we check the domination condition. Let (wOl”, y) be an instance of D,,
IwI =I, I yl =k, and m=k+Z. Then ~Lp(wOl”,y)=n-32-‘2-k=n-32-“, whereas
the probability off(wOl”, y) is mp22-“‘, and the domination condition is obvious.

Q.E.D.

Using Theorem 9.1 instead of Theorem 4.1, one can construct prettier versions of
Randomized Post Correspondence Problem and Randomized Tiling Problem that
are complete for RNP with respect to RPtime reductions.

10. SPARSE PROBLEMS

DEFINITION. A probability function p on strings in some alphabet is sparse if
there is a polynomial bound p(n) on the number of strings x of length n such that
p(x) > 0. A randomized decision problem (D, p) is a sparse RNP problem if p is
weakly dominated by some sparse probability function v with a Ptime computable
probability distribution v*.

In this section, the term “exponential” is used in a more narrow sense. A function
T from some Z* to nonnegative reals is exponentially bounded or, for brevity,
exponential if there is a constant c with T(x) < crxI. A function f from some Z: to
some Ct is EXPtime computable if some exponential-time Turing machine
computes f: The decision problem D for some language L(D) is DEXPtime
(resp. NEXPtime) if some exponential-time Turing machine (resp. nondeterministic
Turing machine) decides D.

DEFINITION [Lew, IS]. A decision problem D EXPtime reduces to a decision
problem E if there exist an EXPtime computable function f and a constant c such
thatfreduces D to E and lfxl Gc.1~1.

The bound on 1 fx I ensures the following desired feature of EXPtime reductions:
If a NEXPtime D EXPtime reduces to a DEXPtime E then D is DEXPtime.

DEFINITION. Let D be a NEXPtime decision problem and c be an integer
such that some NTM accepts L(D) in time B(n) = cn. The companion of D with
respect to B is the randomized decision problem (E, p) such that L(E) =

AVERAGE CASE COMPLETENESS 387

iti1 B(Inl) . wcL(D)} and ~(~01~““‘)) is the standard probability of string 11‘
(so that p(i) = 0 if y does not have the form ~01 ‘(I ‘II).

Any companion is a sparse RNP problem.

LEMMA 10.1. Let (E, p) be the companion of a NEXPtime decision problem D
with respect to a bound B(n). There is a polynomial p such that p() y /) p(Jo) 3 1 jor
all strings y of the form wO1 ‘(I”/).

Proof. Clear.

LEMMA 10.2. If a NEXPtime decision problem D, EXPtime reduces to a
NEXPtime decision problem D, then any companion of D, Ptime reduces to an)<
companion of D,.

Proof: Let ,f and c witness the EXPtime reducibility, and (Ei, pi) be an RNP
companion of Di. Let x be an instance of D,, x’ be the corresponding instance of
E,, and y =f(x) and y’ be the corresponding instance of El. The function
F(Y) = y’ reduces E, to E,. It is computable in time exponential in 1 x / + 1 y 1. Since
I y I d c I x 1, F(Y) is computable in time exponential in 1 x 1, hence in time polyno-
mial in (x’ I. To prove that per dominates p, with respect to F, use Lemma 10.1.

QED.

THEOREM 10.1. Let E be any decision problem EXPtime complete for NEXPtime.
Any companion E0 of E is APtime complete for the class qf sparse RNP problems.

Proof. For every NTM M with binary input alphabet, define the exponential
halting problem EH(M) for M as follows:

Instance. A binary string u’.

Question. Is there a halting computation of A4 on w with at most 2’“” steps?
Let (D, pO) be an arbitrary sparse RNP problem. We need to prove that it

reduces in APtime to E,. It suffices to prove that there is some NTM M, with
binary input alphabet such that (D, ,u~) APtime reduces to a companion of
EH(M,). For, by Lemma 10.2, this companion of EH(M,) APtime reduces to E,,.
and therefore (D, pO) APtime reduces to E,.

By Lemma 7.4(1), we may suppose that p$ is Ptime computable. By the proof of
Lemma 3.1(3), we may suppose that instances of D are binary strings. By
Lemma 1.6, there is a positive probability function p such that p* is Ptime com-
putable and every value of p is a binary fraction and ,u&x) = O(p(x)). Given (D, p),
construct x” and M as in the proof of Theorem 4.1. M has a longevity guard g, the
function ,f (x) = ~“0 1 a(-Y”) reduces (D, ,u) to RH(M), p(x) 2-l”’ ~2, and g(.u”) is
bounded by a polynomial of I x I.

Given an input ~01 ‘, the desired machine M, simulates M on U. Let
F(x)=.x”01’01’, where i=rlog,g(x)l and j=2”*‘+‘+‘. We show that F reduces

388 YURI GUREVICH

(D, pO) to the B(n)-companion (01, pl) of EH(M,), where B(n)=2”. F(x) belongs
to L(Z),) if and only if ~“01’ belongs to EH(M,) if and only if there is a halting
computation of M, on ~“01 i of length at most j if and only if there is a halting com-
putation of M on x” of length <j if and only if there is a halting computation of
M on x” of length <g(x) if and only if x belongs to L(D). Thus, F reduces D
to D,.

To show that F is APtime computable, it suffices to check that the function
g(x) .2’““’ is polynomial on average with respect to pO. In the discussion on
polynomiality on average in Section 1, we formulated condition (iv) sufficient for
polynomiality on average. Thus if suffices to prove that, for some k,

1 ~o(X).g(x).2’“~‘.Ixl~k<00.
red-4 > 0

We have ,u~(x) 21xU1 = C+(x) 2’““) = 0(1). Hence it suffices to prove that

which is true for a sufficiently large k depending on g and a polynomial witnessing
the sparsity of po.

Finally, use Lemma 10.1 to check that pi dominates p. with respect to F. Q.E.D.
Some NEXPtime complete problems can be found in [15, IS].

APPENDIX: PERFECT ROUNDING AND RANDOMIZED TILLING

This is a recast of report [lo] with a reconstruction of Levin’s completeness
proof [161 for Randomized Tiling. When an undergrad David McCauley asked me
for a challenge, he was invited to share the hard work of deciphering the
exceedingly terse paper of Levin. David worked mostly on perfect rounding which
is in the heart of Levin’s original completeness proof for (a version of) Randomized
Halting. Even though the new completeness proof in Section 4 above is short and
straightforward, we find the ideas of the original proof very interesting and poten-
tially useful; a reconstruction of the original proof is presented in Section A below.
In Section B, which is independent from Section A, Randomized Halting is reduced
to Randomized Tilling.

A. PERFECT ROUNDING AND RANDOMIZED HALTING

Each binary fraction r in the half-open real interval [0, 1) has a representation of
the form 0.x where x is a binary string. If x has no trailing zeroes then the
representation is called standard and I xl is called the length lb(r) of r. If
0 <a <b < 1 and I is an interval [a, b], [a, b), (a, b], or (a, b), let Shortest (I) be
any binary fraction of the minimal length in I.

AVERAGE CASE COMPLETENESS 3x9

LEMMA Al. Shortest (I) is unique, and there are four algorithms, one,for each of
the four kinds of intervals, that construct Shortest (I) from the standard representa-
tions 0.x and 0.y for a and h.

Proof If c <d are two binary fractions of the same length k then c + 2 ’ is a
shorter binary fraction in (c, d). In the case of (a, b], the desired algorithm works
as follows:

1. If x is a perlix of y, find the longest string u of zeroes such that xu is a
prefix of y and set z = xul.

2. If x is not a prefix of y, find the greatest common prefix u of .Y and .V and
set ;=ul.

Other cases are similar. Q.E.D.

Let ,u, v be probability functions over binary strings, and let M, N be the corre-
sponding probability distributions p* and v *. Call p normalized if p(e) = $, every
p(x) is a positive binary fraction of length at most 5 + 2 1 xl, and M is Ptime
computable. The bound 5 + 2 1 x 1 is somewhat accidental.

LEMMA A2. Every u with a Ptime computable M is dominated by a normalized 11.

Proof By virtue of Lemma 1.6 and its proof, we may suppose that every p(x)
is a positive binary fraction of length at most 4 + 2 I xl, and M is Ptime com-
putable. Set N(x) = 4 + M(x)/2. Q.E.D.

Recall that the successor of a string x in the lexicographical order is denoted x +.
The predecessor of a string x #e is denoted x .

Call u semirounded if it is normalized and, for every x > e, Shor-
test[M(x), M(x+)] is either M(x) or M(x+).

LEMMA A3. Every normalized u is dominated by some semirounded v.

Proof For every nonempty x, let Nx be the shortest binary fraction in the half-
open interval ((Mx- +Mx)/2, (Mx+Mx+)/2]. It is clear that the corresponding
v is a normalized probability function. We check that v is semirounded. Let r be a
binary fraction in the open interval (Nx, Nx+). If r > (Mx + Mx’)/2 then
lh(r)>lh(Nx+) by the choice ofNx+. Ifr<(Mx+M.u+)/2 then lh(r)>lh(N.u) by
the choice of Nx.

Finally, we prove that 4v(x) > p(x) for all x, and therefore v dominates p. This
is clear if Nxd Mx or Nxf bMx+. Suppose Mx < Nx < Nx+ < Mu’. Let
k=lh(Nx) and l=lh(Nx+).

Case 1. k>l. u(x)=Mx+ -Mx=2[(Mx+Mx+)/2-Mx]<2(Nx+ -Mx).
Further, Nx+ - Mx = Nx+ - NX + NX - A4.u = v(x) + (Nx - Mx). Finally.

390 WRI GUREVICH

Nx - Mx < 2Pk because Nx is the shortest binary fraction in [Mx, Nx], and
2-k < v(x) because v(x) is the diffeence of two distinct binary fractions of length at
most k.

Case 2. E>k.p(x) = A4x+ -Mx=2[Mx+-(Mx+Mx+)/2]<2(Mx+-Nx).
Further, A4x+ - Nx = Mx+ - Nx+ + Nx+ - Nx = (Mx+ - Nx+) + v(x). Finally,
Mx+ - Nx+ ~2~’ because Nx+ is the shortest binary fraction in [Nx+, Mx’],
and 2-‘6 v(x) because v(x) is the difference of two distinct binary fractions of
length at most 1. Q.E.D.

Call p perfectly rounded if it is normalized and Mx is the shortest binary fraction
in the open interval (Mx-, A4x+) for all x>e.

LEMMA A4 Every semirounded probability function p is dominated by a perfectly
rounded one.

Proof The proof of Lemma A4 splits into several claims. Define:

[S(M)](x) = [if x > e then Shortest(Mx-, Mx+), else 01,

S(M, x) abbreviates [S(M)](x),

cmL)l(x) = SCM x+ I- S(M xh
S(p, x) abbreviates [S(p)](x).

Claim 1. S(,U) is a positive probability function.

Proof: We must check only that F= S(M) is strictly increasing. By contradic-
tion suppose that Fx+ < Fx for some x. Then Mx < Fx+ < Fx < Mx+. Taking into
account the choice of Fx and the fact that Mx < Fx, we have lh(Fx) < lh(Mx).
Similarly, Ih(Fx+) < lh(Mx +). Thus neither A4x nor A4x+ is the shortest binary
fraction in [Mx, Mx +] which contradicts the semiroundedness of ,u. Q.E.D.

Claim 2. S(p) is semirounded.

Proof Let v = S(p). We check that Shortest [Nx, Nx+] is either Nx or Nx’

Case NxdMx and Mx+ 6 Nx+. Let r be an arbitrary binary fraction in
[Nx, Nx+]. If r is in (Mx, Mx+) then lh(r)>lh(Mx) >lh(Nx) or lh(r)Z
lh(Mx+)alh(Nx+). If r is in [Nx, Mx] then lh(r)alh(Nx) by the choice of Nx;
if r is in [Mx+, Nx+] then lh(r)>Ih(Nx+) by the choice of Nx+.

Case Nx > Mx. The interval [Nx, Nx+] is a part of (Mx, Mx+ +); hence
Nx + = Shortest [Nx, Nx + 1.

Case Nx+ <Mx+. The interval [Nx, Nx+] is a part of (Mx-, Mx+); hence
Nx = Shortest[Nx, Nx’]. Q.E.D.

Claim 2 justifies the repetitive use of the operator S (the shaking operator). The
obvious abbreviations sk(M, x) and Sk@, x) are used.

AVERAGE CASE COMPLETENESS 391

Claim 3. Let r be a binary fraction and k = lb(r).

1. If Sk(M, x) = r then S’(M, x) = r for all 1 > k.

2. If a = Sk(M, x) < r < Sk(A4, x +) = b then both a and b are shorter than r.

Proof: By induction on k. If k = 1 then r = i and the claim is obvious. Suppose
that k > 1. First assume that r = Sk(M, x). By contradiction suppose that
S’(M, x) = q # r for some q and some 1> k. Then lb(q) equals some j < k. By the
induction hypothesis, Sk(M, x) = S’(M, x) = q which is impossible.

Next assume that a = S’(A4, x) < r < Sk(M, x+) = b. Since Sk(M) is semirounded,
either a or b is shorter than r. Without loss of generality, a is shorter than r. By
the induction hypothesis, Skp1(A4, x) = a. Since Sk(M, x+) is the shortest binary
fraction in the interval (Sk- ‘(M, x), Sk- ‘(M, x + +)), b is the shortest binary
fraction in (a, b] and therefore b is shorter than r. Q.E.D.

Claim 4. Let x be a string of length 1, m = 5 + 21, and n > m. Then Sm(M, x) =
S”(M, x).

Proof Let r = Y(A4, x). Since Sm(M) is normalized, lb(r) dm. Now use
Claim 3. Q.E.D.

Claim 4 justifies introducing an iterated shaking operator S‘“:

[s-L(M)](x)=S”(M,x)=S5+2”‘(M,X),

[s”c(p)](x) = S30(p, x) = S”(M, XC) - S”(M, x).

Claim 5. S!(p) is a positive probability function.

ProoJ First we check that F= ,Y(M) is strictly increasing. Let x <y and
m = max(5 + 21h(x), 5 + 21h(y)). Then F(x) = Y(M, x) < S”(M, y) = F(y). Next we
check that for every positive real 6 there is a binary string x with Fx > 1 - 6. Pick
any binary fraction r > 1 - 6 and let k = lb(r). Since S“(M) is a probability func-
tion, there is x such that Sk(M, x) = r or a = S“(A4, x) < r < Sk(M, x’) = b for some
a, b. Now use Claim 3. In the first case, Sm(A4, x) = r, and in the second case,
S”(M,x+)=b>r. Q.E.D.

Claim 6. S”(M) is Ptime computable.

ProoJ: The idea of the proof is simple: the shaking operator works locally and
every S”‘(A4, x) is computable from an appropriate array of M-values for binary
strings close to x in the canonic ordering of binary strings. To implement the idea,
we need a couple of definitions.

Recall that binary strings are numbered by natural numbers with respect to the
lexicographical order of strings; in particular, the empty string e is the string of
number 0. If x is the nth string and m is an arbitrary integer, let x + + m be the
string of number n + m if n + m > 0 and the empty string otherwise. Further, let
x- -m=x+ +(-m).

571,42TiO

392 YURI GUREVICH

A sequence A = [A,, Ak] of binary fractions is called an array if A is a strictly
increasing sequence possible augmented with a prefix of zeroes. In other words, A
is an array if and only if, for every i < k, either Ai = 0 or Ai+ i > Ai. If F is a strictly
increasing probability distribution, x is a binary string and m < 12 then the sequence
[F(x + +m), F(x + +n)] is an array.

An array A = [A,, Ak] is semirounded if for every i < k, either Ai or Ai+ 1 is
the shortest binary fraction in the closed interval [A,, Ai+ 1]. If A = [A,, Ak] is
a semirounded array and k > 3, let S(A) be the array B = [B2, Bkp i] such that
each Bi= [if A,>0 then Shortest(Aj_,, Ai+l), else 01; think about S(A) as the
result of shaking A. The proof of Claim 2 can be easily adapted to show that S(A)
is semirounded if A is.

It is easy to see that if F is a semirounded probability distribution and
A = [F(x- - (I- l)), F(x + + (I + 1))] for some x and some 1 > 0 then
S(A) = [S(F, x - -1), S(F, x + +/)I. Hence the one-element array [S’(M, x)] is
the result of shaking the array [M(x - -1), M(x + +1)] 1 times. This gives a
Ptime algorithm for computing S’(M, x). Now set I = 5 + 2 1 x 1. Q.E.D.

Claim 7. Sm(p) is perfectly rounded.

ProoJ Let v = Y(p). Given x, let m = 5 + 2 Ix+ I. By the definition,
Sm+‘(A4, x) is the shortest binary fraction between Sm(M, x-) and Sm(M, x+). But
Sm+l(M, x)= Nx, Y(M, x-) =Nx- and Sm(M, x+)=Nx+. Thus, Nx is the
shortest binary fraction between Nx- and Nx+. Q.E.D.

Claim 8. Let v = S(p) and x be a binary string with v(x) <p(x). Then
v(x) = 2-” where m = max(lh(Nx), lh(Nx+)), and 2v(x) > p(x).

Proof. Since M is semirounded, either Mx or Mx+ is the unique shortest binary
fraction in [Mx, Mx’]. Let k = lh(Mx) and 1= lh(Mx+). By virtue of symmetry,
we may suppose that k < 1. Then ,u(x) = 2’ and Nx < Mx. Moreover, Nx = Mx; for,
if Nx < A4x then v(x) > A4x - Nx > 2-k 2 p(x). Since v(x) < p(x), Nx+ < Mx+. Let
m=lh(Nx+). Then Mx+-Nx+<2-” and Nx+-Mx=~-~. Hence p(x)=
A4x+ -Mx<2.2-“<2v(x). Q.E.D.

Claim 9. Y(p) dominates p.

Proof: Let v = S”(p). Given a binary string x, we prove that 2v(x)ap(x).
Let pix= S’(M, x’)-S’(M, x). If every pi(x)>pi-,(x), then there is nothing to
prove. Let i be any positive integer with p,(x) <pi-i(x). By Claim 8,
pi(x) = 2-” > 2~~~ r(x) where m = max(lh(S’(M, x+)), lh(S’(M, x))). Thus, pi(x)
is minimal when i is the minimal positive integer with pix<pj-i(x). For the
minimal i, pix > 2pi- 1(x) B p(x). Q.E.D.

Thus, SW(p) is the desired perfectly rounded probability function, and
Lemma A4 is proved. Q.E.D.

AVERAGE CASE COMPLETENESS 393

THEOREM Al. Every RNP problem reduces to an RNP problem (D, p) over
binary strings such that p is perfectly rounded.

Proof. Use Lemmas A2, A3, and A4. Q.E.D.

LEMMA A5. If p is a perfectly rounded probability function then for every binary
string x there exists a positive integer j < 5 + 2 1 x 1 such that p(x) = 2 -’ and 2/M(x)
is integer.

Proof. Let a=M(x) and b=M(x’), so that p(x)= b-a. Since a= Shor-
test[a, b), every binary fraction in (a, b) is longer than a. Since b = Shortest(a, b],
every binary fraction in (a, 6) is longer than b. If a is shorter than b, then the
desiredjequals lb(b); otherwise j = lb(a). Since Jo is normalized, j < 5 + 2 1 x 1. Q.E.D.

THEOREM A2. Every RNP problem reduces to the randomized halting problem
RH(A) for some NTM A.

Proof It suffices to prove that every RNP problem (D, p) over binary strings
such that p is perfectly rounded reduces to some RH(A). Define m(x) = M(x)/u(x).
By Lemma AS, m(x) is a nonnegative integer. Since M(e) = 0 and 4 d M(x) < 1 for
x #e, p(x) is easily computable from m(x): If m(x) = 0 then p(x) = $, and if
m(x) >O then p(x) is the unique positive integer j with 4 <m(x) 2 -j< 1.

Since D is NP, there is a Ptime-bounded nondeterministic Turing machine, called
the D-machine below, that accepts L(D). Given a binary string M, representing some
m(x), the desired Turing machine A finds the appropriate x and then simulates the
D-machine on x; if w does not represent any m(x) then A does not halt on MI.
Specifically, A executes the following algorithm:

1. If \C = e or w starts with a 0 but is different from a 0, then loop. If KJ = 0
then set x = e and g to (4).

2. Find the integer k represented by w, the integer j with i < k2 I < 1, and the
shortest string 1’ such that M(1 I+ ’) > k2 --j.

3. Use binary search to find the lexicographically maximal binary string x
such that 1’~ x6 l’+’ and M(x) < k2-‘. If M(x) < k2-’ then loop.

4. Simulate the D-machine on x; halt only if the D-machine accepts.

A curious thing is that A is not necessarily Ptime bounded because the represen-
tation of m(x) may be much shorter than x. However, there is a polynomial p such
that if A has a halting computation on the representation of m(x) then it has one
with at most p(I xl) steps. The desired reduction is f(x) = ~01” where w represents
m(x) and n=p(lxl).

We check that the probability function v of RH(A) dominates p with respect to
,fi Since f is one-to-one, it suffices to check that v(fx) dominates p(x). We may
restrict attention to the case m(x) > 0. Let I= 1 m(x)l. Note that 2’3 m(x). Thus,
~~(.fx)=(6/x2).p(lxl)~3.2-‘6(6/n2).p(lx/)~3/m(x)d(6/~2).p(IXJ) 3.2p(x).

Q.E.D.

394 YURI GUREVICH

B. Randomized Tiling

DEFINITION. An NTM A survives n steps on input w if there exists a computa-
tion of A on w with at least n steps.

Randomized Survival Problem RS(A) for a Given NTM A

Instance. A binary string ~01” where n >) w 1.

Question. Does A survive n steps on w?

Probability. Choose randomly a positive integer n, a natural number k < n, and
a binary string w of length k.

Recall that a number n is longevous for an input w of an NTM A if every halting
computation of A on n has <n steps. In other words, n is longevous for w with
respect to A if and only if every computation of A on w with 2 n + 1 steps is non-
halting. If g is a longevity guard for A, let RS(A)lg be the restriction of RH(A) to
instances wO1 g(w)+ ‘.

LEMMA Bl. For every NP problem D there exists an NTM B, with a polyno-
mially bounded longevity guard g such that B, survives g(w) + 1 steps on an input w
if and only tf w is a positive instance of D.

Proof Since D is NP, there exist an NTM A, and a polynomially bounded
function g such that A, has a halting computation on an input w if and only if w
is a positive instance of D. The desired B, simulates A, and keeps track of time;
if A, halts after at most g(w) steps then B, loops forever, otherwise B, halts after
g(w) steps. Q.E.D.

LEMMA B2. For every RNP problem (D, u) there exist an NTM M and a
longevity guard g for M such that (D, u) Ptime reduces to RS(M, g).

Proof Similar to that of Theorem 4.1. Instead of A,, use machine B, of
Lemma B.l. In the description of the algorithm of M, replace “loop forever” by
“halt”. Q.E.D.

We redefine the notion of stability introduced in Section 4. Instead of the stability
for halting, we are interested here in the stability for survival.

DEFINITION. Let A be an NTM. An input w is stable for A if, for every natural
number n, the following statements are equivalent:

1. There exists x such that A survives n steps on wx,
2. for every x, A survives 12 steps on wx.

The following lemma is the analog of Lemma 4.2.

LEMMA B3. For every RS(M,, g,), there exist an NTM M and a longevity guard
g for M such that RS(M,, g,) Ptime reduces to the restriction of RS(M, g) to stable

AVERAGE CASE COMPLETENESS 395

instances (i.e. to instances ~01 n(w) + ’ where w is stable for M). Moreover, it may be
required that 0 and 1 are the only tape symbols of M (with 0 serving also as the
blank).

Pro@ Similar to the proof of Theorem 4.2. Q.E.D.

THEOREM B 1. Randomized Tiling is Ptime complete for RNP.

bf Proof: Let A be an NTM such that 0 and 1 are the only tape symbols of A
(with 0 serving also as the blank). Let rc be a longevity guard for A, and (D, I*) be
the restriction of RS(A)I n to stable instances. By Lemmas B2 and B3, it suffices to
reduce (D, 11) to Randomized Tiling.

Let T contain the following tiles (Tl)-(T5).

(Tl)

where p is the initial state of A and a is either 0 or 1.

U’2)

a

0 0

$

where a is either 0 or 1.

(T3)

SC C

$ 1 b b

$c C

where b is 1 or 2, and c ranges over the tape symbols of A
(T4) For each instruction [pa -+ qbR] of A,

$b b qc
$ 2q 1 2q 2q 2

@a pa c

where c ranges over the tape symbols of A.

396 YURI GUREVICH

(T5) For each instruction [~a + qbL] of A,

w v
$ lq 1 lq

SC C

where c ranges over the tape symbols of A.

b

lq 2

pa

LEMMA B4. Suppose that T is a T-tiling of [O...(n- l)] x [O...(n- l)] and
~(0, 0) is one of the two TI-tiles. Then:

1. Every z(O,j+ 1) is in T2. Every z(i+ 1,j) is in T3, T4, or T5.
2. The left string of z(i, j) is $ tf and only tf the top string of z(i, j) contains a

proper prefix $ if and only if j = 0.
3. For every i there is at most one j such that the top string of z(i, j) has a state

symbol.
4. For every i there is j< i such that the top string of t(i, j) contains a state

symbol.
5. For every i, let $wi be the concatenation of the top strings of

z(i, 0), ~(0, n - 1). Then each wi is an ID (instantaneous description) of A.

Proof (1) Only T2-tiles have the string 0 on the left. Every tile in Tl or T2 has
the string $ on the bottom, but no T-tile has the string $ on the top.

(2) The first equivalence is proved by direct inspection of T. The second is
proved by induction on i. If i = 0, use (1). If i > 0, use (1) and the fact that for every
tile in T3, T4, and T5, the bottom string has a proper prefix $ if and only if the
top string does.

(3) Induction on i. The case i = 0 is obvious. Assume i > 0. By contradiction,
suppose that j < k and the top strings of both (i, j) and (i, k) have state symbols.
The right string of (i, j) is either lq or 2. In either case, top[z(i, j+ l)] does
not contain a state symbol and right [z(i, j+ l)] = 2. But for every T-tile, if the
left string is 2 then the right string is 2. Hence (i, k) has 2 on the left which is
impossible.

(4) An obvious induction on i.
(5) Use (3) and (4). Q.E.D.

Given an instance (a0 ... elk-r, 1”) of RS(A), the desired reduction f produces an
instance (T, l”, k, p) of Randomized Tiling where p(O) is the Tl-tile with a, on the
top, and each p(j+ 1) is the T2-tile with oti+ r on the top.

LEMMA B5. A survives n steps on a stable input u = a,. . ’ clkp 1 tf and only if
(T, I”, k, p > is a positive instance of Randomized Tiling.

Proof Let z be a T-tiling of the square such that $0, j) = p(j) for j < k, and let

AVERAGE CASE COMPLETENESS 397

strings wi be as in Lemma B4(5). Then w,, is the initial configuration of A on some
input UX. Check by induction on i that each w, is the ith configuration of A on the
input wx. Thus, A survives n steps on UX. Since u is stable, A survives n steps on
U. The “only if” implication is easy. Q.E.D.

LEMMA B6. The probability function v of Randomized Tiling dominates the
probability function p with respect to f:

Proof: It is easy to see that v(f(u01”)) is proportional to ~(~01”). (It is impor-
tant that there are exactly two choices for each p(j).) Q.E.D.

Theorem Bl is proved. Q.E.D.

ACKNOWLEDGMENTS

David McCauley put much work and ingenuity into the reconstruction of Levin’s ideas on perfect
rounding. Leonid Levin generously explained us his ideas. Numerous discussions with Andreas Blass and
Saharon Shelah were very useful as well as enjoyable; the reader will note that some results are authored
or coauthored by Andreas Blass or Saharon Shelah. Shai Ben-David and Michael Luby kindly allowed
me to publish here a theorem of theirs. Short discussions with David Hare], Quentin Stout, and Mar-
tin Tompa were helpful. The material of this paper was taught at the University of Michigan in Winter
1987 and at Stanford in Spring 1989; I am grateful to the students and especially to Tomasz Radzik.

REFERENCES

1. S. BEN-DAVID, B. CHOR, 0. GOLDREICH, AND M. LC’BY, On the theory of average case complexity.
in “Proc. 21st Annual ACM Symposium on Theory of Computing, ACM,” pp. 204-216. 1989.

2. A. BLASS, Private communication.
3. B. BOLLOBAS, T. I. FENNER, AND A. M. FRIEZE, An algorithm for finding Hamilton cycles in a

random graph, in “Proc. 17th Annual ACM Symposium on Theory of Computing, ACM.” 1985,
pp. 43&439.

4. S. BEN-DAVID AND M. LUBY, Private communication.
5. S. BEN-DAVID, B. CHOR, 0. GOLDREICH, AND M. LUBY, On the theory of average case complexity,

in “Proc. 21st Symp. on Theory of Computing, ACM,” pp. 204-216, 1989.
6. R. L. CONSTABLE, H. B. HUNT, AND S. K. SAHNI, “On the Computational Complexity of Scheme

Equivalences,” Report No. 74-201, Dept. of Computer Science, Cornell University, Ithaca. NY.
1974.

7. M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability,” Freeman, New York, 1979.
8. Y. GUREVICH, Complete and incomplete randomized NP problems, in “Proc. 28th Annual Symp. on

Found. of Computer Science, IEEE,” pp. 11 l-1 17, 1987.
9. Y. GUREVICH, The challenger-Solver game: Variations on the theme of P= ?NP, Bull. Eur. Assoc.

Throref. Comput. SC., Oct., 1989.
10. Y. GUREVICH AND D. M. CAULEY, “Average Case Complete Problems,” Unpublished manuscript.

April 1987.
11. Y. GUREVICH AND S. SHELAH, Expected computation time for Hamiltonian path problem. SIAM

J. Comput. 16, No. 3 (1987), 486-502.
12. J. E. HOPCROFT AND J. D. ULLMAN, “Introduction to Automata Theory, Languages and Computa-

tion,” Addison-Wesley, Reading, MA, 1979.

398 YURI GUREVICH

13. D. S. JOHNSON, The NP-completeness column, J. Algorithms 5 (1984), 284-299.
14. I&R-I Ko, On the definition of some complexity classes of real numbers, h4uth. Systems Theory 16

(1983), 95-109.
15. P. G. KOLAITIS AND M. Y. VARDI, The decision problem for the probabilities of higher-order proper-

ties, in “STOC 1987.”
16. L. LEVIN, Average case complete problems, SIAM J Compur. 15 (1986), 285-286.
17. L. LEVIN, Private communication.
18. H. R. LEWIS, Complexity results for classes of quantiticational formulas, J. Comput. System Sci. 21

(1980), 317-353.
19. N. MEGIDDO AND U. VISHKIN, “On Finding a Minimum Dominating Set in a Tournament,” IBM

Research Report RJ 5745, July 1987.
20. N. MEGIDDO, “Are the Vertex Cover and the Dominating Set Problems Equally Hard?” IBM

Research Report RJ 5783, August 1987.
21. P. DINH DIEU, L. CONG THANH AND L. TUAN HOA, Average polynomial time complexity of some

NP-complete problems, Theoret. Comput. SC. 46 (1986), 219-237.
22. R. VENKATESAN AND L. LEVIN, Random instances of a graph coloring problem are hard, in “Proc.

20th Symp. on Theory of Computing, ACM, 1988.”
23. H. S. WILF, Some examples of combinatorial averaging, Amer Math. Monrhly 92 (1985), 25&261.
24. A. K. ZVONKIN AND L. LEVIN, The complexity of finite objects and the algorithmic concepts of infor-

mation and randomness, Russian Math. Surveys 25/26 (1970), 83-124.
25. R. IMPACLIAZZO AND L. LEVIN, No better ways to generate hard instances than picking uniformly

at random, FOCS 1990, 812-821.
26. A. BLASS AND Y. GUREVICH, On the reduction theory for average case complexity, in “4th

Workshop on Computer Science Logic” (E. BGrger et al., Eds.), Springer Lecture Notes in
Computer Science, to appear.

