Letter to the Editor # ⁵⁷Fe Mössbauer investigation of oriented single-crystal and polycrystalline PbFe₁₂O₁₉ * # G.K. Thompson and B.J. Evans Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA Received 29 January 1991 57 Fe Mössbauer spectra of PbFe $_{12}O_{19}$ have been obtained at 295 K on polycrystalline and single-crystal thin sections oriented with the c-axis parallel and perpendicular, respectively, to the γ-ray propagation direction. Due to the lower Néel temperature, the internal magnetic fields (H_{eff}) in PbFe $_{12}O_{19}$ are lower than those in BaFe $_{12}O_{19}$ and SrFe $_{12}O_{19}$ but the systematics of the hyperfine interactions are similar to those in other hexaferrites. For example, the relative values of H_{eff} exhibit the following sequence: $2b < 12k < 4f_1 < 2a < 4f_2$ and the isomer shifts (δ) exhibit the following ordering: $4f_1 < 2b \le 2a \le 12k < 4f_2$. The large dynamic displacement of the 2b Fe $^{3+}$ ion parallel to the c-axis is clearly demonstrated by the relative intensity of the 2b site for the two oriented single crystals, being negligible for the crystal perpendicular to the c-axis, and equal to its population fraction for the crystal parallel to the c-axis. The lower value for the electric quadrupole splitting of the 2b site is believed to be related to the larger dynamic displacements at this site compared to other hexaferrites. #### 1. Introduction With the recent determination of the structure of PbFe₁₂O₁₉ by single-crystal X-ray diffraction [1], it is now possible to examine by means of ⁵⁷Fe Mössbauer spectroscopy the magnetic properties of each of the end-member compositions of the magnetoplumbite-type hexaferrites, i.e., SrFe₁₂O₁₉ [2], BaFe₁₂O₁₉ [3] and PbFe₁₂O₁₉ and to perform a comparative and definitive analysis of the structure-property relationships among the three M-type hexaferrites. Inasmuch as a complete set of Mössbauer parameters has not been reported for PbFe₁₂O₁₉ [4] and because of the considerable variation in hyperfine parameters reported for other hexaferrites [5], ⁵⁷Fe Mössbauer spectra have been obtained for PbFe₁₂O₁₉ polycrystalline and oriented single crystal samples at 295 K. Despite the differences in their bulk magnetic properties, the ⁵⁷Fe hyperfine interactions of Ba- Fe₁₂O₁₉, SrFe₁₂O₁₉ and PbFe₁₂O₁₉ are similar in magnitude and exhibit similar systematics. Nonetheless, as a consequence of the lower Néel temperatures, the hyperfine fields of PbFe₁₂O₁₉ exhibit consistently the lowest values among the three hexaferrites. The origin of the lower values of the isomer shifts and quadrupole splittings for this phase is not so obvious. ## 2. Experimental A single crystal specimen of PbFe₁₂O₁₉ was obtained from the Smithsonian Institution. This specimen was from the same batch of crystals from which specimens were taken for the single crystal X-ray study [1]. The stoichiometry previously reported [1] has been confirmed by independent electron microprobe analysis. Single crystal absorbers were prepared from slices cut both parallel and perpendicular to the basal plane of the single crystal. These slices were ground and polished to a thickness of approximately 20 µm. Fragments of the crystal were ground with an agate mortar and pestle to make the powder absorber. ^{*} This article is dedicated to Professor Warren E. Henry, Emeritus Professor of Physics at Howard University, on his 80th birthday. Fig. 1. ⁵⁷Fe Mössbauer spectra of single-crystal PbFe₁₂O₁₉ with (a) the *c*-axis parallel to the gamma ray beam, and polycrystal-line PbFe₁₂O₁₉; (b) the *c*-axis perpendicular to the gamma ray beam; and (c) polycrystalline PbFe₁₂O₁₉. All spectra were obtained at 298 K. The 57 Fe Mössbauer spectra for the single crystals were obtained with absorbers having their c-axis parallel and perpendicular, respectively, to the propagation direction of the γ -ray. The 57 Fe Mössbauer spectra were obtained and analyzed as described in detail in an earlier report [5]. ## 3. Results and discussion The 57 Fe Mössbauer spectra of the single-crystal and polycrystalline samples are shown in fig. 1. All spectra, except that for the single crystal with the c-axis parallel to the propagation direction of the γ -ray, exhibit the characteristic five iron subspectra, characteristic of the M-type hexaferrites. The hyperfine parameters of the single-crystal and powder $PbFe_{12}O_{19}$ samples are listed in table 1. In the case of the crystal oriented with the c-axis perpendicular to the γ -ray, the relative intensity of the 2b site is 8.2%. This value is in good agreement with the theoretical relative intensity of 8.3%, which corresponds to the fraction of iron Table 1 ⁵⁷Fe hyperfine parameters for PbFe₁₂O₁₉ at 295 K | Iron
site | Sample | H _{eff} a) (kOe) | $\delta^{a)}$ (mm s ⁻¹) | $\frac{\Delta^{a)}}{(\text{mm s}^{-1})}$ | Relative intensity | |-------------------------|---------------------|---------------------------|-------------------------------------|--|--------------------| | 12k | ⊥ single crystal b) | 413 | 0.33 | 0.35 | 12 | | | single crystal b) | 412 | 0.35 | 0.34 | 12 | | | powder | 412 | 0.34 | 0.36 | 12 | | 4 f ₁ | ⊥ single crystal | 487 | 0.24 | 0.13 | 1.8 | | - | single crystal | 485 | 0.25 | 0.16 | 4.8 | | | powder | 489 | 0.25 | 0.15 | 4.4 | | 4f ₂ | ⊥ single crystal | 514 | 0.39 | 0.29 | 3.3 | | | single crystal | 512 | 0.38 | 0.33 | 3.5 | | | powder | 516 | 0.39 | 0.29 | 3.5 | | 2a | ⊥ single crystal | 496 | 0.30 | 0.11 | 6.4 | | | single crystal | 499 | 0.36 | 0.02 | 3.8 | | | powder | 502 | 0.33 | 0.07 | 3.6 | | 2b | ⊥ single crystal | 399 | 0.30 | 2.00 | 2.1 | | | single crystal | _ | _ | _ | 0 | | | powder | 400 | 0.31 | 2.06 | 1.3 | | | | | | | | a) Estimated errors in H_{eff}, δ (relative to Fe metal) and Δ are ±4 kOe, ±0.01 mm s⁻¹ and ±0.05 mm s⁻¹, respectively. b) ⊥ single crystal and || single crystal are single crystals oriented with the c-axis perpendicular and parallel to the propagation direction of the γ-ray, respectively. Table 2 Comparison of 57 Fe hyperfine parameters for polycrystalline ${\rm BaF_{12}O_{19}}^{a)}$, ${\rm SrFe_{12}O_{19}}^{a)}$ and ${\rm PbFe_{12}O_{19}}$ samples | Iron site | Sample | H _{eff} b) | δ ^{b)} | Δ b) | |-----------------|------------------|---------------------|-----------------|---------------| | | | (kOe) | $(mm s^{-1})$ | $(mm s^{-1})$ | | 12k | Ba b) | 414 | 0.35 | 0.76 | | | Sr ^{b)} | 414 | 0.35 | 0.61 | | | Pb | 412 | 0.34 | 0.36 | | 4f ₁ | Ba | 492 | 0.31 | 0.40 | | | Sr | 492 | 0.28 | 0.29 | | | Pb | 489 | 0.25 | 0.15 | | 4f ₂ | Ba | 517 | 0.44 | 0.40 | | | Sr | 518 | 0.40 | 0.38 | | | Pb | 516 | 0.39 | 0.29 | | 2a | Ва | 511 | 0.45 | 0.20 | | | Sr | 506 | 0.39 | 0.18 | | | Pb | 502 | 0.33 | 0.07 | | 2b | Ba | 406 | 0.20 | 2.30 | | | Sr | 411 | 0.31 | 2.27 | | | Pb | 400 | 0.31 | 2.06 | | | | | | | a) BaFe₁₂O₁₉ and SrFe₁₂O₁₉ data are from ref. [5]. The spectra of BaFe₁₂O₁₉ and SrFe₁₂O₁₉ were obtained at 300 K; the PbFe₁₂O₁₉ was at 295 K. ions occupying the 2b site. For the powder sample, the intensity of the 2b pattern is only 5.4% of the total. At the opposite extreme, the crystal with the c-axis parallel to the γ -ray propagation direction has a 2b pattern with a negligible intensity within the experimental error. These results are clear evidence of the strong, dynamic anisotropy in the displacements of the 2b Fe³⁺ ions. In comparison to SrFe₁₂O₁₉, the smaller relative intensity of the 2b site for PbFe₁₂O₁₉ suggests a larger displacement parallel to the c-axis for PbFe₁₂O₁₉. For the purpose of comparisons, previously reported 57 Fe hyperfine parameters of polycrystalline $BaFe_{12}O_{19}$ and $SrFe_{12}O_{19}$ [4] and those for polycrystalline $PbFe_{12}O_{19}$ determined in their investigation are listed in table 2. The relative magnitudes of the parameters of lead hexaferrite follow the sample trends as that for the barium and strontium analogs. It is noteworthy that, with the exception of the 2b isomer shift, all of the $PbFe_{12}O_{19}$ hyperfine interaction parameters are less than those observed for $BaFe_{12}O_{19}$ and $SrFe_{12}O_{19}$. The reported Curie temperatures T_c for single- crystal BaFe₁₂O₁₉, SrFe₁₂O₁₉ and PbFe₁₂O₁₉ are 740, 750 and 725 K, respectively [6,7]. For materials with such similar crystal and magnetic structures and exchange interactions, the hyperfine fields should vary inversely with T/T_c . This is, indeed, the trend observed in table 2. With the exception of the 2a site, $H_{\rm eff}$ of SrFe₁₂O₁₉, which has the highest T_c , is equal to or greater than those for the corresponding site in BaFe₁₂O₁₉. For PbFe₁₂O₁₉, which has the lowest T_c , the hyperfine fields are consistently lower than those of either the Sr- or Ba-analogs. ## 4. Conclusions The ⁵⁷Fe hyperfine parameters for SrFe₁₂O₁₉, BaFe₁₂O₁₉ and PbFe₁₂O₁₉ strongly suggest that there are few, if any, fundamental differences in their crystal/chemical structures and magnetic exchange interactions. There are some minor differences, however, that might have important consequences for some bulk properties. For example, the electric quadrupole splitting for the 2b site in PbFe₁₂O₁₉ is unexpectedly low; the intensity of this pattern also appears to be lower than that observed for either SrFe₁₂O₁₉ or BaFe₁₂O₁₉. Both of these results may be related to differences in the local structure of the 2b sites in the three materials [8]. #### References - [1] P.B. Moore, P.K. Sen Gupta and Y. LePage, Am. Min. 74 (1989) 1186. - [2] X. Obradors, A. Collomb, M. Pernet, D. Samaras and J.C. Joubert, J. Solid State Chem. 56 (1985) 171. - [3] X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodríguez, M. Pernet and M. Font-Altaba, J. Solid State Chem. 72 (1988) 218. - [4] L. Jizhe, Z. Yuchang, J. Hongzhen and Z. Hongru, Kexue Tongbao 25 (1980) 388. - [5] B.J. Evans, F. Grandjean, A.P. Lilot, R.H. Vogel and A. Gérard, J. Magn. Magn. Mat. 67 (1987) 123. - [6] B.T. Shirk and W.R. Buessen, J. Appl. Phys. 40 (1969) 1294. - [7] R. Pauthenet and G. Rimet, Compt. Rend. Acad. Sci. 249 (1959) 1875. - [8] G.K. Thompson and B.J. Evans, The 5th Joint Magnetism and Magnetic Materials (MMM)-Intermag Conf., Pittsburgh (18-21 June 1991) to be published. b) Parameter errors are as in table 1.