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Abstract: We address the problem of determining schedules for static, single-machine scheduling problems 
where the objective is to minimize the sum of weighted tardiness and weighted earliness. We develop 
optimal and heuristic procedures for the special case of weights that are proportional to the processing 
times of the respective jobs. The optimal procedure uses dominance properties to reduce the number of 
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constructing good initial sequences. A pairwise interchange procedure is used to improve the heuristic 
solutions. An experimental study shows that the heuristic procedures perform very well. 
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1. Introduction 

Recent research on scheduling problems has 
been concerned increasingly with objectives re- 
lated to profitability measures. Two obvious ef- 
fects of scheduling on profitability are penalties 
for tardy delivery (or expedited shipment to avoid 
tardiness) and associated loss of goodwill, and the 
cost of inventories due to earliness when the 
finished product cannot be shipped before its due 
date. The 'no early shipment' rule is quite com- 
mon now with the adoption of just-in-time inven- 
tory policies by many firms. 

We address the problem of determining sched- 
ules for static, single-machine scheduling problems 
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where the objective is to minimize the sum of 
weighted tardiness and weighted earliness. This 
objective permits us to reflect the total 'lost profit' 
for each job in a simple and practical way. In the 
process of developing optimal procedures for the 
general weighted tardiness and earliness problem, 
we discovered a subclass of problems for which a 
simple sorting procedure can provide precedence 
rules, and in some cases, the optimal sequence. 
The optimal timing of jobs can be found with 
little effort using a highly structured dynamic pro- 
gram. Since the sorting procedure can provide 
arbitrarily bad results in the worst case, we de- 
velop an optimal algorithm for the subclass of 
problems and empirically evaluate the sorting pro- 
cedure in this context. 

Relatively little research has been done on 
scheduling problems involving both tardiness and 
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earliness because the inclusion of earliness in the 
objective makes it a nonregular measure of perfor- 
mance. Sidney (1977) develops an optimal al- 
gorithm for the problem of minimizing the maxi- 
mum of the costs of earliness and those of tardi- 
ness, under the assumption that the costs are 
nondecreasing functions of earliness and tardi- 
ness, respectively. In that paper, earliness is de- 
fined as the difference between the target starting 
time and the actual starting time of a job. A more 
efficient algorithm for the same problem is given 
by Lakshminarayan et al. (1978). 

Townsend (1978) addresses the problem of 
minimizing the total penalty, where the penalty 
for each job is quadratic function of the comple- 
tion time. He develops a branch and bound proce- 
dure to solve the problem. Gupta and Sen (1983) 
use the objective of minimizing a quadratic func- 
tion of job lateness, and present both an optimal 
branch and bound procedure and a heuristic for 
this problem. They limit consideration to sched- 
ules with no idle time. 

A special case of the weighted tardiness and 
earliness problem in which all weights are equal 
and the jobs have one common due date, has been 
discussed in Kanet (1981), Sundararaghavan and 
Ahmed (1984), and Bagchi et al. (1986). A prob- 
lem similar to ours is considered by Abdul-Razaq 
and Potts (1988). They developed a branch and 
bound algorithm for the weighted tardiness and 
earliness problem, but do not allow idle time. 
Since earliness is a nonregular measure of perfor- 
mance, it is possible that delay schedules are opti- 
mal, and that the optimal sequence of jobs differs 
between delay and nondelay schedules. Therefore, 
decisions about completion times of jobs may be 
as important as decisions about the sequence. 

Fry et al. (1987a, b), Garey et al. (1988), and 
Kim and Yano (1986) give algorithms for the 
optimal timing of a given sequence. Fry et al. 
(1987a) consider a problem in which all earliness 
weights are equal, and all tardiness weights are 
equal, but the earliness weight differs from the 
tardiness weight. They give heuristic algorithms in 
which optimal timing for a sequence is determined 
through a linear program. Flow times of jobs are 
considered in addition to earliness and tardiness 
in Fry et al. (1987b). A branch and bound proce- 
dure is developed and compared with a solution 
procedure using a mixed integer programming for- 
mulation. 

Kim and Yano (1986) consider problems in 
which weights of tardiness and earliness of all jobs 
are equal. They use a branch and bound algorithm 
to determine the sequence, and a specially desig- 
ned algorithm for optimal timing which takes ad- 
vantage of the problem structure. Their optimal 
timing algorithm runs in O(n 2) time for problems 
with equal weights, where n is the number of jobs. 
Using an efficient data structure, Garey et al. 
(1988) achieve O(n log n) time for both problems 
with equal weights and different weights. Note 
that the time complexity of an optimal timing 
algorithm is important in solving the problem 
since it may have to be executed many times to 
find an optimal sequence. They also give an NP- 
completeness proof for the problem with equal 
weights for earliness and tardiness of all jobs. 

Taking a somewhat different approach, Pan- 
walkar et al. (1982) consider a problem in which 
due dates are decision variables. They develop a 
polynomial-time algorithm to find both the se- 
quence and the due dates to minimize costs arising 
from the selected due dates, earliness and tardi- 
ness. Further details on the above papers can be 
found in an excellent review by Baker and Scudder 
(1990). 

In the next section we briefly describe a proce- 
dure to find the optimal timing of jobs when the 
sequence is given. We then present a simple sort- 
ing procedure and derive conditions in which it is 
optimal. In the subsequent section, we describe a 
subclass of problems for which the sorting proce- 
dure provides strong precedence information, and 
we incorporate these ideas into an optimal partial 
enumeration algorithm. Finally, we present an ex- 
perimental study in which we evaluate several 
heuristic procedures and report on the efficiency 
of the partial enumeration algorithm. 

2. Dynamic programming procedure for optimal 
timing 

In this section, we assume that the sequence of 
jobs is given and that the decisions involve only 
their timing. Let [i] represent the job in the i-th 
position in the sequence, and 

Dr0 = due date of job [i]. 
P[O = processing time of job [i]. 
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eli I = earliness penalty (per unit time) for job 

[i1. 
~'I,I = tardiness penalty (per unit time) for job 

[i]. 

We assume that zlq >/e[d >/O, since tardiness nor- 
mally incurs a larger penalty than does earliness. 

The problem can be formulated as a dynamic 
program with the following recursion formulas: 

f . ( s )  = m i n { e , , ( D . - p . - s )  + 
s>>-O 

+ ' r . ( s -  Dn+ p.)  ++ min fn+l(t )}, 
t>~S+pn 

/ ~ + , ( s )  = 0 ,  

where n denotes the position of the job being 
scheduled, and s is the (selected) starting time of 
the job in position n. 

Since the penalty function for each job is a 
piecewise linear convex function of the starting 
time of the job (also of its completion time), the 
total penalty function for any subsequence of jobs 
having no inserted idle time is a piecewise linear, 
convex function of the starting time of the first 
job in the subsequence. Consequently, the dy- 
namic program is easy to solve. At each stage, one 
either schedules the n-th job to start at s = D n - Pn 
if this would not interfere with jobs n + 1 . . . . .  N, 
or schedules it immediately preceding job n + 1 
and finds the optimal starting time for the subse- 
quence of jobs starting with n and ending with the 
first idle period. Finding the optimal starting time 
for this subsequence may result in a concatenation 
with another subsequence (i.e., an idle period may 
be eliminated), and the optimal starting time for 
the larger subsequence would then need to be 
found. 

Computations are further simplified by noting 
that (i) the slope of the total penalty function can 
change only when a job changes from being early 
to being tardy, (ii) the minimum of the function 
must occur at one of these extreme points, and 
(iii) the function is convex, so one only needs to 
consider extreme points until the function starts to 
increase. It is worth pointing out that the optimal 
solution (at any stage) may not be unique, but it is 
advantageous to choose the optimal solution with 
the latest starting time for the subsequence be- 
cause this provides the most flexibility to the jobs 
not yet scheduled. See Kim and Yano (1986) for 
additional details. 

This procedure allows idle time when it is opti- 
mal to do so. In the next section, we develop 
conditions in which a simple sorting procedure 
produces optimal sequences. 

3. A simple sorting procedure 

In this section, we show that under certain 
conditions on the weights and processing times, it 
is optimal to sequence the jobs in nondecreasing 
order of D~-p ,  values. Let s , = D , - p ~  be the 
target starting time for job i. 

Proposition 1. I f  jobs i and j are adjacent and 
s, <~ sj, then it is optimal to sequence job i before job 
j i f  

e,/ej <~ pJp , ,  (1) 

pJp~ ~ , J ~ ,  (2) 

and 

e, PJ + ~JP, ~ ( 5  + SJ)(6  - s, + pj) 

or  

~, + ~-,~ ~, + ~. (3) 

Proof. See Appendix A. 

The essence of the proof is that if one ordering 
is preferred to the other for all possible starting 
times of the earlier of the two jobs, that ordering 
must occur in the optimal sequence if jobs i and j 
are adjacent. Also if the three conditions above 
are satisfied for all pairs of jobs, an optimal se- 
quence can be obtained simply by sorting the jobs 
in non-decreasing order of the s i values. If condi- 
tion (3) is not satisfied for all i and j ,  sequencing 
i before j when s~ ~ sj can have arbitrarily poor 
performance, as shown in Appendix B. We now 
turn to an description of a subclass of problems 
for which the conditions in (1) and (2) are auto- 
matically satisfied. 

4. A class of problems with proportional weights 

Consider a class of problems for which 

F. i ~ olpi ,  
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and 

= tip/ 

for all i, and for some nonnegative real values a 
and ft. This represents a simply-defined but realis- 
tic class of problems satisfying conditions (1) and 
(2). If the value (or cost) added to a job is propor- 
tional to its processing time, then the inventory 
holding cost (earliness penalty) associated with 
that value added can be viewed as being propor- 
tional to the processing time. Sometimes one can- 
not assess a 'value added' because most costs are 
fixed. In this case, assuming that capacity is con- 
strained (otherwise scheduling would not be a 
problem), one should consider the opportunity 
cost associated with the use of the equipment as 
the 'value added' and therefore also proportional 
to the processing time. In a similar fashion, if the 
profit from a job is proportional to the processing 
time, then the opportunity cost of delayed revenue 
due to delayed shipment (tardiness penalty) should 
be proportional to the job's processing time. It is 
also possible that any additional tardiness cost 
due to loss of goodwill might be proportional to 
the processing time. Thus, while the conditions 
may appear to be restrictive, they are sometimes 
realistic. 

Arkin and Roundy (1988a, b) study a special 
case of this class of problems in which a = 0 and 
fl = 1. They prove that this problem is NP-com- 
plete and present an optimal pseudo-polynomial 
time algorithm for which the running time is 
quadratic in the number of jobs and linear in the 
sum of processing times of the jobs. They also 
present a heuristic, which they call the 'earliest- 
gamma-date' rule, in which jobs are sequenced in 
increasing order of )'i = Os, + (1 - O)D i, where 0 < 
0 < 1. They show that the deviation from the 
optimal objective value for this heuristic cannot 
exceed 0.5 [0 v (1 - 0)] E, p2. Consequently, 
among this class of policies, the best choice of 0 is 
0.5. 

Let us examine in what circumstances the class 
of problems with a, fl > 0 satisfies condition (3). 
For this class of problems, condition (3) reduces 
to 

P i - P j  <~ sj - s i. (3a) 

If condition (3a) is satisfied, job i should precede 
job j .  If condition (3a) is not satisfied and s~ > sj, 

then we must apply Proposition 1 with the sub- 
scripts reversed, from which we find that job j 
should precede job i. In situations where s t ~< sj 
and (3a) does not hold, the optimal resolution of 
the conflict between jobs i and j depends heavily 
upon the various penalties. Moreover, in these 
cases the jobs overlap when scheduled at their 
respective target starting times, so it is clear that 
there should be no idle time between the jobs if 
they are adjacent. We show that if such a conflict 
occurs and jobs i and j are adjacent, the optimal 
sequence depends upon when the jobs are sched- 
uled (see Appendix C). For this case, i should 
precede j in the optimal sequence if 

(1) the selected starting time for the earlier job 
~< sj - p~, or 

(2) the selected starting time for the earlier job 
>~ s~. 
Simply stated, these conditions say that either 
both jobs are early or on time, or both jobs are on 
time or tardy. The two instants of time given 
above are the breakeven points between i preced- 
ing j ,  and j preceding i. If the selected starting 
time for the earlier job is between s j -  p~ and s~, 
job j should precede job i. 

It is now evident that for each possible pair of 
adjacent jobs, we can either specify the optimal 
ordering regardless o f  their timing if certain condi- 
tions hold, or depending upon their timing if these 
conditions do not hold. This information could be 
used to eliminate many alternative sequences. 

We were optimistic that in realistic problems, it 
would be possible to obtain partial orderings that 
would permit elimination of most sequences from 
consideration. With this in mind, we propose a 
branch and bound algorithm in which branching 
involves assigning available jobs to the last availa- 
ble position in the sequence. (Thus, the procedure 
constructs the sequence backward.) 

The proposed optimal algorithm is a variation 
of the branch and bound algorithm presented in 
Kim and Yano (1986) for a problem in which all 
tardiness and earliness weights are equal. Solu- 
tions from the heuristic algorithms were used as 
upper bounds on the optimal solution. The branch 
and bound tree is constructed by assigning jobs to 
positions in the sequence starting at the end of the 
sequence and moving backward. Thus, each node 
in the branch and bound tree is associated with a 
partial sequence of the last several jobs in the 
sequence. When we branch from a node, the 
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dominance rules for adjacent jobs are used to 
avoid considering dominated sequences. 

At each node of the branch and bound tree, we 
compute a lower bound on the solution that can 
be obtained from the partial sequence correspond- 
ing to the node. This lower bound is the sum of a 
lower bound for the jobs in the partial sequence 
and a lower bound for the jobs not in the partial 
sequence. The first lower bound can be obtained 
by applying an optimal timing algorithm with a 
constraint that the first job in the partial sequence 
cannot be started until the earliest possible com- 
pletion time of the jobs not in the partial se- 
quence. The optimal timing algorithm is a varia- 
tion of the procedure in Kim and Yano (1986) for 
the case of equal weights and requires O(n 2 log n) 
time in the worst case. The second lower bound is 
obtained using a property presented in Kim and 
Yano (1986). Conceptually, this lower bound is 
simply the sum of unavoidable earliness and tardi- 
ness that occurs because two or more jobs would 
conflict if they were scheduled with C~ = D, for all 
i, where C~ is the completion time of job i. 

Since the problem is a generalization of a prob- 
lem with tardiness penalties proportional to the 
processing times and earliness penalties equal to 
zero, which has been shown to be NP-complete 
(Arkin and Roundy, 1988a), this problem is also. 
We therefore view the branch and bound al- 
gorithm principally as a means to evaluate heuris- 
tic solution procedures. In the next section we 
propose and test four heuristic procedures and an 
improvement routine. 

5. Heuristic procedures 

We compared five heuristic algorithms with the 
optimal algorithm. Four of the heuristics use sort- 
ing procedures to find a sequence. In each case, 
the final schedule (sequence and timing) is ob- 
tained by applying an optimal timing algorithm 
for each of the sequences. The sorting procedures 
include EDD (earliest due date) rule, MDD (mod- 
ified due date) rule, EST (earliest starting time) 
rule in which jobs are sorted in increasing order of 
the s~'s, and a rule in which the dominance rules 
are used to establish a sequence. In the last rule, 
all pairs of two jobs are compared and their 
priorities (denoted by k,, i = 1 . . . . .  n) are com- 

puted as follows. Starting with k, = 0 for i = 
1 , . . . ,  n, we update the ki's by adding 1 to k, if 
job i should precede job j ,  and subtracting 1 from 
kj if job j should succeed job i, where each of 
these precedence relationships is determined by 
assuming that the two jobs are adjacent and that 
their starting times are not restricted. By both 
adding and subtracting points (rather than simply 
adding a point for the earlier job in each pair), 
this procedure tends to provide better discrimina- 
tion among jobs and to break ties that would 
occur under simpler rules. After comparing all 
pairs of jobs, a sequence is obtained by sorting the 
jobs in decreasing order of the ki values. Ties are 
broken by the EST rule. This rule will be denoted 
by PREC (short for 'precedence'). 

After applying these four rules on a problem, 
we start with the best among the four heuristic 
schedules and apply pairwise interchanges as fol- 
lows. For k = n -  1 . . . . .  1, we consider pairwise 
interchanges of the job originally in position k 
with the subsequent job in the sequence. If an 
interchange of the job in position k with the job 
in position k + 1 results in an improvement, the 
sequence is modified accordingly. An interchange 
of the job now in position k + 1 with the job in 
position k + 2 is considered, and the sequence is 
modified if appropriate. This process is repeated 
as long as interchanges result in improvements. 
This procedure essentially considers moving the 
job originally in position k to later positions in 
the sequence by looking forward one position at a 
time. This is the fifth heuristic tested in this re- 
search and is called INT (short for 'interchange'). 

For our experiment, 100 problems were gener- 
ated randomly with the method used in Potts and 
Van Wassenhove (1982). In this method,  
processing times of jobs are randomly generated 
using a selected distribution, then due dates are 
generated using the sum of the processing times of 
all jobs and two parameters, the tardiness factor 
(T)  and relative range (R)  of due dates. Follow- 
ing their method, the due dates are generated from 
a uniform distribution [P(1 - T - ½R), P(1 - T + 
½R)], where P is the sum of the processing times 
of the jobs. In our test problems, the number of 
jobs ranged from 7 to 40, the tardiness factor 
ranged from 0.1 to 0.5, and the relative range of 
due dates ranged from 0.6 to 1.8. Since only the 
ratio of the earliness factor to the tardiness factor 
is of consequence when there are proportional 
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Table 1 
Performance of the algorithms on 100 test problems 

Problem n T R Heuristic algorithms Optimal algorithm 

EDD EST MDD PREC INT CPU B & B CPU 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

7 0.5 1.0 
7 0.4 1.0 
8 0.5 1.0 
8 0.4 1.2 
8 0.3 1.2 

10 0.5 1.0 
10 0.4 1.2 
10 0.3 1.4 
10 0.2 1.6 
10 0.1 1.8 
10 0.5 0.9 
10 0.5 0.8 
10 0.5 0.7 
10 0.4 1.0 
10 0.4 0.8 
12 0.4 0.6 
12 0.3 1.2 
12 0.3 1.0 
12 0.3 0.8 
12 0.2 1.4 
14 0.2 1.2 
14 0.2 1.0 
14 0.1 1.5 
14 0.1 1.2 
14 0.1 0.9 
15 0.5 1.0 
15 0.4 1.2 
15 0.3 1.4 
15 0.2 1.6 
15 1.0 1.8 
15 0.5 0.9 
15 0.5 0.8 
15 0.5 0.7 
15 0.4 1.0 
15 0.4 0.8 
15 0.4 0.6 
15 0.3 1.2 
15 0.3 1.0 
15 0.3 0.8 
15 0.2 1.4 
15 0.2 1.2 
15 0.2 1.0 
15 0.1 1.5 
15 0.1 1.2 
15 0.1 0.9 
16 0.5 0.9 
16 0.5 0.8 
16 0.5 0.7 
16 0.4 1.0 
16 0.4 0.8 
18 0.4 0.6 
18 0.3 1.2 
18 0.3 1.0 
18 0.3 0.8 
18 0.2 1.4 
20 0.5 1.0 

1373 1325 1373 1325 1325 0.05 1325 0.93 
719 719 719 719 719 0.05 719 0.60 

23884 23664 23884 23664 23664 0.05 23664 3.07 
1217 1217 1217 1217 1217 0.05 1217 0.71 
6564 6528 6564 6528 6528 0.05 6528 1.37 

12956 12920 13166 12920 12920 0.06 12920 8.63 
1955 1955 1955 1955 1955 0.06 1955 4.83 

11563 11323 12331 11323 11323 0.11 11323 2.14 
6824 6508 6824 6880 6508 0.05 6508 11.09 
2952 4374 2952 3096 2760 0.05 2760 12.96 
6450 6450 6450 6450 6450 0.06 6450 2.14 
3198 3174 3198 3174 3174 0.11 3174 2.14 
5787 5667 7101 5667 5667 0.11 5667 2.96 
1131 1323 1131 1323 1131 0.06 1131 1.21 
8021 8007 8861 7895 7895 0.11 7895 9.01 
8869 7602 8869 8435 7602 0.05 7602 33.50 
5918 5724 5918 5852 5598 0.11 5598 4.23 
7401 8874 7401 8874 7401 0.05 7401 5.55 

11745 11775 11745 11927 11745 0.11 11745 106.89 
2196 2196 2196 2196 2196 0.06 2196 2.26 

11536 12157 11536 11536 11536 0.05 11536 62.83 
6298 10636 6298 9376 6298 0.11 6298 92.60 

10174 13484 10174 11014 10174 0.11 10174 76.46 
13493 13209 13493 13209 12509 0.17 12509 666.91 
40343 40343 40343 40343 40343 0.11 40343 459.39 

3674 3590 3872 3590 3590 0.11 3590 41.31 
5188 6065 5272 5314 5188 0.11 5188 40.09 

13720 13991 13720 13991 13656 0.16 13656 97.71 
50102 50102 50858 50102 50102 0.11 50102 111.01 
13051 14351 13051 14351 13051 0.05 13051 47.68 
4451 4491 4731 4359 4359 0.22 4359 47.40 
4026 3978 4080 3858 3858 0.17 3858 5.55 
9095 9305 9491 9305 9005 0.22 9005 135.45 
2519 2827 2519 2827 2519 0.11 2519 10.93 

11759 11759 12683 11759 11759 0.16 11759 28.29 
17575 17106 17575 17106 17106 0.22 17106 863.49 
13811 14291 13811 14291 13811 0.16 13811 567.49 
12224 12176 13576 12224 12176 0.11 12176 28.73 

9922 10339 9922 10339 9922 0.17 9922 300.66 
16456 14034 18220 14034 13936 0.11 13936 34.99 
6890 7279 6890 7279 6174 0.11 6174 204.43 

28107 28107 28107 28107 28107 0.11 28107 2433.80 
3243 3311 3243 3311 3243 0.05 3243 39.76 
6766 6994 6766 6994 6766 0.11 6766 238.00 

43138 43950 43138 41550 41550 0.16 41550 * 3600.00 
16371 16371 16857 16371 1637 0.11 16371 52.35 

9034 9034 9034 9034 9034 0.17 9034 60.86 
9556 9556 9610 9556 9556 0.11 9556 352.84 

15466 15301 15466 15301 15301 0.17 15298 383.38 
6870 6864 6870 6864 6864 0.17 6864 260.90 

24895 24993 25161 24769 24769 0.33 24769 * 3600.00 
4833 5093 4833 5093 4333 0.17 4333 428.37 
6072 6274 6072 6274 6072 0.11 6072 1014.64 

10795 10920 10795 10920 10795 0.17 10795 * 2649.06 
16685 16873 16685 16685 16685 0.22 16685 * 2411.23 
7236 7236 7278 7236 7236 0.16 7236 3315.96 
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Table 1 (continued) 

Problem n T R Heuristic algorithms Optimal algorithm 

EDD EST MDD PREC INT CPU B & B CPU 

57 20 0.4 1.2 12507 
58 20 0.3 1.4 30705 
59 20 0.4 1.6 5622 
60 20 0.1 1.8 6048 
61 20 0.5 0.9 4613 
62 20 0.5 0.8 23955 
63 20 0.5 0.7 8406 
64 20 0.4 1.0 8734 
65 20 0.4 0.8 19604 
66 20 0.4 0.6 64137 
67 20 0.3 1.2 35551 
68 20 0.3 1.0 5960 
69 20 0.3 0.8 18755 
70 20 0.2 1.4 12137 
71 20 0.2 1.2 15870 
72 20 0.2 1.0 11121 
73 20 0.1 1.5 14264 
74 20 0.1 1.2 17192 
75 20 0.1 0.9 52419 
76 20 0.2 1.2 55709 
77 20 0.2 1.0 18946 
78 20 0.1 1.5 14740 
79 20 0.1 1.2 13911 
80 20 0.1 0.9 24121 
81 25 0.5 1.0 3574 
82 25 0.4 1.2 17614 
83 25 0.3 1.4 15704 
84 25 0.2 1.6 11704 
85 25 0.1 1.8 6448 
86 30 0.5 1.0 35685 
87 30 0.4 1.2 15112 
88 30 0.3 1.4 15828 
89 30 0.2 1.6 23063 
90 30 0.1 1.8 19411 
91 35 0.5 1.0 9806 
92 35 0.4 1.2 10366 
93 35 0.3 1.3 58104 
94 35 0.2 1.6 18106 
95 35 0.1 1.8 57313 
96 40 0.5 1.0 21753 
97 40 0.4 1.2 54287 
98 40 0.3 1.4 33161 
99 40 0.2 1.6 50796 

100 40 0.1 1.8 24751 

12507 15048 12507 12507 0.16 12507 31.03 
31559 30705 31559 30705 0.22 30705 * 2440.13 

9425 5622 9425 5622 0.17 5622 195.43 
9898 6048 9898 6048 0.16 6048 489.93 
4291 4613 4291 4291 0.17 4291 328.07 

23955 24945 23955 23955 0.27 23955 2952.13 
8754 9264 8628 8406 0.27 8406 1994.84 
9838 8734 9838 8734 0.22 8734 3227.37 

19758 20976 19478 19373 0.39 19373 * 290.12 
64123 64879 64123 64123 0.27 64123 * 2733.92 
33927 37319 33927 33927 0.22 33927 206.90 
6043 5960 5960 5960 0.22 5960 * 2837.67 

18755 18755 18755 18755 0.22 18755 * 2711.12 
12767 12137 12767 12137 0.16 12137 2136.98 
15777 15870 14064 14064 0.22 14064 * 2923.91 
12816 11121 12816 11121 0.16 11121 * 2241.73 
17924 14264 17924 14264 0.17 14264 * 2543.49 
25478 17912 25478 17912 0.22 17912 * 2575.13 
56769 52419 54099 52419 0.27 52419 * 2374.35 
55804 57842 55804 55709 0.22 55709 344.28 
19945 18946 19549 18946 0.22 18946 * 2399.81 
20173 14740 19259 14740 0.17 14740 987.29 
16241 13911 16241 13911 0.22 13911 * 2356.19 
29887 24121 29887 24121 0.22 24121 * 2136.66 

3937 3574 3886 3574 0.27 3574 * 3600.00 
17590 17614 17590 17320 0.38 17320 * 2256.83 
17047 15704 16963 15688 0.33 15688 * 2691.84 
13912 11704 13912 11704 0.22 11704 * 3600.00 
6912 6448 6884 6448 0.22 6448 * 3600.00 

35685 37107 35685 35685 0.50 35685 * 2565.02 
14978 15492 14908 14433 0.39 14433 1523.47 
16644 15828 16644 15828 0.33 15828 * 3600.00 
27130 30758 27130 23063 0.33 23063 * 3600.00 
19801 19411 19801 19411 0.33 19411 * 3600.00 

9770 9806 9770 9770 0.44 9770 * 3600.00 
10996 10366 10996 10366 0.60 10366 * 3600.00 
58960 58296 58960 58104 0.60 58104 * 2530.14 
21586 18229 21586 18106 0.44 18106 * 3600.00 
56921 57313 56921 56837 0.49 56837 * 3600.00 
21747 22899 21747 21747 0.93 21747 * 2896.00 
53703 55085 53584 53496 1.05 53496 * 3034.97 
33621 35153 33349 33161 0.66 33161 * 3203.09 
53796 52749 53699 50796 0.60 50796 * 3137.67 
26780 24751 26780 24751 0.66 24751 * 3600.00 

* This is the incumbent solution at the time when the algorithm was stopped. 

weights, a was set to 1 for all problems and /3 
ranged from 3 to 9. 

The algorithms were coded in FORTRAN and run 
on a personal computer (Zenith Z386). To prevent 
excessive computation time, the branch and bound 
algorithm was stopped after 3600 seconds (one 
hour) of  CPU time for each problem. In addition, 

c o m p u t a t i o n  w a s  s t o p p e d  w h e n  t h e  m e m o r y  re-  

q u i r e m e n t s  f o r  a p r o b l e m  e x c e e d e d  t h e  c a p a c i t y  o f  

t h e  c o m p u t e r  m e m o r y  (640  k B  o f  a c c e s s i b l e  R A M ) .  

T h e  r e s u l t s  o f  t h e  c o m p u t a t i o n a l  e x p e r i m e n t s  

a r e  g i v e n  in  T a b l e  1. T h e  t a b l e  s h o w s  t h e  n u m b e r  

o f  j o b s ,  t h e  t a r d i n e s s  f a c t o r  ( T ) ,  t h e  r e l a t i v e  r a n g e  

( R )  o f  d u e  d a t e s ,  s o l u t i o n  v a l u e s ,  a n d  C P U  t i m e s  
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for each problem. The CPU time given for the 
heuristic algorithms is the total CPU time required 
for all five algorithms. 

As shown in the table, a half of the 20-job 
problems and most of the smaller problems were 
solved optimally by the branch and bound al- 
gorithm. Considering the combinatorial aspect of 
the algorithm, this is a very encouraging result. 
During testing of the branch and bound al- 
gorithm, another set of tests was done on small 
problems. (The results are not shown here.) These 
tests were designed to study the effects of the 
dominance rules and the lower bounding methods. 
The dominance rule in Proposition 1 provided a 
good pruning tool and eliminated many dominated 
partial sequences. However, the bounding scheme 
used for the jobs not in a partial sequence did not 
perform as well as the dominance rule principally 
because the lower bound for jobs not in the partial 
sequence is quite loose. Although the bounds re- 
duced the number of nodes generated (and there- 
fore, the memory size needed for a problem), the 
computation time was not reduced significantly 
because of the time required to compute the bound. 
Further research is needed to develop an im- 
proved bounding scheme for this problem. 

Compared with the solutions from the branch 
and bound algorithm, the solutions from the heur- 
istic INT were very good. INT found good solu- 
tions in a fraction of the CPU time needed for the 
branch and bound algorithm. Only one of the 
solution out of 100 was proven to be non-optimal. 
Even in that problem (Problem 49), the difference 
between the heuristic and optimal solutions was 
less than 0.1%. Indeed, we actually had to try to 
find a problem for which INT produced a solution 
that was inferior to the incumbent branch and 
bound solution. It is also important to point out 
that it is well known that in many branch and 

bound algorithms, the optimal solution is found 
quickly and the remainder of the CPU time is 
spent verifying optimality. Thus, although the 
computation was stopped prior to termination in 
some cases, the final incumbent solution may be 
optimal or very close to optimal. 

Performance of the five heuristics is further 
analyzed in Tables 2 and 3. Table 2 shows the 
average and the worst case performance ratios of 
the algorithms for different tardiness factors, while 
Table 3 shows the same for different relative ranges 
of due dates. The performance ratio in the tables 
is the ratio of the deviation of the heuristic objec- 
tive value from optimality to the optimal objective 
value. If an optimal solution was not found at the 
termination of the algorithm, the current in- 
cumbent solution was used instead of an optimal 
solution when computing this ratio. Therefore, the 
ratios in the tables are actually optimistic esti- 
mates of the exact ratios. 

From Table 2, it is apparent that as the tardi- 
ness factor becomes large, the performance of EST 
and PREC improves, while the performance of 
EDD and MDD is less sensitive to the tardiness 
factor. PREC performed best when due dates were 
tight, and EDD was the best when they were not 
tight. A similar pattern was observed for sensitiv- 
ity to the relative range of due dates. While the 
performance of EDD and M D D  did not depend 
heavily on the relative range, EST and PREC 
performed better when the range was small. This 
can be partly explained as follows. When the due 
dates of jobs are dispersed, there would be little 
conflict between jobs even if they were scheduled 
to be completed at their due dates. Therefore, the 
solution from the EDD sequence may be close to 
an optimal solution. On the other hand, when the 
due dates are not dispersed widely, they do not 
play a s  much of a role in determining the se- 

Table 2 
Performance ratios of the algorithms for each tardiness factor 

No. of Average performance ratios 
probs EDD EST MDD PREC INT 

Worst case performance ratios 

EDD EST MDD PREC INT 

0.1 19 0.0103 0.1856 0.0103 0.1593 
0.2 19 0.0249 0.1374 0.0544 0.1190 
0.3 20 0.0128 0.0377 0.0276 0.0383 
0.4 21 0.0151 0.0357 0.0415 0.0319 
0.5 21 0.0132 0.0113 0.0456 0.0070 

Total 100 0.0152 0.0788 0.0361 0.0699 

0.0 0.0786 0.6357 0.0787 0.6366 0.0 
0.0 0.1808 0.6888 0.3337 0.6765 0.0 
0.0 0.1154 0.1990 0.1154 0.1990 0.0 
0.00001 0.1667 0.1698 0.2032 0.1698 0.00020 
0.0 0.0750 0.1016 0.2530 0.0873 0.0 

0.00000 0.1808 0.6888 0.3337 0.6765 0.00020 



C.A. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems 

Table 3 
Performance ratios of the algorithms for each relative range 

175 

No. of 
probs 

Average performance ratios Worst case performance ratios 

EDD EST MDD PREC INT EDD EST MDD PREC INT 

0.6 4 0.0499 0.0023 0.0554 0.0274 0.0 0.1667 0.0090 0.1667 0.1096 0.0 
0.7 4 0.0078 0.0187 0.1037 0.0149 0.0 0.0212 0 . 4 1 4  0 .2530  0.333 0.0 
0.8 12 0.0067 0.0101 0 .0326 0.0062 0.0 0.0436 0.0420 0 .1224 0.0430 0.0 
0.9 8 0.0197 0.0513 0.0285 0.0339 0.0 0.0750 0.0239 0.0863 0.2390 0.0 
1.0 22 0.0041 0 .0766 0.0169 0.0643 0.00001 0 .0362 0.6888 0 .1150 0 .4887 0.00020 
1.2 21 0.0299 0.0741 0.0473 0.0596 0.0 0.1284 0.4224 0 .2032 0.4224 0.0 
1.4 11 0.0189 0.0263 0.0423 0.0241 0.0 0.1808 0 . 8 6 6  0 .3074  0.0813 0.0 
1.5 4 0.0 0.2426 0.0 0.1667 0.0 0.0 0.3679 0.0 0.3065 0.0 
1.6 7 0.0069 0 .1844 0.0732 0.1926 0.0 0.0486 0.6765 0.3337 0.6765 0.0 
1.8 7 0.0111 0.2138 0.0111 0.1470 0.0 0.0696 0.6366 0.0696 0.6366 0.0 

Total 100 0.0152 0.0788 0.0361 0 .0699 0.00000 0.1808 0.6888 0.3337 0.6765 0.00020 

quence; the relative magnitudes of  the penalties 
are more important .  These results corroborate  
findings on the tardiness minimization problem. 
In the tardiness problem, when two jobs  are both  
late, it is better to sequence the two jobs in SPT 
(shortest processing time) order rather than E D D  
order. 

All of  the above results demonstrate  the impor-  
tance of  including a pairwise interchange method 
in the heuristic algorithm. It can enhance the 
per formance  of  a heuristic without  much ad- 
ditional computa t ion  time. In our algorithm, the 
interchange routine runs in O ( n  2) time. 

6. Conclusions 

We have developed optimal and heuristic pro- 
cedures for the problem of minimizing the sum of 
weighted tardiness and weighted earliness on a 
single machine when the weights are proport ional  
to the processing times of  the jobs. Dominance  
criteria are derived which eliminate many  possible 
sequences from considerat ion in the optimal 
b ranch  and bound  procedure,  and provide a basis 
for determining an initial sequence and evaluating 
potential  improvements  in the heuristic proce- 
dures. Al though the problem is known to be NP-  
complete,  the dominance  criteria permitted us to 
opt imally solve many  problems with 15 jobs  or 
more. Fur ther  research to develop a tighter lower 
bound  may permit much larger problems to be 
solved optimally. 

A composi te  heuristic which combines several 
sorting routines and a simple pairwise interchange 

procedure performed extremely well in computa-  
tional tests. In  only one out of  1000 problems did 
the optimal algorithm (with a generous C P U  time 
trap) find a better solution than the heuristic 
procedure.  Addit ional  research is needed to de- 
velop dominance  criteria and heuristic procedures 
for the more general weighted tardiness and earli- 
ness problem. 

Appendix A: Proof of Proposition 1 

We initially consider the case of  no idle time 
between jobs, and then extend the results to the 
case of  permitted idle time. Recall that  for each i, 
e;E; + "tiT ~ is a piecewise linear convex funct ion of  
the complet ion time (and therefore also the start- 
ing time) of  job  i. Consider  two jobs,  i and j ,  
processed sequentially. For  each of  the two order- 
ings, total weighted earliness and tardiness (which 
we refer to as total cost) is a piecewise linear 
convex function of  the starting time of  the earlier 
job.  

Observe that for sufficiently early starting times, 
bo th  jobs will be early, and the total cost declines 
(for a while) at a rate of  e; + ej as the starting time 
is increased. Similarly, for sufficiently late start ing 
times, both  jobs  will be tardy and the total cost 
increases by ~-, + Tj as the starting time is in- 
creased. Thus, for sufficiently small and large 
starting times, the total cost  has the same slope, 
regardless of  the ordering. This fact, in conjunc-  
tion with the piecewise linear convex nature of  the 
cost functions makes it sufficient to compare  the 
two cost functions at all extreme points  to estab- 
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Table A.1 
Total cost at possible extreme points: Case 1 (s~ - pj < s t <~ s-i 

- P i  < s - i )  

Starting Sequence 
time i before j 

Table A.3 
Total cost at 
< s, ~<s-i) 

si - p-i etP-i + e(s-i - st 

- P i  + P- i )  

S~ e.-i(S-i -- S i + Pi) 

s-i - p~ ~'i(s~ - Pi - s,)  

s~ r,(s~ + s A +  r-ip~ 

possible extreme points: Case 3 (s-i - p, <~ st - pj 

Starting Sequence 

j before i time i before j 

efls-i - s i + p j )  s j  - p ,  e t ( s  ~ - s~ + Pi) 

"r, pj + ~j(s~ - si) s, - p-i ~iP-i + 5"(si - s-i 
"ri(si - Pi + Pj - s+) + Pi - P-i) 

+ ~jPl si "l'j(S i - -  S-i + Pi) 
"rt(p/ + Sj -- s,)  s-i "ri(s j -- s~)+ r-ipi 

j before i 

~t(s, - s-i - p-i + Pt) 
+ e-ip, 

, j ( s~  - s~ + p+) 

rgp-i + efls-i - s,)  

ri(s-i - s~ + p-i) 

lish that  one dominates  the other. This is the 
approach  used in our  proof .  

There  are only four start ing times at which 
ext reme points  can (but  do not necessarily) occur: 
(1) s~; (2) s+; (3) s ~ - p j ;  (4) s / - p ~ .  At t ime s,, if 
job  i is scheduled first, it changes f rom being early 
to being tardy. Similarly, at s j ,  job  j changes f rom 
being early to being tardy if it is scheduled first. 
At a start ing t ime of s ~ - p / ,  job  i changes f rom 
being early to being tardy if job  j is scheduled 
first. Likewise, at a start ing t ime of s j  - p ~ ,  job  j 
changes f rom being early to being tardy if job  i is 
scheduled first. 

There  are three possible relat ionships among  
the four possible extreme points  in (1)-(4)  above:  
C a s e  1. s~ - p j  < s i <~ s j  - P i  < s j .  

C a s e  2.  s i - p j  <~ s j  - P i  <~ si  <~ s j .  

C a s e  3. s j  - P i  <~ si  - P j  < si  <~ s j .  

The values of  the cost funct ion at each possible 
ext reme point  can be obta ined  easily for each of 
the two possible j ob  sequences. These values are 
shown in Tables  A .1 -A .3  for the three cases listed 
above.  

Opt imal i ty  of  the schedule in which i precedes 
j can be proved by  s imply compar ing  the total  
costs of  the two orderings, using Tables  A.1-A.3 .  

Table A.2 
Total cost at possible extreme points: Case 2 (s  i - p-i <<. s-i - pi 
< s~ <~ s j )  

Starting Sequence 

time i before j j before i 

s, - p+ ~,pj + e / s j  - si ej(s+ - s, + p~) 
+ p-i - p~) 

s-i - p, e , (s  t - s-i + p, )  "r,(s-i - s i + P i - P,) 
+ e-ipg 

s, "r-i(s, - s-i + p, )  "r~pj + ~-i(s-i -- st) 
S-i "ri(sj-- s i )+  ~jp i "ri(s-i-- si + pj  ) 

C a s e  1. 

Starting t ime s i - p j :  

i precedes j if e, pj - ejpi ~< 0 or e ~ / e  s < ~ p J p / .  

Starting t ime s /  

i p r e c e d e s  j for a l l e j > ~ 0 ,  r~>~0. 

Starting t ime s / -  p~: 

i precedes j for all ~'~ >/0, ej  >~ O. 

Starting t ime s j: 

i precedes j if ~ P i  <~ r i p /  or p J p j  ~ " r J ~ .  

C a s e  2.  

Starting t ime s~ - p /  

i precedes j if e i p  j - e j p  i ~ 0 or e i / E  j < ~ p J p / .  

Starting t ime s / -  p~: 

i precedes j 

if e , ( s ~ -  s j  + p ~ )  <~ "r~(sj - P i  + P j  - s~)  + e j p ~ .  

Rewrit ing the condit ion,  we have (r~ + e ~ ) ( s s -  

S j  + P i )  ~ "riPj + e j P i ,  where 0 <~ s i - s j  + P i  ~ P j  by 
definition. Thus,  (~  + e i ) ( s  i - s j  + P i )  <~ ( r i  + E i ) P / ,  

and (~  + e i ) P j  ~ r i p  / + e j p  i if ~-iPj <~ e j P i  or ei /e  / 

<~ P i / P i "  
Starting t ime s~: 

i precedes j if ,9(s+ - sj + p i )  ~ ~',pj + e J ( 6  - s ,)  

or ~p~,pj+ (~ + ~j)(6-s~).  

Since sj - s~ >~ 0, the second te rm on the right- 
hand  side is nonnegative.  The  only condi t ion is 
p J p j  <~ , r y r / .  
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Starting time S/: 

i precedes j if "(/P, ~< "riPJ or p, /pj  <~ ~J'rj. 

Case 3. 
Starting time s / - p /  

i precedes j if ejp i -  eip j >~ 0 or ei/el ~Pi /P j .  

Starting time s t -  pfi 

i precedes j 

if eip j + Z l ( s , -  sj + p , - p j )  <~ e j ( s j -  s i + pj) 

or eipi + rjPi <~ (ej + ~ . ) ( s j -  si + Pj). 

If riP9>~ ~p, ,  then the left hand side of the 
inequality is less than or equal to (e~ + ~'i)pj. Since 
s j -  s, >/O, in this situation a simpler sufficient 
condition is e, + % ~< ej + r9" 

Starting time s /  

i precedes j 

if "rj(s~ + p , -  sj) <~ "r, pj + ej(sj - s,) 

or "r, pi <~'riPj + ('cj + e j ) ( s j - -  si). 

Since : ( / -  s, >i O, this is satisfied if p J p j  <~ rJ'rj. 
Starting time s /  

i precedes j if %Pi <~ "c, Pl or p J p j  <~ ~,/~j. 

We next sketch a proof to show that the above 
results are true even when idle time between jobs i 
and j is permitted. When both jobs are early, the 
schedule can be improved by permitting idle time 
between the jobs. However, it is easy to show 
(proof omitted here) that the schedule with idle 
time is dominated by another feasible schedule 
with a later starting time and without idle time 
between the two jobs. Thus, the analysis for the no 
idle time case applies here. 

In all other cases, either (1) the schedule for 
neither sequence can be improved by permitting 
idle time, or (2) the schedule for the sequence with 
i before j can be improved by permitting idle 
time, but the schedule for the other sequence 
cannot. (The proof is tedious but straightforward.) 
Hence, the differences between the costs reflected 
in Tables A.1-A.3 represent upper bounds on the 
errors. 

This, along with the proof for the case of no 
idle time between jobs, completes the proof of the 
proposition. 

Appendix B: Worst case analysis of the sorting 
procedure 

In this appendix, we demonstrate that in the 
worst case, sorting jobs in nondecreasing order of 
the s, values can have arbitrarily poor perfor- 
mance. Consider a situation in which s / - p ~  
s i - p j  <s, 4 s / ,  and suppose that the optimal 
schedule has j preceding i with job j starting in 
( s j - p , ,  s]. In this case, both jobs are early and 
the penalty is 

- t , )  t , ) ,  

where tj is the actual starting time of job j ,  and t, 
is the actual starting time of job i. 

Since both jobs are early, it is advantageous to 
have no idle time between the jobs and to delay 
both jobs at least until one of the two (in this case, 
job i) is exactly on time (tj = s , - p j ,  t, = s,). Sup- 
pose now that r, > e, > e j, so it is undesirable to 
make job i tardy in order to reduce the earliness 
of job j .  Then, the optimal solution is the one 
given above, and the associated penalty is 

e j ( s j  + P i  - s , ) .  

Now consider what happens when the sorting 
procedure results in job i preceding job j ,  with job 
i starting after s~. In this case, both jobs are tardy. 
As such, it is optimal to have no idle between the 
jobs and the penalty is 

Since we cannot determine the value of t, a priori, 
this penalty can be arbitrarily large (although 
clearly finite). 

Appendix C: Analysis of situations where job j 
should precede job i when s i < s j  

Recall that condition (3) in Appendix A per- 
tains to situations where sj - Pi ~< s, - pj < s, ~< S r 
We have already shown that under the condition 
of proportional weights, if condition (3) holds and 
jobs i and j are adjacent, job i should precede job 
j if the starting time of the earlier is less than or 
equal to s j -  p, or greater than or equal to s,. Let 
us analyze what happens when the starting time of 
the earlier job is between the two points. 
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For any starting time t ~ ( s j - p ,  s~ -py] ,  the 
cost if job i immediately precedes job j (with no 
idle time between them) is 

t )  + l + p , -  s+), 

and the cost if job j precedes job i is 

s j -  t ) + s, - t - p j ) .  

Thus, the sequence with i before j is preferred if 

e i (s  i -  t )  + r j ( t  + P i -  s j )  

Using the fact that e~pj---ap~pj = ejp,,  this sim- 
plifies to 

t <~ s j - p , ,  

which is inconsistent with the original assumption 
about t. Therefore, if jobs i and j are scheduled 
with one immediately after the other, it is better to 
put job j first under the conditions given above. 
Moreover, it is obvious that since both jobs are 
early when job j is sequenced first, the cost associ- 
ated with that sequence can be reduced by insert- 
ing idle time between the two jobs. In the other 
sequence, however, one job is early and the other 
is tardy. Hence, it is optimal to have no idle time 
between the jobs, and its cost cannot be reduced 
further. Consequently, the conditions given above 
reflect a case where job j should always precede 
job i. 

For a starting time t E (s~-p/ ,  s,), the cost if 
job i precedes job j is 

e i (s  i - t )  + "rj( t + P i -  s j ) ,  

and the cost if job j precedes job i is 

( s., - t ) + ",', ( , + p: - s , ) . 

Using arguments similar to those above, it can be 
shown that the sequence with j before i is always 
preferred under the stated conditions. 
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