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We compute solitary waves which solve Au _y2 U --(U +yu2)/C = 0 where c is the phase speed in the x direction and y = 0 
is the equator. This equation is a heuristic model for Rossby waves on the "equatorial beta-plane" in geophysical fluid 
dynamics. For positive c only, there are one-signed solutions ("monopole vortices") which are centered in the middle latitudes. 
When c c [-oG -1/3]  or c > 0, there are dipoles which have matching vortices of opposite sign in each hemisphere. A third 
class of solutions is composed of equator-spanning monopoles that are unsymmetric in y. In addition to these families of 
strict solitary waves, there are also quadrapole vortices which are "weakly non-local solitons" in the sense that they almost 
meet the usual criterion for solitary waves except for a weak--very weak--radiation to infinity. Orthogonal rational Chebyshev 
functions and Newton's iteration are used to compute numerical solutions, but four analytic approximations are also derived. 
Although the equation is only a crude model of geophysical waves, its rich diversity offers a good education in solitary waves 
in two space dimensions. 

I. Introduction 

In  the  A p p e n d i x ,  we  d e r i v e  

Uxx q- Uyy -- y2u  -- U/  c - -  y u 2 /  c = 0 

" A E W  e q u a t i o n "  (1.1) 

w h e r e  c is t he  p h a s e  speed .  (The  waves  p r o p a g a t e  

pa ra l l e l  to t he  x -ax i s . )  S ince  (1.1) is an  e q u a t o r i a l  

w a v e  e q u a t i o n  tha t  i n c o r p o r a t e s  s o m e  ageo-  

s t r o p h i c  effects ,  we  h a v e  d u b b e d  (1.1) the  " A g e o -  

s t r o p h i c  E q u a t o r i a l  W a v e "  e q u a t i o n  o r  " A E W "  

for  shor t .  ~ (I t h a n k  the  r e v i e w e r  fo r  sugges t ing  this  

label . )  In  t he  rest  o f  th is  a r t ic le ,  we will  d e s c r i b e  

ef fec t ive  n u m e r i c a l  a n d  ana ly t i ca l  m e t h o d s  fo r  

c o m p u t i n g  its so l i t on  so lu t i ons ,  i.e., t hose  w a v e s  

tha t  sa t is fy  the  b o u n d a r y  c o n d i t i o n  

u ( x , y ) ~ O  as ]xZ+y2 l - - ,  ~ (1.2) 

Note that in the review [1], this same equation is labelled 
the "EMR" equation because it is an equatorial version of 
models discussed by Malanotte-Rizzoli [2]. 

T h e  A E W  e q u a t i o n  has  s o m e  l im i t a t i ons  as a 

m o d e l  w h i c h  are  e x p l a i n e d  in t he  A p p e n d i x .  T h e  

n o n l i n e a r  s h a l l o w  w a t e r  w a v e  e q u a t i o n s  w o u l d  be  

a be t t e r  m o d e l .  H o w e v e r ,  t hese  are  a set o f  t h ree  

e q u a t i o n s  in th ree  u n k n o w n s  ( r a the r  t h a n  a s ing le  

e q u a t i o n  l ike (1.1)) a n d  h a v e  ve ry  c o m p l i c a t e d  

phys ics .  C o n s e q u e n t l y ,  o n l y  B o y d  [3, 4] a n d  M a r -  

shal l  a n d  B o y d  [5] h a v e  c o m p u t e d  n o n l i n e a r  w a v e s  

fo r  the  s h a l l o w  w a t e r  w a v e  e q u a t i o n s ,  a n d  t h e n  

o n l y  us ing  p e r t u r b a t i o n  theory .  T h e  r ev i ews  by  

M a l a n o t t e - R i z z o l i  [2],  F l ie r l  [6], Y a n o  a n d  

T s u j i m u r a  [7],  a n d  M c W i l l i a m s  [8] a n d  the  m a n y  

ar t ic les  in N i h o u l  a n d  J a m a r t  [9] c a t a l o g u e  m o r e  

t h a n  one  h u n d r e d  p a p e r s  tha t  h a v e  c o m p u t e d  n o n -  

l i nea r  p l a n e t a r y  w a v e s  u s ing  v a r i o u s  a p p r o x i m a -  

t ions  s imi l a r  to (1.1). 

The  A E W  eq.  (1.1) is no  less l imi t ed  t h a n  these  

o t h e r  a p p r o x i m a t i o n s ,  b u t  it does  i n t r o d u c e  n e w  

ing red i en t s :  exp l i c i t  v a r i a t i o n s  in the  C o r i o l i s  pa r a -  

m e t e r  a n d  e q u a t o r - s p a n n i n g  so l i t a ry  waves .  Thus ,  
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this article is a logical extension to previous work 
on geophysical solitons. 

In Section 2, we discuss the one-signed or 

"monopole'" solutions in what a geophysicist 
would call an "/ '-plane" approximation: replacing 

the variable coefficients in (1.1) by constants. In 

this limit, both the phase speed c and the latitude 

of the center of the monopole, y. ,  may be chosen 

arbitrarily and independently. In Section 3, we 

apply perturbation theory to compute the first 

order effect of variable y, and find that a bounded 
solution is possible only when there is an eigenrela- 

tion between Yo and c. 
In Section 4, a different perturbation method is 

used to derive analytical approximations to dipolar 

vortices in the Korteweg-deVries-like limit c ~  
-1 /3 .  Multipole vortices are also predicted by the 

perturbation theory, but as explained in Section 5, 

the KdV-type theory misses an important compli- 

cation. This is revealed by a "'far field" analysis, 

that is, examining the equation as Ixl--, oc so that 

the wave amplitude decays to very small values 
and the dynamics becomes linear. One finds that 
the multipoles leak energy to x = :c~c~ through radi- 
ation in the n = 1 linear wave mode. However, the 

amplitude of this radiation is exponentially small 

in the amplitude of the multipole vortex, so it is 

still meaningful to speak of solitons in an approxi- 

mate sense. 
In the limit Icl--, oo (Section 6), the dipole struc- 

ture becomes independent of c. The limits c--, ::c 
and c -~ oc are identical except for a change in sign 

of u(x, y). Thus, both branches of the dipole (c 

[ - o c - 1 / 3 ]  and c c [ 0 ,  co]) are connected to form 

a single, continuous family of solutions. 

The final analytic approximation for the dipole 

is derived in Section 7. In the limit c--,0+, the 
dipole becomes two widely separated, weakly 
interacting monopoles of the sort described in Sec- 

tions 3 and 4, one monopole in each hemisphere. 
The dipole is always antisymmetric with respect 

to v = O .  

Section 8 presents numerical results for dipoles 
which fill the gaps between the three analytical 
approximations or limits discussed earlier. Some 

dipolar vortex solitons 

readers may prefer to read this dipole summary 

section first and then backtrack to the special cases 

described in Sections 4, 6 and 7. Section 8 has been 

written to be self-contained to facilitate this option. 

Section 9 describes our numerical methods. The 

use of rational Chebyshev functions [10] makes it 
possible to numerically compute the solitary waves 

on a doubly infinite domain without the use of 

artificial boundaries. We also use the numerical 

algorithm to generate an analytic approximation 

to the monopole which is the ratio of two cubic 

polynomials; the accuracy is less than the thickness 

of the curve. 
Section 10 discusses solitary waves that are 

almost symmetric about the equator, y =0.  (In 

Section 4, we prove that solutions that rigorously 

satisfy the symmetry condition u(x, y)= u(x , -y)  
for all x and y are impossible.) Perturbation theory 

shows that these unsymmetric monopoles have the 
x-structure of solitons of the modified Korteweg- 
deVries equation. 

The final section is a summary and discussion 

of open problems. 

A terminological note: we shall use "soliton'" 

and "solitary wave" as synonyms. Some authors 

reserve "soliton'" for solitary waves that collide 
elastically, such as the solitons of the Korteweg- 

deVries equation. However, it is now known that 
this property is very special, limited to the mostly 

one-dimensional equations that can be solved by 

the inverse scattering method. In this article, 

because we compute only isolated solitons, distinc- 

tions based on properties in solitary wave - solitary 
wave collisions are irrelevant in any event. 

2. Radially symmetric monopoles on the "f-plane" 

When the soliton is centered at some latitude y~, 

which is large in comparison to the radial e-folding 
scale of the wave, it follows that the ),-dependent 
coefficients in the AEW equation will vary by only 
a few percent over the region where the vortex is 
large. It is therefore a legitimate approximation to 
replace y by its mean value, 3,,. Geophysical fluid 



J.P.Boyd / Monopolar and dipolar vortex solitons 2 2 5  

dynamicists call this the "f-plane approximation" 
because the factors of y in (1.1) are really the 
non-dimensional Coriolis pa rame te r f  The result is 

2 u~x + Uy~ - you  - u~ c - yoU2~ C = 0 

"f-plane AEW" (2.1) 

Theorem. The f-plane AEW equation, (2.1), has 
a family of  solutions which are one-signed, i.e., 
are vortex monopoles. These are radially sym- 
metric about the reference latitude yo which 
denotes the center of the vortex. They may be 
written in terms of a single universal function as 

u ( ~  y )  = A W (  Br )  "f-plane monopole"  
(2.2) 

Proof. When (2.2) through (2.5) is substituted 
into (2.1), one may trivially cancel all the factors 
of c and Yo to reduce (2.1) to (2.6). 

The parameter-free function W ( r )  that solves 
(2.6) may be dubbed the "Flierl-Petviashvili 
monopole"  because it was independently dis- 
covered by G. Flierl [11] (ocean solitons) and 
Petviashvili [12] (the Great Red Spot of Jupiter 
and plasma drift waves). By applying the numeri- 
cal methods discussed in a later section, truncating 
the series, and combining terms we obtain the 

approximation 

W ( r )  ~- ( - 2 . 3 8 2 2 -  1.01327rZ + 0.02417r 4) 

/ (1 + [3/4] r e + [3/16] r 4 + [ 1/64] r 6) 

where 

r ~ ( x  2 + [y  --yo]2) 1/2 (2.3) 

A -= (1 + cy~) / yo  (2.4) 

B=--- (1 /  c + y2o) '/2 (2.5) 

and where W ( r )  is the solution of 

A W -  W -  W 2 = O  

"Flierl-Petviashvili monopole"  (2.6) 

where A is the usual Laplacian operator (=02/0r2+ 

(1 / r )O/Or) .  

For independent, arbitrary values of the para- 
meters c and Y0, (2.2) through (2.5) solve the 
f -p lane  AEW equation, (2.1). However, in the next 
section, we show that the perturbation equations 
for the first order effects of the y-dependent 
coefficients of  the exact AEW equation on the 
monopole are solvable only when y o = + l / c  ~/z, 

which simplifies (2.4) and (2.5) to 

A = + 2 c  w2, B = ( 2 / c )  ~/z (2.7) 

where the sign of  A is the sign of yo. Note that 
W ( r )  < 0  for all r so that the northern hemisphere 
monopole is negative while its mirror image for 
y < 0  is everywhere positive. Observe that (2.7) 
implies that all monopoles have pos i t i ve  phase 
speed, e > 0. 

The maximum absolute error is about 0.0105, 
which is 0.44% of the minimum of this negative- 
definite function. For a still more accurate approxi- 
mation, which is needed to compute the corrections 
due to variable y in the next section, one may use 
the coefficients collected in Table 1, which are 
those of the sum 

1o 

W ( r )  ~- ~ a 2 , [ c o s ( 2 n  arccot [ r / 2 ] ) -  1] 
n - -1  

which is accurate to about 1 part in 10 4. 

(2.9) 

3. Monopoles in the variable coefficient AEW: 
Perturbation theory and the eigenrelation 

It is easy to substitute the f-plane monopole into 
the original, unapproximated AEW to correct for 
variable y. Defining 

u = u ° + u l +  • • • (3.1) 

gives the first order perturbation equation 

Au I -- ( 1 /  c + y ~ ) u '  -- (2yo /  c ) u °  u 1 

= (y  - yo){Zyo u° + [ u°]2/c} (3.2) 

By rescaling the spatial coordinates and u °, we can 
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Table 1 

Coefficients of the spectral series for the Flierl-Petviashvili monopole, W(r) 

n 1 2 3 4 
a2, , 1.25538 -0.21751 -0.06430 -0.00551 

reduce  (3.2) to 

Vrr+(3 / r )  Vr-- V - - 2 W ( r ) V  

= W + A W  ~ (3.3) 

where  

A =-- ( 1 / c + y o ) / ( 2 y o )  (3.4) 

u'  = 2 c ( y -  yo) V ( [ 1 / c + y o ] ' / 2  

x [ x 2 +  (y  - yo)2] ' /2) (3.5) 

The p e r t u r b a t i o n  eq. (3.3) looks  harmless ,  but  

for  arbitrary A, it has no b o u n d e d  solut ion.  The 

p r o b l e m  is that  because  its coefficients are  con- 

stant ,  the f - p l a n e  A E W  equa t ion  is translationally 

invariant. It fo l lows tha t  i f  u°(x, y)  is a so lu t ion  to 

(2.1), then  u°(x, y +  6) must  also be a so lu t ion  for  

a rb i t r a ry  cons tan t  6. Fo r  the specia l  case o f  6 < 1, 

u°(x, y +  6) ~- u°(x, y)  

+ 60u°/Oy + 0(62)  (3.6) 

The on ly  way (3.6) may  solve the f - p l a n e  A E W  

equa t ion  for  small  6 is i f  u ° is an eigenfunction of  

the l inear ized  A E W  equa t ion  with zero e igenvalue ,  
0 that  is to say, if  u,. is a non- t r iv ia l  h o m o g e n e o u s  

so lu t ion  o f  (3 .2 ) .  

It is we l l -known  tha t  a se l f -ad jo in t  i n h o m o -  

geneous  differential equation with a non-trivial 
h o m o g e n e o u s  so lu t ion  is so lvab le  if  and  only  if  

the  i n h o m o g e n e o u s  t e rm is o r thogona l  to the  

h o m o g e n e o u s  solut ion .  Unfo r tuna te ly ,  (3.3) is not  

se l f -ad jo in t ,  but  it is easy  to a p p l y  the o r thogona l i t y  
cond i t i on  a s soc ia t ed  with the or ig inal  par t ia l  

d i f ferent ia l  equa t ion .  The  e igenfunc t ion  o f  (3.2) is 

p r o p o r t i o n a l  to 

eo oc (y - Yo) Wr( Br ) /  r (3.7) 

The  cond i t i on  that  the  two-d imens iona l  in tegra l  

o f  (3.7) wi th  the  R.H.S.  o f  (3.2) is zero may  be 

5 6 7 8 9 10 
0.00339 0.00271 0.00139 0.00059 0.00020 0.00003 

s impl i f ied  by ext rac t ing  the non-nega t ive  fac tor  

sin2(0) to give 

I ~' r d r { [  W r ] [ r ( W +  h W2) ] }  = 0 (3.8) 
o 

Mul t ip ly ing  (2.6) by r "~ Wr, in tegra t ing  over  r, sub- 

s t i tut ing the resul t  in (3.8), and  then in tegra t ing  

by par ts  prove  that  A = 1, which is equiva lent  to 

yo= 1/ c '''2 

" M o n o p o l e  e igencondi t ion ' "  (3.9) 

Figure  1 shows both  the  F l i e d -Pe tv i a shv i l i  

m o n o p o l e  and  the r a d i a l l y - d e p e n d e n t  par t  o f  its 

first o r d e r  correct ion.  Table  2 gives the spect ra l  

coefficients o f  V(r).  

Swenson  [ 13 ] der ives  a first o rde r  e igencond i t ion  

s imi lar  to (3.8) when refining Fl ier l ' s  theory  [11] 

o f  quas i -geos t roph ic  so l i t a ry  waves in a weak shear  

flow. In that  mode l ,  however ,  the integral  con ta ins  

only  a s ingle term and  there  is no p a r a m e t e r  to 

10 
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Fig. 1. W(r), the universal shape function for the f-plane 
monopole, is the solid curve. The dashes show rV(r), the 
radially dependent part of the first order correction to W(r) 

due to the variation of the AEW coefficients with y. 
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Table 2 

Coefficients of V(r), the first order correction to the monopole 

227 

n 1 2 3 4 5 6 7 8 9 10 
a2, , -0.0545 -0.1810 0.0516 0.0262 0.0048 -0.0009 -0.0014 -0.0010 -0.0005 -0.0003 

vary so that the integral is zero. In our application, 
the first order theory reduces the set of f -p lane  
monopoles  from what is predicted by the zeroth 
order analysis of  the previous section, but in the 
Flierl-Swenson case, the solitons are entirely elimi- 

nated. 

4. D i p o l e s  in the  s m a l l  a m p l i t u d e ,  K d V - l i k e  l imi t  

As c-~ - 1 / 3 ,  the AEW dipoles have small ampli- 
tude and a very large zonal (x) scale. One may 

systematically apply the singular perturbation 
technique known as the "method of multiple 
scales" as in Boyd [3,4] to derive an analytic 
approximation to this dipoles. Since perturbation 
theory is well understood, we will take a different 
approach here. 

The Hermite functions are a complete 
orthogonal basis set on y ~ [-oo,  oo]. It follows that 
without approximation,  we may write 

oo 

u =  ~ A, (x)qJn(y)  (4.1) 
n = 0  

By using the eigenequation satisfied by the Hermite 
functions, which is 

~ln.yy --y2~b, = --(2n + 1)~, (4.2) 

one may apply Galerkin 's  method to (1.1) using 
the series (4.1) to obtain, also without approxima- 

tion, the infinite set of  equations (n = 0, 1 . . . .  ) 

a ... .  - [ ( 2 n + l ) + l / c ] a ,  

o o  oz~ 

- ( 1 / c ) Y  E akam 
k ,  rn  = 0  

x (0 , ,  yOkq6,)/(~O,, ~,)  = 0 (4.3) 

where (a, b) denotes the inner product of  a (y) with 
b(y) ,  i.e., the unweighted integral from -oo to oo. 

If  we expand the A , ( x )  as Chebyshev series, we 
would obtain a Chebyshev/Hermite  spectral 
method that offers the same exponential conver- 

gence as the double Chebyshev pseudospectral 
method described in Section 9. Unfortunately, 
(4.3) is harder to program, which is why the 

rational Chebyshev method is used in Sections 8 
and 9. However, (4.3) is very useful for theoretical 

purposes as shown by the following. 

T h e o r e m .  The AEW equation has no solutions 
which are symmetric about  y = 0. 

P r o o f .  I f  the sum (4.1) is restricted to even n, 

that is, to basis functions such that Oo(Y) = ~, ( -Y) ,  
then all the inner products in the double sum are 
equal to zero because the factor of  y makes the 
integrand antisymmetric about the origin. The 
resulting uncoupled, linear ordinary differential 
equations have no bounded solutions as may be 
verified by explicitly solving them in terms of 

hyperbolic functions. 
It is always necessary to truncate the set (4.3) 

to a large but finite number  N of equations. In 
general, this truncated set must be solved numeri- 
cally. However, if we make the most drastic poss- 
ible truncation, i.e., retaining just a single Hermite 
function in the basis, then we obtain 

A ....  - [ ( 2 n  + 1)+ 1 /c ]A ,  - l ,  A2,/c = 0 

" l - m o d e  truncation" (4.4) 

where I ,  is the self-interaction coefficient 

In = (t#,, y~b,~b,)/(~b,, qt,) (4.5) 

This single ODE in x may be solved analytically. 

However, this observation is useless unless there 
is a limit in which this drastic truncation gives a 
self-consistent approximation.  
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One such limit arises if the self-interaction of a 

given mode n is resonant while its interaction with 

the other modes is nonresonant. To understand 
this distinction between "resonant" and "nonres- 

onant", pretend that the nonlinear terms are known 

forcing functions, and consider the response of the 
linear terms, that is, 

A .... + [(2n + 1) + 1 /c]A,  =.L (x) (4.6) 

It is easy to formally solve (4.6) via Green's func- 
tion to show that usually A ,  ~ O ( f , ( x ) ) ,  a nonres- 
onant response. However, if 

c ~ - - 1 / ( 2 n + 1 ) - ~ 3  6 ~ 1  

"resonance condition" (4.7) 

then A n - O ( f , / 6 )  so that this one coefficient is 
huge in comparison to the nonlinear interaction 

which is driving it. 

Since (4.7) may be satisfied for only a single 

mode at a t ime-- i f  c ~ - 1 / 3 ,  then (4.7) applies 

only for n = 1--it  follows that at most a single 
mode may be resonant for a given value of c. This 
in turn implies that when c is close to one of the 

resonant values given by (4.7), it is consistent to 
truncate the Galerkin equations to just a single 

mode. The general solution of (4.4) is 

A , ( x )  = a sech2(bx) n odd (4.8) 

where 

a = - ( 6 / I , ) c b  2, 
(4.9) 

b 2= [(2n + 1)+ l / e ] / 4  

but the one-mode truncation that leads to (4.8) 

and (4.9) is consistent only when the resonance 

condition is approximately satisfied. This in turn 

implies that the solitons must have small amplitude 
since a - O ( S )  when S,~I .  The complete lowest 
order approximation is 

u,(x ,  y)  = a sech2(bx)H, (y )  e °5v2, 

odd n (4.10) 

where we have written 0n(Y) as the product of the 
n-th Hermite polynomial with the Gaussian. The 
restriction to odd n is necessary because the self- 

dipolar vortex solitons 

interaction coefficient is identically 0 for all the 

symmetric modes. The n-th Hermite polynomial 

has n zeros, one of which is at y = 0, so the solitary 
wave is a muitipole vortex in the sense that there 

are (n + l) regions of alternating sign along a line 
of constant x. 

Because (4.4) is merely the x-integrated form of 

the Korteweg-deVries (KdV) equation (specialized 

to a steadily translating wave), we shall refer to 

(4.10) and (4.7) as the "small amplitude, KdV-like" 
regime. 

The gravest mode, n = 1, gives a dipole vortex: 

u(x,  y)  is positive in the northern hemisphere (y > 

0) and negative for negative y. For this special 

case, (4.10) becomes 

u(x, y) = 8.276 sech2([3/2]S'/~-x)y 

x exp(-0 .5y z) (4.11 ) 

where ~5 is defined by 

c = - 1 / 3 - 6 ,  t3>~O (4.12) 

For small amplitude and c ~ - 1 / 3 ,  the n = l  

soliton has elliptical contours of constant u which, 

as shown in Fig. 2, are highly elongated in the 
x-direction because the zonal scale of the wave is 
O(6 I/2). The y-scale, in contrast, is always O(1) 

independent of 6. (This mismatch in x and y scales 

is the basis for the perturbation technique used in 

[3] and Section 10, the method of "multiple 

scales".) As the phase speed becomes more and 

more negative, the amplitude increases and the 
zonal scale decreases so that the contours of con- 

stant u become more and more circular. 
Although the one-mode truncation can only be 

strictly justified for c ~ - 1 / 3 ,  the solution (4.8) to 

(4.9) predicts solitons which are positive for y > 0 
for all e ~ [ - o c , - l / 3 ]  and solitary waves of the 
opposite sign for all c > 0. The numerical study 
described below shows that this is precisely what 
happens. The one mode solution also predicts a 

finite minimum zonal scale as c + - c c ,  and this, 
too, is correct. It is intriguing that such a simple- 
minded approximation may be qualitatively correct 
well beyond' its formal region of validity. 
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Fig. 2. Contours of constant u for b = 1/3 for the n = 1 (dipole) solitary wave for c ~  - 1 / 3 .  Positive contours are solid; negative 
contours are dashed. Because of the four-fold symmetry evident in the graph, later figures show only a single quadrant  of the x-y  

plane for a given solution. 

5.  M u l t i p o l e s  f o r  s m a l l  a m p l i t u d e :  w e a k l y  n o n - l o c a l  

s o l i t a r y  w a v e s  

The "far  field" is defined to be the region Ixl ~- 1 

where the soliton centered at x = 0 has decayed to 
such small amplitude that the nonlinear terms in 
the AEW equation may be neglected. In the "far  
field", the Hermite-Galerkin  equations (4.3) sim- 
plify to a set of  uncoupled,  linear ODE's.  

When c satisfies the constraint 

c < - 1 / 3  or c > 0  (5.1) 

all the equations in (4.3) have hyperbolic solutions, 
and it is possible for the soliton to decay exponen- 
tially as Ix[ ~ oo. When the n = 3 mode is resonant, 
however, c ~ - 1 / 7 .  Substituting this into the n = 1 
equation gives 

Al,xx + 4A1 ~ 0 ,  

"far  field" n = 1; c = - 1 / 7  (5.2) 

i.e., the coefficient of  the n = 1 Hermite function 
is oscillatory rather than exponentially decaying as 
N ~ o o .  

The result is that the multipole vortices cannot 
be solitons in the strict sense of  solutions which 

decay exponentially as Ix I ~ oo. Instead, multipoles 
are generalized solitons, members of  a class known 

as "weakly non-local solitary waves". The review 
by Boyd [1] discusses eight such examples. 

A simple analysis explains the precise meaning 
of "weakly"  non-local. When the amplitude a and 
pseudo-wavenumber  b are sufficiently small, the 

resonant component  An(x)~, Am(x) for all m ~ n. 
It follows that for the n =3  soliton, it is good 

approximation for all x to write 

Al.xx + 4A, = A32(~1, y~bs~/,3)/(~b,, ~ )  (5.3) 

Equation (5.3) is a linear, forced ODE. 

The crucial point is that the scale of  the forcing, 
which is O(1/b) ,  is very large in comparison to 
the O(1) length scale of  the homogeneous solutions 
of  (5.3), which vary on a length scale of  O(1). The 

result, as shown by Boyd [14], is that although 
A,(x) is the same order of  magnitude as the forc- 
ing, i.e., O(a2), for small x, the amplitude of  the 
oscillations in the "far  field" Ix] ~- 1 is exponentially 
small in the perturbation parameter  b. This con- 
clusion is true for any R.H.S. in (5.3) provided 
that the forcing varies on a length scale of  O(1/b) .  

For a forcing which is proportional  to 
b 4 sech4(bx), as is (5.3), one may show that in the 



23O 

"far  field" [1] 

J.P.Boyd / Monopolar  and dipolar vortex solitons 

t o  

A l ( x ) ~ [constant] e x p ( - w / b )  

x cos(2[x + phase]),  Ixl 1 

(5.4) 

This implies that when b = 1/10, the amplitude of 
the "far  field" oscillations is only O(10 .4) relative 
to the maximum of the solitary wave! 

Boyd [ 1, 15, 16] describes numerical algorithms 
for computing the non-local soliton, complete with 
its oscillatory "'wings". These articles also explain 
the radiation condition and other technical details 
that justify (5.4). Williams and Wilson [17] have 

investigated equatorial multipole solitons using an 
t ime-dependent  shallow water model initialized 
with the perturbative solution. They find that the 
n = 1 dipole is a classical soliton. In contrast, the 
higher multipoles are long-lived for small ampli- 
tude, but decay through radiative leakage for large 
ampl i tudes-- jus t  as predicted here. 

We omit a discussion of numerical solutions for 
"weakly non-local" AEW quadrupoles because 
such is given in the note by Boyd [18]. 

6. Dipoles in the limit Ic]~oo: the connection 
through infinity 

u~+ u,, - y : u - y u : / c  =0 

"large Ic] AEW equation" (6.1) 

It is trivial to show that the general solution of 
(6.1) is given by the single, universal function 
v( x, y) where 

u(x, y) = cv(x, y) (6.2) 

and v(x, y) is the solution of the parameter-free 
equation 

v,, + v o, - y'-v - y v  2 = 0 (6.3) 

The "far  field" analysis shows that n = 1 solitons 
exist only when c is on either of two intervals: 
c ~ [ - o G - 1 / 3 ]  and c c [ 0 ,  ec]. The gap between 
these intervals would seem to imply two unrelated 

branches of  solutions, but (6.2) gives a different 
perspective. It shows that the solution for c--, -co 
is merely the negative of the solution for c ~ oc. 
Thus, the two branches are a single, continuous 
branch connected through infinity. 

By "infinity" we mean infinite phase speed and 
infinite amplitude. The function v(x, y) which is 
the connection through infinity has O(1) length 
scales, however. As c--, +oG the amplitude of the 
dipole increases without bound, but the structure 
tends to a limiting shape. 

In the limit ]ct-~oo , the term ( - u / c )  in (1.1) 
becomes negligible in comparison t o  (--y2u) 
everywhere except in the neighbourhood of the 
equator. Since the length scale remains 0(1)  
everywhere, it follows that ( - u / c )  is negligible in 
comparison to the Laplacian at all latitudes. 

The magnitude of the nonlinear term is more 
subtle. I f  the amplitude remains 0(1)  as ]C]-~ c~, 
then ( -yu2 /c )  becomes negligible. However,  the 
remaining linear equation has no bounded sol- 
ution. It follows that the magnitude of u(x, y) must 
increase with ]el so that the nonlinear term is com- 
parable with the surviving linear terms in this limit. 
The conclusion is that the AEW equation reduces 

7. Dipoles in the limit of small, positive c: widely 
separated, weakly interacting monopoles 

In Section 3, we showed that the AEW equation 
has monopole  solutions whose e-folding scale is 
O ( l / c  j/2) with centers at Y0 = 1/c w2. It follows that 
the ampli tude of these monopoles  at the equator 
is O(exp[ -1 .414/c ] ) .  It follows that if we place 
two monopoles  of equal magnitude in opposite 
hemispheres, we obtain a dipole with an error 
which is exponentially small in c: 

u(x, y) = 2e'/2{ W([2/c] '/2 

x [ x 2 + ( y -  1/c'/2)2] w2) 
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- W([21c]  '/2 

x Ix2+ (y + 1/cl/2)2]'/2)}, 

0 < c < l  (7.1) 

where W ( r )  is the Flierl-Petviashvili monopole  

defined by (2.6) and illustrated in Fig. 1. Note that 
since the monopole  is of  opposite sign in opposite 
hemispheres, the superposition of two monopoles 
is antisymmetric about y = 0--negat ive for y > 0 
and positive south of  the equator. 

A more systematic analysis begins by multiply- 
ing the AEW equation by c to give 

C[ Uxx "~ l~lyy] -- cy2 u -- U - yu 2 = 0 (7.2) 

The naive approach of  neglecting all the terms 
multiplied by c when c-> 0+ is clearly incorrect 
because this would leave an algebraic rather than 
a differential equation. Instead, one is forced to 
conclude (as verified by (7.1)) that the zonal and 
latitudinal scales are O(c ~/2) in this limit. 

The subtlety that lurks to snare "the unwary is 
that O(c 1/2) is the correct length scale only for the 
derivatives. The undifferentiated terms with 
coefficients proportional  to y or y2 are controlled 

by the second, independent latitudinal scale Yo: 
the distance of  the center of  each of  the two vortices 
from the equator. 

The perturbative analysis of  Section 3 shows that 
Yo ~ 1/c  ~/2 so that this scale increases as c--> 0 even 
though the derivative length scale is doing just the 
opposite. The resulting dipole approximation (7.1) 
is self-consistent. The question remains: Is Y0-  
0 ( 1 /  c ~/2) the only possibility? 

Inspecting (7.2), we see that we cannot neglect 
the nonlinear term because the resulting linear 
equation has no bounded solution. We attempted 
to solve (1.1) with the ( - y 2 u )  term omitted, but 
without success. Numerical solution of  the full, 
unapproximated AEW equation did show that the 
centers of  the two vortices moved farther and 
farther from the equator as c decreased for as far 
as we could follow. Thus, it appears that (7.1) is 
the only dipole in the limit c-> 0. The numerical 
and analytical evidence is, as noted earlier, that 
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all dipolar solutions to the AEW equation form a 
single, continuous branch. 

Figure 3 illustrates the small c limit for c = 1/16. 
As predicted, the dipole consists of  two widely 
separated monopoles.  (Because of the symmetry, 
only the northern hemisphere monopole  is shown; 
the southern hemisphere is simply the mirror image 
of what is shown in Fig. 3.) Both contour plots, 
(a) and (b) shows the vortex is almost radially 
symmetric about its center at y o ~ 4  = 1/C 1/2. The 

Coriolis parameter  ( = y  in our nondimensional 
coordinates) varies only by a few percent across 
the narrow diameter of  the monopole.  Fig. 3(c) 
shows the weak effects of  the variations of  y: the 
northern hemisphere vortex is a little shorter (by 

6.4%) and wider than the monopole  predicted by 
(7.1) and is shifted slightly towards the equator. 
However, the small c double monopole  approxi- 
mation (7.1) is clearly very accurate for this small 
value of c, 0.0625. 

Because the monopole  is so concentrated, this 
case is the most difficult numerical challenge. 
Inspection of the spectral coefficients showed that 

8 basis functions in x were quite sufficient, but 
convergence in y is quite slow. Figure 3 shows that 
40 basis functions in y were adequate. The compu- 
tation with a total of  320 tensor product basis 
functions required about an hour on a Mac II,  
starting from (7.1) as the first guess. The numerical 
methods are discussed further in Section 9 below. 

8. Dipoles: numerical results and summary 

By applying the Newton/pseudospectra l  
method described in the next section, we found 

that the three limits described in earlier sections 
form a single, continuous branch of dipolar solitary 
waves. All dipoles are antisymmetric with respect 
to y = 0 and symmetric with respect to x = 0. 

In the limit c ~ - 1 / 3  (Section 4), the vortices 
are very elongated in the x-direction so that the 
contours of  constant u (x, y) are quasi-ellipses with 
the semimajor axes aligned with the x-axis (Fig. 
2). As c is decreased to larger and larger negative 
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v a l u e s ,  t h e  c o n t o u r s  b e c o m e  m o r e  a n d  m o r e  cir-  

cu l a r .  As  c ~ - o o  ( S e c t i o n  6) ,  u ( x , y ) ~ c v ( x , y )  
w h e r e  v(x, y) s o l v e s  t h e  l i m i t i n g  eq. (6.3) .  F o r  al l  

c c  [ - o o , - 1 / 3 ] ,  u ( x , y ) > O  f o r  all  y > 0 .  

I n  t h e  l i m i t  c~oo,  u ( x , y ) ~ c v ( x , y )  w h e r e  

v(x, y) is t h e  s a m e  l a r g e  Icl u n i v e r s a l  s h a p e  f u n c -  

t i o n  as  f o r  c ~ -oo .  T h e  d i f f e r e n c e  in  t he  s i gn  o f  c, 

h o w e v e r ,  i m p l i e s  a d i f f e r e n c e  in  t h e  s ign  o f  u: f o r  

all  c ~ [0,  ~ ] ,  t h e  s o l i t a r y  w a v e  is negative f o r  pos i -  

t i ve  y. 

T h e  f u n c t i o n  v(x, y) h a s  t w o  m a x i m a  in  a b s o l u t e  

v a l u e  at  y ~ ± 1.4. T h e  o u t e r  c o n t o u r s  a re  e l l i p t i c a l  

w i t h  s e m i m a j o r  axes  a l i g n e d  a l o n g  t h e  x - a x i s ,  b u t  

t h e  i n n e r  c o n t o u r s  a r o u n d  t h e  m a x i m u m  a n d  t h e  

m i n i m u m  a re  q u a s i - c i r c u l a r .  

As  c d e c r e a s e s  ( S e c t i o n  7) ,  t h e  a m p l i t u d e  o f  u 
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monoton ica l ly  decreases to ()--first l inearly with c 

and  then as c ~/2 when c < l .  The vortex centers 

move farther and  farther from the equator  so that 

the nor thern  hemisphere  m i n i m u m  and  southern  

hemisphere  m a x i m u m  occur  at lyl= 1/c '/~. The 

vortices become narrower  and  narrower  as c tends 

to zero so that the so lu t ion  for small c, as predicted 

by Section 7, consists of  two widely separated 

monopo les  of  small  diameter.  The contours  of 

cons tant  u take the form of narrow,  closely spaced 

concentr ic  circles centered on the m a x i m u m  and  

m i n i m u m  of  u(x,y);  the area between the 

monopo les  is mostly empty as they rapidly decay 

below whatever  is the smallest  nonzero contour .  

Figure 4 is a composi te  that  shows one quadran t  

of each of four representat ive cases: c = +1 and  

c--> +oo. Because of the four-fold symmetry,  each 

dipole can be recreated by symmetry from the 

quadran t  i l lustrated. We are forced to omit  the 

l imit ing cases c = - 1 / 3  and  c ~ 0 because the con- 

tours of cons tan t  u extend to infinity in the x- 
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direct ion in the limit c-~ - 1 / 3  while the centers of 

the cons t i tuent  monopoles  diverge to infinity as 

c 9 0+. Nonetheless ,  Fig. 4 does il lustrate the over- 

all, finite ampl i tude  behavior .  

9. Numerical methods: the pseudospectral method 
with rational Chebyshev functions on 
the infinite interval 

To solve the A EW  equa t ion  numerical ly ,  we set 

up a Newton  i teration by writ ing 

~/(i+1) ~ u(i) ~F d(x, y),  < 1 (9.1) 

where the superscript  denotes  the i terat ion num-  

ber. Then  discarding terms that are O(d2), we 

repeatedly solve the linear equation 

dxx + dr,, + [ -1 / c  _ y 2 _  2yu<i)/c]d 

= _,f. (i).. (i). , u x x  7- Uyy m [--1/C--y2]u(i)  

--y[u(O]2/C}, (9.2) 
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Fig. 4. A composite showing the contours of u(x,y) in one quadrant for each of four different cases: c= l (upper right), c--.~ 
(lower right), c-~-oo (lower left), and c =-1  (upper left). Each case may be reconstructed in the three quadrants which are not 

displayed by recalling that u(x, y) is symmetric about x = 0 and antisymrnetric with respect to y = 0. 
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update  u(x ,y )  via (9.1), and repeat until d (x , y )  
is sufficiently small. 

To solve the linear PDE  (9.2), we employed  the 

pseudospectra l  method  as in Boyd [19]. The main 

difference from that earlier article is that we here 

employ a tensor  p roduc t  basis appropr ia te  for x 
[ -oc ,  oo], y c [ -oc ,  oc]: 

M N 

u(x, y) = }~ • a,,,,ch,,,,,(x, y) (9.3) 
nl I n I 

where 

OS,,,,,(x, y)=- [TB2,,(x/ L , ) -  1] 

x [TB2,, ~, ( y / L ,  ) - TB, (y/L,.  )] 

(9.4) 

where the TB,, (x) are the rational Chebyshev func- 

tions o f  Boyd [10]. The parameters  L, and Ly are 

mapp ing  constants  that  may be adjusted to 

improve the rate-of-convergence.  All the cases 

shown in Fig. 4 were calculated using M = 8, N = 

15, L , - 2 ,  and L, = 3. We omit a full discussion 

because [10] gives all the algori thmic details and 
theory,  but  a few comments  are in order. 

First, because the solitary wave is symmetr ic  in 

x and ant isymmetr ic  in y, the basis set can be 

restricted to only those funct ions which have the 

same symmetry.  Hence,  all the TB, , (x)  in the x- 

basis are o f  even degree while all the y-basis func- 

tions are o f  odd  degree. 
Second,  we know that u(x, y) -~ 0 as Ix 2 +y:]-, oo. 

Consequent ly ,  we lose no generality by choos ing  

basis funct ions which also vanish at infinity. Sub- 

tracting 1 or TB, from each basis funct ion guaran-  

tees that each ~h ..... individually tends to zero in 

this limit and reduces the size of  the basis set with 
no loss o f  accuracy.  

Collectively, these two tricks allow an 8 x  15 
basis set to give the same accuracy as a general 

18 x 32 bas i s - - a  reduct ion from 576 basis functions 
to only 120 via symmetry.  The dense 120x120  
matrix that is the discretization o f  (9.1) is solved 

via Gauss ian  elimination; a single iteration 
requires about  4.5 minutes on a 6 Mhz IBM-AT. 

The number  o f  degrees o f  f reedom is larger in 

y than in x because the dipole has only a single 

dipolar  vor t ex  sol i tons 

maximum in x (at x = 0 ) ,  but a m a x i m u m /  
min imum pair in y. 

One vice o f  Newton ' s  method  is that it requires 

a first guess. The analytic, KdV-like approximat ion  

(Section 4) gives a good  first guess for c ~ - 1 / 3 .  
One may then increase c in small steps, using the 

results at previous values o f  c to extrapolate a first 

guess for u(x ,y)  at the new phase speed. This 

parameter -marching  is usually called the "me thod  

o f  con t inua t ion"  [20]. As noted above, the anti- 

symmetr ic  dipole forms a single, cont inuous  

branch of  solutions without  limit points, so 
refinements such as Keller 's "pseudo-arc length  
con t inua t ion"  [19] are unnecessary.  

The rescalings discussed in earlier sections are 
very helpful,  however.  A blind march to c ~ - c o  

would obviously require a large number  o f  steps. 

To compute  v(x, y), the shape funct ion for large 

]cl, we actually solved 

t,,, + v,, - y 2 v -  yv 2 = rv (9.5) 

where r is an artificial computa t ional  parameter.  

When r =  1, (9.5) is identical with the full A E W  

equat ion ( 1.1 ) for c = 1. When r = 0, (9.5) simplifies 

to the large ]c] equation,  (6.3). As we march from 

r =  1 to 0 in small steps, the shape of  v (x ,y ;  r) 

slowly deforms from that o f  u(x, y; c = 1) to that 
o f  v(x, y). Thus,  the limiting shape v(x, y) is com- 

puted directly in a finite number  of  steps. The 

alternative, which is to asymptotically approach  

the limit by comput ing  u(x,y;  c) for larger and 

larger c, is much more costly. 

We employed  two checks. The first was to apply 

finite differences with a very small grid spacing to 
evaluate the residual, that  is, we evaluated 

R(x, y; h ) = [ u ( x  + h, y )+ u ( x -  h, y) 

+ u(x, y+ h)+ u(x, y -  h) 

-4u (x ,  y)] / (h  2) 

-[l/c+y'-]u(x, y) 

- yu2(x, y ) / c  (9.6) 

where h = 0.0001 and u(x, y) is evaluated by sum- 
ming the spectral series. I f  u(x, y) were the exact 

solution, then the residual would be everywhere 
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zero. For c = - 1 ,  the worst case of the four  in Fig. 

4, the m a x i m u m  value of R(x,  y; h) was smaller  

than  the m a x i m u m  of u by a factor of about  150. 

This method  provides a good i ndependen t  check 

on the correctness of the pseudospectra l  program,  

but  it has the d isadvantage  of extreme pessimism, 

The reason is that small  errors in the coefficients 

of the high degree basis funct ions  are magnified 
by the double  differentiation, roughly by a factor 

of n 2 where n is the degree of the funct ion.  Con-  

sequently,  

maxlu(x, y) - u . . . . .  ical( X, Y)I 

O ( N  2 maxlR(x,  y;  h)[) (9.7) 

where N is the degree of the highest basis funct ion.  

Consequen t ly ,  we made  a second check: com- 

par ing solut ions  with different resolution.  Figure 

5 displays the difference be tween two solut ions for 

and dipolar vortex solitons 235 

the worst of  the four solut ions shown in Fig. 4, 

c = - l .  Pseudospectral  errors normal ly  oscillate 

un i formly  over the computa t iona l  domain .  This is 

clearly true in Fig. 5 except that  the error rapidly 

decays for large lyl because  of the equal ly  rapid 

decay of the exact and  numer ica l  solutions.  

The fact that  the error rapidly oscillates in x 

suggests that  ma in  source of  error is x-resolut ion.  

Figure 4 shows that for c = - 1 ,  the soli ton has a 

larger zonal  scale than for the other cases. For this 

case, it would  have been better  to either use larger 

Lx or distr ibute the degrees of freedom more evenly 

between x and  y. The m a x i m u m  difference, 

however,  is only +0.0013, which suggests that the 

120-basis func t ion  solut ion is accurate to at least 

three digits. 

The strategy for comput ing  the Fl ier l -Petviash-  

vili monopole ,  W(r),  and  the per turbat ive correc- 

t ion to it is similar, but  with some differences. In 

Fig. 5. A surface perspective plot of the upper right quadrant of the difference between the solution with an 8 x 15 basis (120 basis 
functions) and the solution with 10 degrees of freedom in x and 18 in y (180 basis functions). The nearest corner is x = 5, y = 5 
and the far corner is the origin (0, 0). The tick marks on the vertical axis run from -0.0013 to 0.0012. The phase speed c = -1. The 
maximum of the difference is smaller than the maximum of u(x, y) for this case by about 2400, suggesting that the 8 × 15 solution 

is accurate to at least three decimal places. 
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cylindrical coordinates where r6  [0, oo], the 

obvious basis set is the orthogonal rational func- 

tions on the semi-infinite interval of Boyd [21]. 

However, if one expands a general ftmction f(r ,  0) 

in polar coordinates: 

f (r ,  0) = • f~(r) cos(n0) 
n 0 

+g,,(r) sin(n0) (9.8) 

one may show [20] that the f , (r)  and g,,(r) are 

symmetric about r = 0  for even n while the 

coefficients for odd n are antisymmetric about 
r = 0. Consequently, we used the symmetric factors 

of our two-dimensional basis functions to compute 

W(r) and the first order correction (divided by r), 

V(r). 
Devising a first guess for the monopole is harder 

than for the dipole because (2.6) is intr insically 
nonl inear and no analytic solutions are available 
to init ial ize the cont inuat ion method. Two guessing 
strategies were successful. The first was to solve 
(2.6) using the pseudospectra] method with a single 
basis function, ~b l ( r ) -=TB~( r /2 ) -1 .  This gives a 
l inear equation whose solution is a, = 1. The result- 
ing error is only about 16%, which is sufficiently 

small that Newton's iteration will converge if 

a,d~l(r) is the first guess. 
The second strategy is to pick a function that 

resembles the expected solution. We arbitrarily 

chose Wo~ exp ( - r )  because a "far field" analysis 

shows that W(r) must decay as exp ( - r )  as r ~ .  
The key idea is to then perturb the problem with 

an artificial forcing which is the residual of this 
first guess, multiplied by a marching parameter T. 

Thus, (2.6) becomes 

Wr,+(1/r) Wr-- W-- W 2 

=(1 -~'){Wo,, ,+(1/r)Wo.,-  W~,- Wo}. (9.9) 

For r = 0, Wo is the exact solution of (9.9) even if 

Wo is a terrible approximation to the Flied- 
Petviashvili monopole. As we march from 7 = 0 to 

= 1 using small steps in T, W(r; r) slowly deforms 
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from Wo(r) to the desired monopole. This method 

is very powerful because it makes it unnecessary 

to find a special case which can be solved analyti- 
cally. The only price for a poor guess for Wo(r) is 

that a poor guess will require more steps in T. 

Of course, "more steps" may occasionally mean 
restarting the march with a different guess if 

W(r; r) runs off to infinity or folds back at a limit 

point for rHm~, < 1, but this did not happen here. 

10. Unsymmetrical, equator-spanning monopoles 
for small amplitude: the MKdV-like limit 

By applying the method of multiple scales [3], 

one may show that the AEW equation has another 

class of solutions which are unsymmetric with 

respect to the equator. As in Section 4, we make 

two assumptions: (i) the zonal scale is large; and 

(ii) the wave amplitude is small. 
However, analysis of Section 4 must be modified 

because the lowest order solution is the latitudinally 
symmetric function 

u"=A(x)  e ,,5,~. (10.1) 

The single mode truncation fails because the non- 

linear term generated by (10.1) is (-y[u°]2) ,  which 

is antisymmetric with respect to y = 0. In contrast, 

the y-dependent part of (10.1) is q'o(y), the n =0  

Hermite function, which is symmetric with respect 

to the equator. If we truncate to just the n - 0  

mode, then the nonlinear coefficient is zero. 
The correct remedy is to apply the method of 

multiple scales in the same manner as for the 

even-n equatorial modes in Boyd [3]. For the 

equatorial problem, one obtains the Modified Kor- 
teweg-deVries (MKdV) equation. For the present 
problem, one finds that A(x) in (10.1) has the same 
form as the soliton of the MKdV equation. 

The assumption of large zonal scale implies that 

a/ox~O(b) ,  b < l  (10.2) 

where b is a parameter that will be dubbed the 
"pseudowavenumber".  The assumption of small 
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amplitude is 

A ( x ) ~ O ( b ) ,  b . ~ l  (10.3) 

I f  one had no models for guidance, one would 
assume arbitrary powers of  b in (10.2) and (10.3), 
work through the analysis, and then adjust the 
exponents of  b to produce a nontrivial, self- 
consistent approximation.  We will spare the reader 

this groping-in-the-dark and simply assume what 

works, taking also 

c = Co+ c2+" • • (10.4) 

u = u°+ u 1 + u 2 (10.5) 

where c 2 ~ 0 ( b 2 ) c o ,  u l - O ( b ) u  °, and u 2 

O(b2)u °. 
The lowest order problem is 

o 2 o U y y - [ 1 / c o + y  ]u =0 .  (10.6) 

The n = 0  solution is (10.1) provided that 

Co = - 1  (10.7) 

At next order, 

' [1 - y 2 ] u '  Uyy + = - y [ u ° ]  2. (10.8) 

If one uses the identities [22], 

[dE/dy 2 + (1 - y2)]~b, (y) 

= -(2n)~0. (y) (10.9) 

co 

y e-°sY2--- • a2.+,~b2.+l(y) (10.10) 
n - - 0  

where 

a2.+~ = 7r'/4(Z/3)3/z{([Zn + 1] !),/2 

x ( - 1 / 3 ) ' Z - ~ " + l / Z ) / n ! }  (10.11) 

one finds 

u'  = {aZ(x ) /2 }  

x ~ {a2.+,/(Zn+l)}~O2.+,(y)  (10.12) 
n 0 

At next order. 

U~yy + [1 - - y 2 ] u 2  

= _2yuOu I o o - u x x - c 2 u  (10.13) 
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Because 0o(Y) is a solution of  the homogeneous 
form of (10.13), the second order solution is 
unbounded unless the R.H.S. of  (10.13) is 
orthogonal to 4'o(Y)- This condition is equivalent 

to the statement that the Hermite series of  the 
forcing in (10.13) has a zero coefficient for ~0o(y). 
Technically, a similar condition applies to (10.8), 
but is irrelevant because the R.H.S. of  that equation 
contains only Hermite functions of odd degree. 

Multiplying the R.H.S. of  (10.13) by Oo(Y) and 
integrating over y from -oo to oo gives 

Axx + c2A + 0.157135A 3 = 0 (10.14) 

This ODE can be solved in terms of elliptic func- 
tions. One finds that this nonlinear eigenvalue 

problem has a solution 

A ( x )  = +3.56762b sech(bx) (10.15) 

if and only if 

c2 = - b  2 (10.16) 

Unfortunately, this n = 0 soliton has no counter- 

part in equatorial oceanography. One can show 
[22, 23] that modes which have finite phase speeds 

in the limit of  infinitely large zonal scale exist only 
for n/> 1. Consequently, no attempt was made to 
trace the full solution branch. Nevertheless, the 
mere existence of such unsymmetrical solitary 
waves is another dramatic illustration of the diver- 

sity of  behavior that is possible even in a simple 
differential equation such as the AEW equation. 

11. Summary and open problems 

Although this study is limited to the steadily 
translating nonlinear waves of  a very simple 
equation, we find a rich diversity of  behavior. 
Monopoles,  that is, vortices that are everywhere 
one-signed, exist for arbitrary phase speed c and 
arbitrary soliton center Yo in the " f -p lane"  approxi- 
mation. This approximation simplifies the AEW 
equation by replacing the factors of  y in the 
coefficients by the constant Yo- It is interesting that 
the shape of the monopole  is described by a single, 
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simple shape function; the rest of the two-para- 

meter f -p lane  family is obtained merely by rescal- 
ing the ampli tude and width of this single para- 

meter-free function, W(r).  It is even more interest- 
ing that allowing the coefficients to be variable 
gives a solvability condition at first order in per- 

turbation theory which reduces the two-parameter  
family to one by creating an "eigenrelation'" 
between the phase speed c and the soliton center 
latitude y,,. The perturbation theory is accurate 
w h e n 0 < ~ c ~ l .  

The AEW equation has a family of  dipoles which 

are antisymmetric about the "equator" ,  y = 0, and 
one-signed everywhere within a hemisphere. In the 

limit c ~  - 1 / 3 ,  the dipoles are of very small ampli- 
tude and very large zonal scale. The method of 
multiple scales or an equivalent argument given in 
Section 4 shows that dipoles may be approximated 
by the product of sech 2 in x and v exp(-0.5y2).  

The second analytic regime is for small positive 
c. Again, the dipole has very small amplitude. The 
dipole is approximated by two widely separated, 
rapidly decaying monopoles  of opposite sign in 
opposite hemispheres. 

In the opposite extreme of very large amplitude, 
one obtains a third analytic regime: for ]cl>> 1, 

u(x, y) =- v(x, y)/c where v(x, y) is a single, para- 
meter-free function that must be computed numeri- 
cally. Although solitons do not exist on the range 

c~ [ - 1 / 3 ,  0 ] - - the  interval of  the phase speeds of 
linear waves that are sinusoidal in x - - t h e  antisym- 
metric dipoles form a continuous branch of sol- 
utions. The two branches for negative and positive 

c are connected through infinity because u(x,y) 
in both the limit c-~co and c ~ - ~  may be 

described by the same shape function, v(x, y). 
The quasi-geostrophic equation, which is a close 

cousin of the AEW equation, does not allow 
monopoles.  However, it does have dipolar sol- 
utions known as "m odons "  [6]. Instead of being 
antisymmetric about the equator, y = 0, these are 
antisymmetric about some reference latitude y = 
yo, and solve a constant coefficient nonlinear 
equation analogous to the AEW in the " / -p lane"  

dipolar vortex solitons 

approximation.  It is trivial to show that such sol- 

utions do not exist on the AEW f-plane  (2.1): the 
quadratically nonlinear term will be symmetric 
about y =  y~ even if u(x, y) is antisymmetric, but 

the other terms preserve the antisymmetry. All 
solutions must have a symmetric component.  

Monopoles but no modons;  just the reverse for 
quasi-geostrophy. It is clear that solitons are sensi- 
tive in subtle ways to the characteristics of  the 
equations that model them. The AEW/quasi-geo-  

strophic comparison is a two-dimensional counter- 
part of  the duality betwen the Korteweg-deVries 
equation and the Regularized Long Wave 
equation: both are equally consistent with the per- 
turbation theory used to derive them from more 
complex systems, but the KdV is integrable and 
the RLW is not, and has solitons of  both positive 
and negative sign. 

Another subtlety is that the method of multiple 
scales and the Hermite-Galerkin  resonance argu- 
ment of Section 4 both predict the existence of 
higher mode solitons: waves whose latitudinal 

structure is described by high order Hermite func- 
tions. As explained in Section 5, these modes leak 

energy to large Ix] through radiation whose 
latitudinal structure is described by the first Her- 
mite function, +,(y) ,  and therefore technically do 
not exist! The rate of  energy leakage, however, is 
exponentially small in the perturbation parameter: 
when the error in the lowest order is O(10%), the 
amplitude of the radiation for large Ix] is O(10 14) 
relative to that of the localized, isolated part of 

the wave! 
For such quasi-solitons, a rigorous existence 

proof  is not merely irrelevant, as such proofs often 
are in engineering, but exceedingly misleading. 
The physical effect (in this case, the radiative 
leakage) which make the soliton mathematically 
nonexistent is an effect which is exponentially 
small when the quasi-soliton is small. Experi- 
mentally, small amounts of  damping and other 
small errors would make such quasi-solitons indis- 
tinguishable from true solitons for sufficiently 
small amplitude. Boyd [1] is a comprehensive 



J.P.Boyd / Monopolar and dipolar vortex solitons 239 

review of  such "weakly non-local" solitons, which 

are now known to occur in plasma physics, particle 
physics, and oceanography,  and probably in many 
other fields as well. 

The numerical calculations show that the 
orthogonal rational functions of  Boyd [10] are 

extremely effective in solving two-dimensional 
soliton problems, both in polar  coordinates, which 

we used to compute the axisymmetric monopoles,  
and in Cartesian coordinates, which we employed 
in our dipole studies. Refinements such as precon- 
ditioned iterations (for solving large matrix prob- 
lems) and pseudoarclength continuation (for fol- 
lowing a solution curve around what is known 
variously as a "limit point" ,  "fold",  or turning 

point")  were unnecessary. Gaussian elimination, 
Newton's  iteration, and simple continuation were 
sufficient along with a few hours of  time on an 
IBM-AT. 

The major  open problem for the AEW equation 
is: are there other solitary waves besides the ones 
computed here? In general, this is a very difficult 
question. 

We are on surer ground in predicting that the 
numerical and analytical ideas developed here will 
be useful in attacking other, harder problems. 
Soliton theory, like so much of  applied mathe- 
matics, is an art as much as science. A problem 

like this, which is simple but has complex and 
diverse solutions, is useful in becoming sensitive 
to the possibilities. 

Appendix. A heuristic derivation of the 
AEW equation 

The nonlinear equatorial shallow water wave 
equations have dipole solitons which are antisym- 
metric about the equator, y = 0. Boyd [2, 3] has 

analyzed these dipoles, but only using the method 
of  multiple scales in the limit c --> - 1 / 3 .  After initial 
attempts at a numerical study were unsatisfactory, 
I decided to do this preliminary study of  a simpler 
model. The shallow water wave equations have the 
exact conservation law 

D q / d t = O  (A.1) 

where D / d t  denotes the usual convective deriva- 

tive and where q, the potential vorticity, is defined 
by 

q =- (Vx - uy + y ) / ( 1  + 05) (A.2) 

where u and v are the usual (nondimensional) 
Cartesian velocities and 05 is the nondimensional 
pressure (or equivalently, surface height). As it 
stands, (A.1) is not a closed model because u, v, 
and 05 are independent quantities. One of the tech- 
nical complications is that the shallow water wave 
equations are a set of  three coupled equations 
rather than a single scalar equation like the AEW, 

(1.1). 
At high latitudes, however, one may apply the 

"quasi-geostrophic" approximation to show that 

all three unknowns in (A.2) may be written in terms 
of  a single variable ~b, the streamfunction: 
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v ~ ~bx, u ~ -~bv, 05 ~y¢,  (A.3) 

In strict quasi-geostrophy, one also makes some 
additional approximations that include linearizing 

the denominator  of  (A.2), but we shall retain (A.2) 
as is. Malanotte-Rizzoli [2] similarly incorporates 
some non-geostrophic effects in one of her model 
equations. 

I f  we shift into a coordinate system which is 
travelling with wave at phase speed c - -we  shall 
use x to denote the zonal direction in this reference 
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frame everywhere except in the three previous 

equa t ions- -and  apply (A.3), conservation of 
potential vorticity becomes 

J(q, + + 0 9 = 0  (A.4) 

where we assume that the wave is stationary and 
independent  of  time in the moving reference frame 
and where the Jacobian operator is, as usual, 
defined by 

J(A,  B) = A ,B ,  - A,B,  (A.5) 

It is easy to show [23] that the vanishing of the 

Jacobian implies that the contours of A parallel 
those of B, which in turn means that (A.4) is 
equivalent to 

q = F ( 0  + cy) (A.6) 

for some arbitrary F(x) .  If  we assume that all the 

contours of  (to+cy) extend to infinity, then we 
may evaluate (A.6) by observing that 0 ~ 0  for 

large Ix2+y21--this is the very definition of  an 
" isolated" soliton. We find F ( x ) =  x/c.  Substitut- 
ing this into (A.6), multiplying both sides by (1 + 
yO), and cancelling common factors gives 

AO + ( - 1 /  c -  y2)th = yO2/ c (A.7) 

which is simply the AEW equation, (1.1). We use 
u as the unknown instead of tO in the rest of  the 
article to avoid confusion with tO,,(y), which is the 
standard notation for the Hermite functions, but 
the proper  geophysical interpretation of the 
unknown in the AEW equation is that it is the 
streamjunction. 

Several comments  are in order. First, the quad- 
ratic nonlinearity in (A.7) arises because we 
retained the non-geostrophic (1 + &) ~ (1 +ytO) in 
the denominator  of  the potential vorticity. The 
analogous quasi-geostrophic equation is linear and 
has no soliton solutions. To obtain quasi-geos- 
trophic solitary waves, it is necessary to relax one 
or more of the implicit assumptions of quasi-geos- 
trophy by (i) including nongeostrophic effects, as 
here; or (ii) adding topographic  variations; or (iii) 
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assuming that some contours of  (0 + cv) are closed, 
and thus cannot be determined by evaluating (A.6) 
at infinity, which permits "modons"  [6]. 

Second, it is usual to approximate terms that 
vary with y as constants except perhaps where 

differentiated. We differ from Malanotte-Rizzoli 's 
own model by allowing 3' to vary so as to obtain 
an equation which is (hopefully!) valid even at the 

equator 3 ' =  0, and allows solitons that span both 
hemispheres. 

For c ~ - 1 / 3 ,  one may compare the AEW 
solitons of  Section 4 with those of Boyd [2, 3]. The 
linear part of  (A.7) agrees exactly with the linear 

equation satisfied by the north-south current of  
the equatorial shallow water wave equations in the 
limit of  infinite zonal scale. The result is that the 

linear dispersion relation is correct in the KdV 
limit, and so also is the latitudinal shape of v. One 
may show, however [22] that the structures of u 
and & are distorted by about 30% by the ansatz 
(A.3). Further, the nonlinearity in (A.6) is too 
weak; the AEW solitons are about 2.4 times larger 
than their equatorial counterparts.  

For larger c, the differences between AEW and 
shallow water waves are likely to be greater. There 
are good reasons why the approximation of writing 
u, v, and & in terms of a streamfunction O is 
normally employed only at high latitudes! 

Of course, this would suggest that the monopole  
analysis of  Sections 2 and 3 would be trustworthy. 
Unfortunately, the predicted minimum of yO is 
-4 .?6,  independent of Yo, which implies that the 
denominator  of the potential vorticity changes 
sign. Physically, this would imply that the layer 
depth vanishes, and a different model is needed. 
It is striking, however, that the same monopole  

arose from the quite different analyses of Flied 
i l l ]  and Petviashvili [12]. 

The conclusion is that analyzing solitons of  the 
full fluid equations is quite complex because 
apparently small modifications to approximating 
equations can completely alter the properties of 
solitons, or even alter their very existence. Yano 
and Tsujimure [7] give the most recent review; 
part of  the problem is that there are at least five 
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f u n d a m e n t a l  p a r a m e t e r s  w h i c h  m a y  all  v a r y  o v e r  

b r o a d  r a n g e s .  

In  t h i s  a r t i c l e ,  we s h a l l  b e  c o n t e n t  to  u s e  (1.1)  

as  a g o o d  h e u r i s t i c  m o d e l .  O n e  f inal  d e f e n s e  is 

a p p r o p r i a t e ,  h o w e v e r .  F l i e r l ' s  q u a s i - g e o s t r o p h i c  

m o d e l  r e p l a c e s  t h e  C o r i o l i s  p a r a m e t e r  b y  a c o n -  

s t a n t  b u t  h a s  y - v a r y i n g  t e r m s  b e c a u s e  o f  t h e  m e a n  

c u r r e n t .  S w e n s o n  [13]  s h o w e d  t h a t  t h i s  l e a d s  to  a 

c o n t r a d i c t i o n  a t  p e r t u r b a t i v e  first o r d e r .  In  o u r  

m o d e l ,  t h e  C o r i o l i s  p a r a m e t e r  is a l l o w e d  to  va ry ,  

a n d  m o n o p o l e s  exis t .  T h e  A E W  e q u a t i o n  c a n n o t  

b e  r i g o r i o u s l y  j u s t i f i e d ,  b u t  t he  i d e n t i f i c a t i o n  o f  

b e t t e r  g e o p h y s i c a l  m o d e l s  t h a t  a re  b o t h  s i m p l e  a n d  

fu l ly  c o n s i s t e n t  is st i l l  a f r o n t i e r .  
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