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The Stokes equations are solved using spectral methods with staggered and nonstaggered 
grids. Numerous ways to avoid the problem of spurious pressure modes are presented, 
including new techniques using the pseudospectrdJ method and a method solving the weak 

form of the governing equations (a variatron on the “spectral element” method developed by 
Patera). The pseudospectral methods using nonstaggercd grids are simpler to implement and 
have comparable or better accuracy than the staggered grid formulations. Three test cases arc 
presented: a formulation with an exact solution, a formulation with homogeneous boundary 
conditions, and the driven cavity problem. The solution accuracy is shown to be greatly 
improved for the driven cavity problem when the analytical solution of the singular flow 
behavior in the upper corners is separated from the computatmnal solution. :(’ ,991 Academic 

Press, 1°C 

1. INTR000Crr0~ 

Spectral methods offer high accuracy and are promising tools for fluid dynamics 
problems requiring high resolution. When solving the equations governing incom- 
pressible flow in primitive variable form, however, the numerical solution can be 
polluted by spurious pressures (nontrivial null spaces in the matrix of the discrete 
problem). Researchers have avoided the spurious pressure problem by solving a 
Poisson equation for pressure [ 151. A chief concern for the formulations involving 
a Poisson equation is the pressure boundary conditions [ 12, 15). When the 
momentum and continuity equations are solved directly, i.e., without a Poisson 
equation for pressure, staggered grids [2, 4, 9, 10, 13, 161 are often employed to 
avoid spurious pressures. Staggered grids, however, complicate the programming 
and can also require the construction of particular solutions for inhomogeneous 
boundary conditions. 
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In this paper, we show that there are a number of ways to avoid the use of 
staggered grids in solution of the Stokes equations without a Poisson equation for 
pressure. We use the pseudospectral method [6] and a method involving a weak 
form of the governing equations. The weak formulation is similar to the “spectral 
element” method as developed by Patera [14], Maday 191, and Ronquist [16]. 
Solution of the two-dimensional Stokes equations serves as a prerequisite for 
solution of the full three-dimensional Navier-Stokes equations. 

2. FORMULATION 

In this section, we describe the spectral methods we use to solve the Stokes equa- 
tions. We present a number of new techniques that do not require the use of 
staggered grids, and we compare staggered and nonstaggered grid techniques for 
both the pseudospectral and weak formulations. Ten formulations are presented. To 
facilitate subsequent discussion and reference to the figures, each formulation is 
assigned a number (see below) and a symbol (see Table I). 

We formulate and test the pseudospectral method in eight ways: 

1. Nonstaggered grid, continuity applied on boundary [ 1 l] 
2. Nonstaggered grid, normal momentum equation applied on boundary 
3. Nonstaggered grid, pressure approximated with lower order polynmials 

than velocity 

TABLE I 

Legend for Formulations and Figures 

-, ...II. 

Formulation number 

Kumbcr equations = number unknowr~s 

Wumber equations > number unknowns 
Singular matrix 

Continuity applied on boundary 
z- and y-momentum equations applied 01, boundary 
Normal momentum equation applied on boundary 

Pressure and ve1ocit.y of same order 

Pressure lower order than velocity 
Number collocation points > number basis functions 

Nonstaggered grid 

. 

. 

1 . l . . . 

I ! . . Semi-staggered grid 
Fully staggered grid 
il’eah formulation 

Strong formulation 
Chebyshev basis 

Legendre basis 
Lagrangian interpolants for vcloc~ty and pressure 

Lagrangian interpolants for 18, Legendre expansion for p 

R?fCreIKe 

II I . I I I I I 
. . 

. . . 

. . . 
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4. Fully-staggered grid (continuity, x-momentum, and y-momentum equa- 
tions satisfied on three different sets of grid points) [2] 

5. Semi-staggered grid (continuity and momentum equations satisfied on two 
different sets of grid points) [lo] 

6. Nonstaggered grid, overdetermined system formed by increasing the num- 
ber of collocation points 

7. Nonstaggered grid, overdetermined system formed by satisfying continuity 
and both the x- and y-momentum equations on the boundary. 

We use Chebyshev polynomials as the basis set for the pseudospectral formulations 
listed above. To judge the effect of this choice, we solve one of our test problems 
using the pseudospectral method with a Legendre basis: 

8. Nonstaggered grid, pressure approximated with lower order polynomials 
than velocity-Legendre basis. 

Then, turning to the weak formulation, we solve the problem in two ways: 

9. Nonstaggered grid, pressure approximated with a standard orthogonal 
polynomial expansion of lower order than the polynomials used for velocity 

10. Semi-staggered grid, pressure approximated with standard Lagrangian 
interpolants of lower order than those used for velocity [9, 161. 

Legendre polynomials are used for the weak formulation. A Legendre basis results 
in a more computationally efficient procedure than a Chebyshev basis [ 141 due to 
the type of quadrature employed, as described by Ronquist [ 171 (see Sect. 2.2). 

We solve three test problems: (1) a form for which an exact solution exists, (2) 
a form with homogeneous boundary conditions, and (3) the driven cavity problem. 
For all the formulations presented here, we solve the problem on a single-element 
rectangular domain, - 1 d x, JJ 6 1. (However, both weak formulations have been 
successfully extended to multi-element rectilinear domains; we briefly present the 
multi-element results in Section 4.) All of our matrix equations are solved with 
direct (as opposed to iterative) solvers. However, we briefly discuss the implementa- 
tion of iterative solvers in Section 5. 

In the remainder of this paper, we use the term “Lagrangian interpolant” to 
define an interpolating polynomial P,(x) such that 

P,(Xj) = 6,,. (1) 

We present results for the driven cavity problem to show how the accuracy of 
spectral methods is affected by the presence of corner singularities. We find that 
the solution is greatly improved when the singularity is removed by separating the 
analytical form of the singularity from the computational solution. 
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2.1. Pseudospectral Method 

The unknowns in the pseudospectral method are expanded as products of 
orthogonal polynomials: 

(2) 

Here we have used Chebyshev polynomials, denoted by T,(X). Later we introduce 
a formulation using Legendre polynomials. The differential equations are satisfied 
at a particular set of collocation points and boundary conditions are enforced to 
determine the unknown coefficients g,,,,. Depending on the number of collocation 
points and the boundary conditions, the resulting system of linear equations is 
either determined, overdetermined, or singular. 

The Stokes equations are as follows: 

vu-vp= -f 

v.u=o. 

(3) 

(4) 

The forcing function f is known. Expanding the velocity u = (u, u) and pressure p 
with the same truncation gives the representation 

(5) 

and 

IV 

P= c t P,,,,,Tn(X) T,,(Y). 
I, = 0 ,?i = 0 

(7) 

For the rectangular domain - 1 < x, y < 1 the N + 1 extremum collocation points 
in each direction 

x,3 I', = --OS nj/N, 06 j<N, (8) 

give (N + 1)2 points to determine the 3 x (N + 1)’ unknown coefficients. Applying 
the momentum and continuity equations (3) and (4) at the interior collocation 
points yields 3 x (N- 1)2 equations, leaving 12N equations to fully determine the 
system. Applying the two velocity boundary conditions at each boundary node 
yields 8N equations (see Section 3 for a discussion of a multivalued velocity in the 
corners, as in the driven cavity problem). We could obtain the additional 4N equa- 
tions by applying continuity on the boundary [ 111 (formulation 1, denoted by V ), 
but the resulting system is singular: i.e., spurious pressure modes exist (see below 
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for a characterization of the spurious modes). The application of one component of 
the momentum equation at the boundary (with suitable treatment at the corners) 
will also supply the needed 4N equations. Applying the normal momentum equa- 
tion on the boundary leads to a determined system (formulation 2, denoted by x ); 
i.e., we satisfy 

cipJf.?x = v2u + ,f, (9) 

on the boundaries at x = - 1 and .X = 1. and 

2pJdy = V’v + ,f;. (10) 

on the boundaries at J = - 1 and y = 1. Here, the subscripts x and J denote com- 
ponents of the x- and y-momentum equations. In the corners, we obtain a condi- 
tion by taking the divergence of the momentum equation. Using V . II = 0 leads to 

vp = v f, (11) 

Application of the tangential momentum equation on the boundary leads to a 
singular matrix (see below). 

Another way to obtain a determined system is to approximate pressure with a 
truncation of two less than for velocity in each direction (formulation 3, denoted 
by 0): 

N ~ 2 .h 2 

P = 1 c Pm Tnb) T,,(Y). 
,, = 0 ,,, = 0 

(12) 

Satisfying the differential equation at the interior collocation points and enforcing 
the velocity boundary conditions results in a determined system. 

Staggered grids have also been employed to deal with the spurious pressure 
problem. The staggered grids presented here use two sets of collocation points, the 
extrema grid (8) and the set of N points in each direction: 

2,’ j, = -cos n(r2j+ 1)/2N, O<,j<N- 1. (13) 

Note that the collocation points (13) are the roots of T,,,(X). The extrema grid (8) 
includes the endpoints for a total of N + 1 collocation points in each direction, and 
the roots grid (13) defines N interior collocation points in each direction. We 
approximate u and u as 

N - 2 N I 

24 = c 1 u,,, T,(x) T,(Y)(l --x2)(1 - Y2) 

t1 = 0 ,,I = 0 

N-1 h 2 

v=c c v,,,nT,Sx) Tm(..v)(l -x2)(1 -Y’) 

(14) 

(15) 
I, = 0 In = 0 
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(which satisfy homogeneous boundary conditions), and p as 

N-1 N-1 

P= c c P,,,~n(X) Tm(.Y). 
,I = 0 m = 0 

(16) 

Satisfying the x-momentum equation at points (xi, ji), the y-momentum equation 
at points (Zj, y,), and continuity at (Zj, J/i) for 1 d i6 N- 1, 0 <j< N- 1, and 
0 < k < N - 1, results in a determined and nonsingular linear system [Z] (formula- 
tion 4, denoted by n ). Note that this formulation is restricted to problems with 
homogeneous boundary conditions. Similar formulations could be devised for 
inhomogeneous boundary conditions [6] but are complicated by the separate 
construction of particular solutions. 

The semi-staggered formulation (formulation 5, denoted by A) approximates u 
and v as in (5) and (6) but p as in (16). Then the x- and y-momentum equations 
are satisfied on the interior points of the extrema grid (8) and continuity is satisfied 
on the roots grid (13). This formulation results in a singular system with spurious 
pressure modes, as will be seen. 

We can also consider the least-squares solution of overdetermined systems. We 
show that there are numerous ways to overdetermine the system and that in many 
cases overdetermination improves the accuracy. 

The simplest way to overdetermine the system is to increase the number of 
collocation points M> N such that the collocation points are 

XI’ Jj = -cos lq/M, 06 j<M. (17) 

If A4 = N + 1 is chosen, the resulting system has more equations than unknowns but 
is singular (see below). To obtain a non-singular system, M > N + 1. Here, we 
choose M= N + 2 (formulation 6, denoted by 0). The solution of overdetermined 
systems with the least-squares method depends on the magnitude of the rows of the 
matrix. Therefore, we normalize each row and corresponding right-hand-side entry 
such that the largest entry in each row has an absolute value of unity. We can also 
weight certain rows by multiplying the entire row and corresponding right-hand- 
side entry by a constant, if desired. By weighting the boundary condition rows more 
than other rows, we can satisfy the prescribed boundary conditions to any desired 
accuracy, but the degree to which the differential equation is satisfied at the colloca- 
tion points will be compromised. For our calculations, we simply assign every nor- 
malized row a weight of unity. One can also increase the number of collocation 
points for one of the determined formulations (above) to overdetermine the system. 
We have found that this method often leads to slightly better results if the over- 
determination is not too great. 

Another way to overdetermine the system is to apply continuity and both 
momentum equations at the boundary (formulation 7, denoted by +). 

We also solve one test problem using Legendre polynomials instead of 
Chebyshev polynomials in (5), (6) and ( 12) to gauge the effect of basis choice 
(formulation 8, denoted by *). 
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In all the pseudospectral methods discussed above, we set the constant pressure 
mode by adding an equation specifying poO =O. This additional equation 
necessitates using a least-squares solver for even the determined systems. Alter- 
natively, we have solved the determined systems by replacing one continuity equa- 
tion with an equation specifying poo = 0 [ 19]-this substitution maintains an equal 
number of equations and unknowns-and results were nearly identical to the case 
with one additional equation. 

Characterization of spurious pressure modes. Spurious pressure modes for spectral 
approximations have been described by Bernardi, Maday, and Metivet [3] (for a 
Legendre basis), and Bernardi, Canuto, and Maday [S] (for a Chebyshev basis). 
We discuss the Chebyshev basis here. The spurious pressure modes are defined as 
follows. If p is a solution to the Stokes equations (3) and (4), and pH exists such 
that its x- and y-derivatives vanish at all collocation points where the momentum 
equations are satisfied, then (p+ pII) is also a solution. The quantity pw is a 
spurious pressure solution. It should be noted that derivatives of the constant mode 
T,,(X) T,(J~) vanish for all (x, y). Therefore, multiples of this mode are not spurious 
solutions, but a multiple of this mode must be specified at some point (x, J?) for (3) 
and (4) to have a unique pressure solution. 

For the formulation where continuity is applied at the boundary (0) the 
spurious pressure solutions are characterized by any multiples of the three modes 

T,(x) T,(Y)> i, j=O, N; i= j#O, (181 

and by four linear combinations of modes: 

2 zd ',iTiCx) Tj(Y)2 c c Ci,Ti(X) T,(Y), 

eYe" eYen 

For the semi-staggered grid formulation (A ), one linear combination of modes 
resulting in a spurious pressure solution exists. It is characterized by a linear com- 
bination of modes whose parity is opposite that of the truncation N, i.e., 

c c c,,T,(x) T,(Y) 
odd odd 

(19) 

if N is even, and the summations are over even indices i, j if N is odd. 
When the system is overdetermined by increasing the number of collocation 

points, the formulation is singular for M = N + 1 with one spurious pressure solu- 
tion. This spurious solution arises in the same way as that for the semi-staggered 
formulation: pressure is approximated with a truncation of one less than the poly- 
nomial defining the collocation grid. 

We did not characterize the spurious pressure solutions for the case where the 
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tangential momentum equation is applied on the boundary, but we can easily show 
that the three modes described by (18) will not be eliminated. For example, at 
y= + 1, (18) becomes 

f T, (xl, i=O, N, (20) 

whose x-derivative is always zero (except in corners). On the other hand, when we 
apply the normal momentum equation at y = f 1 (formulation denoted by x ), the 
y-derivative of (18) for j= N does not vanish (it is equal to f N’). 

2.2. Weak Formulation 

In this section we apply the method developed in [9, 161, with some variations 
to eliminate the need for a staggered grid. 

By approximating pressure in a conventional orthogonal polynomial expansion 
(in contrast to a typical Lagrangian interpolant given by (1)) with an order two less 
than that for velocity, we avoid a staggered grid. Ronquist [17] compares 
Chebyshev and Legendre expansion methods and shows that while the accuracy of 
the two is comparable, the operation count for Chebyshev methods “is not com- 
petitive with Legendre techniques for time-dependent geometries or iterative solu- 
tion procedures.” The Chebyshev method [14] utilizes exact integration formulas, 
and the inner products are defined with a weight of unity. Because the inner 
products are not defined with the usual Chebyshev weight function (1 -x2) li2, 
certain simplifications resulting from Gaussian quadrature cannot be implemented. 
The Gaussian quadrature in the Legendre method, however, uses a weighting of 
unity; therefore, we use a Legendre basis to take advantage of simplifications that 
result in a reduced operation count (at the expense, however, of exact integration). 

The development we present here is for a single rectangular domain. In our 
method, we approximate the velocity components as 

and pressure as 

W-2 N-2 

P= 1 c Pm-L(x) L(Y). 
n=o m=O 

Here, the Lagrangian interpolants are defined by 

h,(x) = - 
(1 -x2) LX(x) 

N(N + 1) L,(x,)(x - xi)’ 

03) 

These interpolants are derived by taking a Taylor series expansion about the roots 
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of (1 -x2) Lb(x) [6, 161. The xi in Eq. (24) are the roots of (1 -x2) L’,(x) (the 
roots of Lb(x) are not known in closed form). Note that these Lagrangian inter- 
polants satisfy (1 ). The coefficients u,,,, and u,,,~~ are the velocity components at 
(-G, Y,,), but the ~~~~ are spectral coefficients, not the pressure values on the grid. 

Now, we take inner products of the Stokes equations: 

-I, (V2u)+vdQ+jJ’,+vdQ=~ f.wdS2 
R 

-1 q(V.u)dQ=O, 
R 

where the test functions w and q are the sets 

w = (%r WY) = h(x) hYl(Y), 0 < n, m < N Dirichlet boundary conditions 

0 6 n, m 6 N Neumann boundary conditions 

9 = L(x) L(Y)> O<n,m<N-2, 

excluding the mode corresponding to the constant pressure mode in 
L,(x) L,(y). Integrating (25) by parts, we obtain 

JQ (VW, . Vu + VW,. VU) dQ + ?:, w .hldn dS 

(25) 

(26) 

(27) 

(27) 

(28) 

The boundary integrals vanish for the Dirichlet problem, on which we now concen- 
trate. 

We substitute (21))(23) and (27) into (26) and (28). Discretization of the term 
Ia VW, Vu dQ f or one test function h,(x) h,(y) results in 

1 
I I ’ (h:(x) h,(y) Mx) h,(y) + M-x) h,‘(y) h(x) h;(y)) dx 4 Uk,r (29) 

1 -1 

where primed quantities refer to differentiation and repeated indices imply summa- 
tion. We obtain similar terms for In VW, .Vv dQ. Discretization of the term 
ia aw,/dxp dL? from (28) for one test function hi(x) h,(y) results in 

1 

i’ i’ 
1 

h;(x) hi(~) LAX) L,(Y) dx alyp,,. (30) 
I -1 

For the other pressure term and the continuity terms we obtain terms similar to 
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(30). Discretization of the forcing function term ~Rfr~+~. dQ from (28) for one test 
function 11, (x) h, ( y ) results in 

I 
s i ’ h;(x) h,(y) h(x) h,(y) dx 4fk (31) 

-I -I 

and we obtain similar results for the y-component of the forcing function term. 
To evaluate the integrals in (29)-(31) we use Gauss-Lobatto quadrature. The 

quadrature points x, are the roots of (1 -x2) L;(x), and the weights are [7] 

2 
o1 = N(N+ 1)[L,V(.x,)]2’ 

i = 0, . . . . N. (32) 

For future discussion, we define the inner product (Gauss-Lobatto quadrature) 

(42 Il/)GL= 2 5 #tdyi3 Yj) Il/txi, Yi) oz"J. (33) 
r=O /=o 

With this quadrature, (29) becomes 

where 

and 

Term (30) becomes 

where 

and 

A,,, = 2 ~,Ux,) K,k,) 
q=O 

Bm,, = w,, ~,v,, . 

Cjk, Pkl> 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Term (31) becomes 

(41) 
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hiik, = B, B,. (42) 

The derivatives h,;(xi) are given by [16] 

(x,1 = i 

L&i) 

LN(Xj)(Xi - xj) 

0 

' N(N+l) 

/ 

- 
4 

N(N+ 1) 
‘5 4 

i#j 

i=j#O,N 

i=,j=O 

i=,j= N. 

Finally, the matrix equations corresponding to x-momentum, y-momentum, and 
continuity become 

A"ijklUkl - 2;ijkl Pkl = Bijklf;p, (43) 

ai,klUkl - c,ik Pkl = Bt~kl.f\,k~ (44) 

- G,,,Uk, - Ck),~k, = 0 (45) 

(formulation 9, denoted by 0). We can also write these equations as 

Aui - C;p = Bfi 

-c,u, = 0. 
(46) 

Here, A is constructed from elements Jrik,, C, is constructed from elements cklrj, 
and C, is constructed from elements C,k,j (subscripts i= 1, 2 represent x, y com- 
ponents), T stands for transpose (where, for instance, the klijth entry of Cf is cijk(), 
and B is constructed from elements Bjik,. 

At this point it should be noted that.Gauss-Lobatto quadrature is exact for poly- 
nomials up to degree 2N - 1 [7]. Therefore, the integration of the pressure and 
continuity terms from (26) and (28) is exact (since the polynomials are at most of 
degree 2N - 2; see (30)). The integration of the remaining terms, however, is inexact 
(since the polynomials are at most of degree 2N; see (29) and (31)). 

The main difference between the method described above and the method advan- 
ced in [9, 161 is in the form of the pressure approximation. In [9, 161 the more 
typical Lagrangian interpolants for pressure are used, based on the roots a, of the 
(N - 1) th Legendre polynomial 

Iv ~2 N-2 

P= c c PnJM L(Y)> (47) 
rz=O m=O 



N=4 

Formulation No. 1 

p = i: 2 P”“J,(Z)Trn(Y) 
“X0 m=o 

[3 = velocities specified, continuity enforced 
0 = both momentum equations 
and continuity enforced 

Formulation No. 7. 

0 = velocities specified. 
normal momentum equation enforced 
0 = bath momentum equat,ons and 
cantinuitv enforced 

Formulation No. 3 

0 = velocities specified 
0 = both momentum equations and 
continuity enforced 

Formulation No. 7 

R N 

P = c ~P""mWdY) 
"SO "I=0 

0 = velocities specified, both momentum 
equations and continuity enforced 
0 = both momentum equations and 
continuity enforced 

Formulation No. 4. N = 4 

N-2 N--l 

"= c cu"m T"(z)T"z(Y)(l - z2)(1 - Y') 

0 = continuity enforced 
0 = z-momentum equation enforced 
0 = y-momentum pquatm enforced 

FIG. 1. Grids for formulations 1-7, 9, 10 (formulation 8 is similar to formulation 3 with Legendre 
polynomials replacing Chebyshev polynomials). 

41 
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Formulation No. 5, N = 4 Formulation No. 6. N = 4, M = 6 

N N 

u=cc U"?"T"(Z)Trn(Y) 

N-l N--l 

P = c c Pnm~n(~)~m(Y) 
“CO “,=I) 

0 = velocitm specified 
0 = both momentum equations enforced 
0 = continuity enforced 

P = 2 f: pnmT”(z)Tm(y) 

“CO “I=0 

0 = velocities specified 
0 = both momentum rquations and 
continuity enforced 

A A A 

\ 

Formulation No. 9, N = 5 Formulation No. 10, N = 5 

u,,k,(r)km(Y) 

N-Z N-2 Y-J N--i 

p=CC P”rnL(~iLrn(Y) P=CC p,~,i~.,(~L(y) 
n=o m=o n=o m=” 

0 = velocities definpd 0 = velocities defined 

0 = pressure defined 

FIG. l-Continued 



NONSTAGGERED SPECTRAL GRIDS 43 

where 

(48 1 

Equation (48) is derived in a manner similar to the derivation of (24). The 
unknowns plln, in (47) are the values of pressure on the Gauss-Legendre grid points 
(f,, > .i;,,) defined below. The test function q is given similarly, 

Y = h”,,(-4 knb% O<n,mdN-2, (49 1 

excluding one particular test function z,,(x) h,,,(y) corresponding to the pressure 
specified at point (x,,, y,,,). We now define a GausssLegendre quadrature based on 
the roots Rj of the (N- 1)th Legendre polynomial (the roots are not known in 
closed form): 

IV ~ 2 .Y 2 
($3 i)Ci = C C dta,3 .Tj) $ta,3 j,) PIP,. (50) 

,=O j= 0 

The weights are [7] 

2 

pJ = (1 -a:)[L;P l(.?i)]” 
i = 0, . . . . N - 2. 

The discrete problem then becomes 

(VW VW),, - (V. w> PIG = (w, fhx. 

-(q,V.w),=O 

(51) 

(52) 

(formulation 10, denoted by 0). We compare this with our formulation ( 3 ): 

(Vu, VW),, - 07. w, P)GL = (w, fk;, 

- (q, v w)GL = 0. 
(53) 

The difference between the two methods lies in the pressure approximation and 
type of quadrature for the pressure and continuity terms. Note that the pressure 
and continuity terms in (52) involve inexact quadratures. The Gauss-Legendre 
quadrature is exact for polynomials up to order 2N- 3, while (52) contains polyno- 
mials of degree 2N - 2. The operation count for construction of the matrix elements 
is slightly higher for (53) due to the terms C,,,,, from (40); however, the number of 
operations to set up the matrices for both methods is 0(N4), compared to O(N’) 
for direct solution of the algebraic system. 

In our method (53) we remove the constant pressure mode by setting poo = 0,. 
For the method described by (52) we set the pressure equal to zero at one point 
on the Gauss-Legendre grid. Figure 1 shows the grids and approximations for all 
the formulations. 
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3. CORNER SINGULARITIES 

The presence of corner singularities destroys the accuracy of spectral methods. To 
restore the accuracy, we use a method that “subtracts” the singularity [IS]. We 
consider the driven cavity problem where inertial effects are neglected (Reynolds 
number equal to zero), which is defined by the Stokes equations (3) and (4) 
- 1 Gx, y d 1, where f = 0. The boundary conditions are u(x, 1) = - 1; all other 
boundary velocities are equal to zero. At the top corners (x, ~1) = (- 1, 1) and 
( 1, 1 ), u is multivalued, resulting in a singular solution. 

We decompose each of our variables into a computational and singular solution: 

u = u, + u, 

u = u, + u, 

P = PC + PS. 

(54) 

The singular solution for viscous flow in the upper right corner with one moving 
wall is [ 1] (see Fig. 2) 

as,=&74 C(1 -x2/4) cos 8 + (n/2) 8 cos 8 + (n/2) sin f3 - 0 sin 01 

us,=& [(-7r2/4) sin 0 + (7r/2) 8 sin 0 + 8 cos Q] 

2 cos 8 -t n sin (3 
psi= (l-X2/4)r +‘, 

” = -1 
0, 1) 

e 
r J 

Y 

\:--II-= 

L X 

(55) 

(-1, -1) 
FIG. 2. Coordinate system for driven cavity 
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where C is a constant of integration. We do not take advantage of the symmetries 
of this problem; therefore we must add the singular solutions for the upper left 
corner (usa, v,?, and p,,) to the solutions given above to obtain 

u,, + u,, = u, (56) 

and likewise for u, and ps. Substituting (54) into the governing equations (3) and 
(4) and recognizing that (56) is a solution to (3) and (4), we obtain the computa- 
tional problem 

v2u, - vp, = 0 

v. u, = 0, 
(57) 

with boundary conditions u,(x, l)= - 1 -u,(x, l), v,(x, l)= -ti,(x, l), and 
U, = -us, v, = -v, elsewhere on the boundary. Note that computationally we must 
specify only one u value in the upper corners where analytically the velocity is mul- 
tivalued. It does not matter what value we choose for u in the upper corners, as 
long as we assign the corresponding value to the singular form U, (since U, can take 
on any value in the upper corners, being only dependent on 0, we must assign it 
some value prior to adding it to the computational solution u,). We set the 
constant pressure mode equal to zero for our formulation, and for the method 
described by (52), we set pc = -ps at a point in the flow. 

We can solve (57) using any of the techniques described previously (although 
implementation of formulation 4 would be difficult due to the inhomogeneous 
boundary conditions). 

4. RESULTS AND COMPARISONS 

We solve three test problems using the formulations in Section 2: a problem with 
an exact solution, a problem with homogeneous boundary conditions, and 
the driven cavity problem. The domain for all problems is - 1 d x, y < 1. In the 
following comparisons, the RMS error is calculated on a 31 x 31 uniform grid, 
including the boundaries. The solutions are compared to an “exact” solution (which 
in some cases corresponds to one of the formulations described in Section 2 with a 
high truncation). The velocity errors are the combined RMS errors for both u and 
v. Note that formulations resulting in singular matrices are solved using standard 
matrix solvers (solutions are only obtained because roundoff error in the matrix 
decomposition process results in no pivots exactly equal to zero). 

Formulation with exact solution. First, we solve (3) and (4) with 

f = (2 + 71 cos 7rx sin 7cy, 71 sin 71-x cos 71~) 

and the boundary conditions u = (1 - y2, 0). This problem, suggested by Ronquist 
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in [ 161, has the exact solution u = (1 - y2, 0) and p = sin 7tx sin ny. Figures 3 and 
4 show the convergence of the velocities and pressure for the formulations described 
in Section 2 to the exact solution as a function of the number of degrees of freedom 
for one velocity component in one direction (in other words, N + 1). (The fully 
staggered formulation is not shown because it requires homogeneous boundary 
conditions.) Several comments are in order: 

1. The overdetermined collocation formulation ( 0 ) converges fastest. The 
weak formulation using Lagrangian interpolants for pressure (0) converges 
slowest. 

2. All formulations show a stepwise convergence where the increase in 
accuracy in going from odd N to even N is less than the increase in accuracy in 
going from even N to odd N. The exact solution for velocity is symmetric in x and 
.Y, and the exact solution for pressure is antisymmetric in both directions. We 
suspect that the pressure computation dominates the solution accuracy so that the 
addition of an even basis function does not significantly increase the solution 
accuracy. This conjecture is substantiated by the driven cavity results where there 
are no symmetries in the lj-direction and the solutions converge with less of a 
stepwise behavior. 

lo+ c 

1o-3 F 

1o-4 E 

L 
P lo+ c 
b 

2 lo+ : 

1 o-' 

s 
x 

4 5 6 7 8 9 10 11 12 13 14 15 

N+l 

FIG. 3. Problem with exact solution-velocity error 
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1 o-2 

1o-3 

10 
-10 

4 5 6 7 8 9 10 11 12 13 14 15 
N+l 

FIG. 4. Problem with exact solution-pressure error. 

3. As mentioned in Section 2.1, the formulation where continuity is enforced 
on the boundary (V ) leads to singular matrices. The pressure solution is therefore 
on the order of the inverse of machine accuracy ( 10+15), but the velocity solution 
is accurate (Bernardi, Canuto, and Maday [S] show that the existence of spurious 
pressure modes does not pollute the velocity solution). 

4. The semi-staggered grid formulation (A ) also results in singular matrices, 
but the pressure solution is accurate to about 10-l. This accuracy, however, is far 
poorer than that of the other methods. 

5. The most oscillatory convergence behavior is given by the formulation 
where the normal momentum equation is enforced on the boundary ( x ). 

6. The most linear convergence (i.e., the smallest fluctuations about the best- 
fit straight line on a semi-log plot as N increases) is given by the method where the 
system is overdetermined by enforcing the continuity and x- and y-momentum 
equations on the boundary (+ ) and by the weak formulation using Lagrangian 
interpolants for pressure ( 0 ). 

Homogeneous boundary conditions. The second test problem is one with 
homogeneous boundary conditions. Equations (3) and (4) are solved with f= 
(0, -x). The solution for u is symmetric in x and antisymmetric in I’, the solution 

58lr94/1-4 
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FIG. 5. Problem with homogeneous boundary conditions-velocity error. 
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FIG. 6. Problem with homogeneous boundary conditions-pressure error. 
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for v is antisymmetric in x and symmetric in y, and the solution for pressure is 
antisymmetric in x and 2’. For this problem, all formulations are evaluated against 
the solution from the fully staggered formulation (which satisfies the boundary 
conditions exactly) at IV= 20. The RMS difference between results for the fully 
staggered formulation for N = 18 and N = 20 is 2.15 x 10PR for velocity and 
7.69 x 10 ’ for pressure. The convergence is shown in Fig. 5 and 6, and we note 
several observations: 

1. The stepwise convergence behavior of the different methods is less con- 
spicuous than for the case with the exact solution, except that the fully staggered 
method ( n ) oscillates from best to worst. 

2. The method with continuity applied on the boundary (0, singular system) 
gives the worst results. 

3. Again, the semi-staggered formulation (/I ) pressure solution is accurate to 
about 10 ~~ *, despite the singular matrix. This accuracy is far poorer than that of the 
other methods. 

Driaen cavity. The third test problem is Stokes flow in a driven cavity. The cor- 
ner singularities are treated as described in Section 3. For this problem, all formula- 
tions (except the fully staggered formulation n , which does not readily admit 

lo-' 1 I I I I I I 

4 5 6 7 8 9 10 
N+l 

- 

0 

I I I 

11 12 13 14 

FIG. 7. Driven cavity-velocity error. 
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inhomogeneous boundary conditions) are compared to an “exact” solution from 
the formulation where the system is determined by enforcing the normal momen- 
tum equation on the boundary ( x ). We choose this formulation (with N= 19) for 
our “exact” solution because is the formulation with a determined system which 
gives the best convergence (for odd N) for the test problem with the exact solution. 
The overdetermined formulations gave better convergence (in the RMS sense) for 
the same test problem, but they do not satisfy the boundary conditions as well. The 
RMS difference between results for the formulation where the normal momentum 
equation is enforced on the boundary for N = 17 and N = 19 is 1.21 x 10 8 for 
velocity and 1.06 x 10m5 for pressure. 

The convergence is shown in Figs. 7 and 8. Table II lists the values of velocity 
and pressure for the “exact” solution at various locations in the cavity. Note that 
the pressure is singular in the upper corners, and hence these two points are 
avoided in the computation of RMS pressure error. We note the following: 

1. The accuracy of the different methods varies less than for the case with the 
exact solution, and the convergence for all methods is nearly monotonic (except for 
pressure for the semi-staggered formulation, A ). 

2. The semi-staggered formulation (A ) gave O( lo- ‘) pressure error for odd 
N and 0 (machine roundoff) i error for even N. 

10-l : 

E 1o-2 : 
P) 

0 
B 

1o-3 : 

1o-4 : 

4 5 6 7 8 9 10 11 12 13 14 
N+l 

FIG. 8. Driven cavity-pressure error. 
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TABLE I1 

“Exact” Solution to the Driven Cavity with Re = 0 

.a 0.0000000 

.6 0.0000000 

.4 0.0000000 

.2 0.0000000 
0 0.0000000 

-.2 0.0000000 

-.4 0.0000000 

-.6 0.0000000 

-.8 0.0000000 

-1 0.0000000 

Y/X 

.8 

.6 

.4 

-.2 

-.4 

-.6 

-.8 

y/x 
1 

.8 

.6 

.4 

.2 

0 

-.2 

-.4 

-.6 

-.8 

-1 
-1 .ooooooo 

-1 

0.0000000 

0.0000000 
0.0000000 

0.0000000 
0.0000000 

0.0000000 

0.0000000 
0.0000000 

0.0000000 

0.0000000 

0.0000000 

8.9486277 
3.4836682 

1.6264834 

0.7385006 

0.2844696 

0.0707722 

0.0040980 

0.0329371 

0.1174415 
0.1681224 

.8 .6 .4 .2 0 

-1.0000000 -1 .ooooooo -1.0000000 -1.0000000 -1.0000000 

0.0387091 -0.1941371 -0.3581729 -0.4409777 -0.4659723 

0.0777508 0.0720573 -0.0047757 -0.0675273 -0.0898410 

0.0579981 0.1216621 0.1340484 0.1230553 0.1164180 

0.0433758 0.1162892 0.1673256 0.1908748 0.1970266 

0.0328053 0.0977599 0.1566186 0.1931996 0.2051917 

0.0245499 0.0771044 0.1302338 0.1669410 0.1797918 

0.0177414 0.0574571 0.1001258 0.1312854 0.1425564 

0.0115595 0.0388143 0.0698032 0.0934047 0.1021317 

0.0050785 0.0196663 0.0378941 0.0523472 0.0577765 

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

X-velocity-symmetric in z 

.8 

0.0000000 

-0.3372808 
-0.3573925 

-0.2775081 
-0.1997354 

-0.1356660 

-0.0854321 
-0.0475987 

-0.0209111 

-0.0050363 

0.0000000 

.6 

0.0000000 

-0.1603051 
-0.3016425 

-0.3064999 
-0.2516495 

-0.1841155 

-0.1221699 
-0.0717330 

-0.0341098 

-0.0095694 

0.0000000 

.4 .2 0 

0.0000000 0.0000000 0.0000000 

-0.0746074 -0.0304259 0.0000000 

-0.1809661 -0.0821167 0.0000000 

-0.2209680 -0.1104230 0.0000000 

-0.2028153 -0.1085414 0.0000000 

-0.1586910 -0.0888056 0.0000000 

-0.1100791 -0.0634484 0.0000000 

-0.0669863 -0.0394511 0.0000000 

-0.0330275 -0.0197929 0.0000000 

-0.0096214 -0.0058372 0.0000000 

0.0000000 0.0000000 0.0000000 

Y-velocity-antisymmetric in z 

.8 .6 .4 .2 0 

5.1481999 1.8643627 0.8425649 0.3431065 0.0000000 
7.0477570 3.2223647 1.5174802 0.6246027 0.0000000 
3.8638592 2.6560704 1.5111069 0.6742606 0.0000000 

2.0688288 1.7557603 1.1648138 0.5646678 0.0000000 

1.1053392 1.0714049 0.7904395 0.4088965 0.0000000 

0.5743197 0.6276939 0.5019346 0.2727323 0.0000000 

0.2926206 0.3653628 0.3131434 0.1769433 0.0000000 
0.1659230 0.2307103 0.2083681 0.1212649 0.0000000 

0.1385820 0.1853848 0.1697231 0.1002944 0.0000000 

0.1693917 0.2051417 0.1873981 0.1115402 0.0000000 
0.2179560 0.2849620 0.2677581 0.1606348 0.0000000 

Pressure-antisymmetric in z 

3. The pseudospectral formulation where the order of the pressure 
approximation is two less than that of velocity gives slightly poorer results when we 
use a Legendre expansion (*), rather than a Chebyshev expansion ( l ). 

Figure 9 shows how the velocity and pressure convergence to the “exact” solution 
with and without the singular function separated from the computational solution. 
We make these comparisons using the weak formulation method with pressure 
approximated by a Legendre expansion (formulation 9). The subtraction of the 
singularity greatly improves the accuracy of the solution. 
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FIG. 9. Velocity and pressure error for driven cavity problem with and without special treatment for 
strongest corner singularities: J without spectial treatment; + with special treatment. 
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FIG. 10. Multi-element domain (shown with N = 5) 
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We now present some results for the driven cavity problem using the multi- 
element domain shown in Fig. 10. We use the weak formulations in our multi- 
element approach, following the work of Maday and Patera [9] and Ronquist 
[ 161. Communication between elements is established through the conventional 
finite element direct stiffness summation approach, which matches velocities at the 
nodal values. Maday and Patera [9] show that velocity gradients are weakly 
continuous at element interfaces. The domain is divided into 12 elements, four of 
which are not square. We choose this decomposition to show the potential of the 
weak formulations to handle more complicated geometries and to observe how the 
decomposition isolates the upper corner singularities. Figures 11 and 12 show the 
convergence of the two weak formulations ( 0 and Cl) with the number of degrees 
of freedom N + 1 in each element using the special treatment of the upper corner 
singularities as described in Section 3. Our formulation ( 2. ) gives slightly better 
accuracy than the weak formulation with Lagrangian interpolants for pressure ( El ). 
We suspect this improvement is due to our exact quadrature of the continuity terms 
(see Section 2.2). Figure 13 shows how the special treatment of the singularities 
affects the accuracy of formulation 9. Accuracy is improved by a factor of a 
hundred or more. 

Here we briefly address the domain decomposition approach for isolation of cor- 
ner singularities where singular functions are not subtracted. Figure 14 shows how 

4 5 6 7 
N+l 

8 

FIG. 11. Multi-element domaindriven cavity problem-velocity error. 
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without special treatment for strongest corner singularities: 0 without special treatment; + with special 
treatment. 

54 



NONSTAGGERED SPECTRAL GRIDS 55 

Decomposition 

FIG. 14. Velocity and pressure errors for driven cavity problem for different domain decompositions. 
N = 6 in each element: 0 pressure error for entire uniform grid; 1 pressure error excluding top near- 
corner grid points; + velocity error. 

velocity and pressure errors vary as the domain decomposition is changed (using 
our formulation 0, number 9). The truncation is N= 6 in each direction for each 
element for all the decompositions shown. As expected, the velocity solutions 
improve as the number of elements increases. Also, making the upper corner 
elements smaller further improves the solutions. The pressure error convergence, 
however, is not remarkable when the RMS error is calculated using all the uniform 
grid points (denoted by 0 in the figure). The magnitude of the error is governed 
by the pressures on the uniform grid in the vicinity of the upper corners, which are 
typically 0( 10). Since the polynomial expansion has the most difficulty resolving 
the solution in the upper corners, and since this error dominates the RMS calcula- 
tion, the plotted pressure errors show particularly poor convergence. However, if 
we neglect a number of points in the vicinity of the upper corners for the error 
calculation we find that convergence is improved. The symbol 0 denotes the 
pressure error when we neglect a square region y > 0.734, 1x1 > 0.734 in each of the 
top corners. These results demonstrate, as expected, that domain decomposition 
can be viable alternative for isolation of corner singularities. However, a single 
element domain where the singular functions are subtracted is preferable to solely 
a domain decomposition approach. 
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5. COMPUTATIONAL COMPLEXITY 

The solution times for the weak formulations are much shorter than for the 
pseudospectral methods, because the weak formulations can use a symmetric matrix 
solver while the pseudospectral methods cannot. Gaussian elimination routines 
were exclusively used in this study. To indicate the relative solution times for the 
driven cavity problem, we plot in Fig. 15 the RMS velocity error versus total matrix 
size (rows x columns). The abscissa values for the weak formulations are shown as 
the total matrix size divided by two, since the symmetric matrix solver takes 
approximately half the time of a non-symmetric matrix Gaussian elimination 
routine. For any given matrix size it is seen that the single-element weak formula- 
tions ( 0 and 0 ) provide much better accuracy than any of the pseudospectral 
methods. We also plot in Fig. 1.5 the multi-element results for formulation 9 (we 
distinguish this from the single-element formulation by the symbol A). All of the 
single-element formulations are vastly more accurate than the multi-element for- 
mulation for a given matrix size (sparsity of the multi-element formulation is not 
considered). The convergence rate of the multi-element formulation (A) also 
appears slower than that of the single-element weak formulations ( rl and n ). For 
the results shown in Fig. 15 the singularities are treated as described in Section 3. 

x 

. 

lo-’ ’ ’ I ’ “1”’ I ’ “‘1”’ ’ I I”“” ’ ’ ‘I”’ 
102 l$ 10” lo5 lo6 

Total size of matrix 

FIG. 15. Velocity error for driven cavity problem versus size of matrix-all formulations on single- 
element domain, except A: formulation 9 on multi-element domain. 



NONSTAGGERED SPECTRALGRIDS 57 

The number of equations for these two-dimensional Stokes flow problems is 
Qz3KN2, where K is the number of elements, Gaussian elimination provides a 
solution in O(Q’) operations. For large N or K, Gaussian elimination becomes 
impractical. Iterative solutions of the linear systems, involving matrixPvector multi- 
plications of O(N3) operations per element, are necessary for problems with higher 
truncation or larger numbers of elements. 

Although the pseudospectral method is relatively easy to formulate and program, 
both weak formulations have the advantage that the matrices A and C from (46) 
are positive-definite. Ronquist [16] describes how this feature can be used in the 
iterative solution of large systems. 

6. CONCLUSIONS 

We have shown via several test problems that staggered grids are not necessary 
to eliminate spurious pressure modes in spectral methods where the Stokes equa- 
tions are solved directly. The matrix that results from discretization in the 
pseudospectral method can be made nonsingular in a variety of ways, including 
application of the normal momentum equation on the boundary, approximation of 
pressure with basis functions of order two less than those for velocity, and over- 
determination. The weak formulation we present avoids the use of a staggered grid 
and provides accurate quadrature, while maintaining efficiency. While our discus- 
sion focuses on rectilinear single-element problems, of particular interest in future 
work will be the extension of our weak formulation to non-rectilinear multi-element 
constructions. We show that separation of the singular and computational solutions 
for problems with strong corner singularities restores the accuracy of spectral 
methods. For solution of Stokes flow in a square domain and for a given truncation 
N, this special treatment of corner singularities is preferable to a domain decom- 
position approach, both in terms of accuracy and computational speed. 
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