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In this paper we introduce a method of sequencing the elements of a finite group 
that gives rise to a complete mapping of the group. Our definition was motivated 
by the concept of a harmonious graph invented by Graham and Sloane. Our 
concept has several connections to graph theory and as an application we complete 
the characterization of elegant cycles begun by Chang, Hsu, and Rogers. Our 
definitions are also variations of the notion of an R-sequenceable group first 
introduced by Ringel in his solution of the map coloring problem for all compact 
2-dimensional manifolds except the sphere and expanded upon by Friedlander, 
Gordon, and Miller. 0 1991 Academic Press. Inc. 

1. 1NTRoDucT10~ 

A permutation C$ of a group is a complete mapping if x(x$) = y(y~$) 
implies x = y. This concept was introduced by H. B. Mann [8] in 1942 in 
connection with the construction of orthogonal Latin squares. Applications 
to finite nets and to neotields were given by Bruck [l] and Paige [9], and 
the concept naturally arises in schemes for encoding numbers to detect 
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errors (see [6]). M. Hall and Paige [7] showed that a necessary condition 
for a finite group of even order to have a complete mapping is that its 
Sylow 2-subgroup be non-cyclic and that this condition is sufficient for 
solvable groups. (For groups of odd order the identity mapping is a com- 
plete mapping. ) 

In this paper we introduce a method of sequencing the elements of a 
finite group that gives rise to complete mapping of the group. Our delini- 
tion was motivated by the concept of a harmonious graph invented by 
Graham and Sloane [S]. Our concept has several connections to graph 
theory and as an application we complete the characterization of elegant 
cycles begun by Chang, Hsu, and Rogers [2]. Our definitions are also 
variations of the notion of an R-sequenceable group first introduced by 
Ringel in his solution of the map coloring problem for all compact 
2-dimensional manifolds except the sphere [lo] and expanded upon by 
Friedlander, Gordon, and Miller [3]. 

2. DEFINITIONS AND NOTATION 

Let G be a finite group. We say G is harmonious if the elements of G can 
be listed g,, g2,..., g, so that G= (g,g,, g2g3,..., gn-lgny gngll. 
Analogously, letting GX denote the set of non-identity elements of G, we 
say G’ is harmonious if there is a listing g,, g,, . . . . g, of the elements of 
G” such that G” = {g, g,, g, g,, . . . . g,- 1 gn, g, g, }. In each case we call 
the list g,, g,, . . . . g, a harmonious sequence. We observe that G is har- 
monious if and only if G has a complete mapping which is also a IGI-cycle. 
For example, if g,, g,, . . . . g, is a harmonious sequence for G then g, --) g,, 

g2 -+ g3, ‘!73 --) g49 ...) g, + g, is a complete mapping of G. Conversely, if 4 
is a complete mapping of G which is also a JGJ-cycle then e, e& eb2, . . . . 
4 IGJ--I is a harmonious sequence for G (where e is the identity). We call 
such mappings harmonious. 

For the purpose of comparison we give the following definitions. A con- 
nected graph with p vertices and q 2 p edges is harmonious if it is possible 
to label the vertices x with distinct elements f(x) of Z, (the group of 
integers modulo q) in such a way that, when each edge xy is labeled with 
(f(x) +f(y)) modulo q, the resulting edge labels are distinct. A group G is 
R-sequenceable if there is a listing g,, g,, . . . . g, of the elements of G# such 
thatG”={g;1g2,g;‘g3,...,g~~1gn,gn1gl}. 

Harmonious groups can be given a graph-theoretic interpretation as 
follows. Let G be a finite group of order n and let K, be the complete sym- 
metric digraph with n vertices. Label the vertices with the elements of G 
and label the edge joining gi to gj with gig,. Then the existence of a 
harmonious labeling for G is equivalent to the existence of a hamiltonian 
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circuit in K, such that each element of G occurs exactly once as an edge 
in the circuit. An analogous interpretation exists for G”. 

We use I to denote the identity permutation; g” = x- ‘gx; Syl,(G) is the 
set of all Sylow 2-subgroups of G; D,, = (a, b 1 u” = b2 = e, ub = a- ’ ) (the 
dihedral group of order 2n); Q,= (a, blu2”= b4=e, b2=u”, ~~=a-‘) 
(the quaternion group of order 4n); G’ is the commutator subgroup of G; 
Aut(G) is the automorphism group of G; Inn(G) is the inner automorphism 
group of G; Out(G) = Aut(G)/Inn(G). All other notation is standard. 

3. NON-HARMONIOUS GROUPS 

In this section we give several classes of groups that are not harmonious. 
We begin with a necessary condition for groups to possess complete 
mappings. 

THEOREM 3.1 (Paige [9]). Let G be a group and g,, g,, . . . . g, be a 
harmonious sequence for G or G#. Then the product g, g, . . . g, must be in 
the commutator subgroup of G. 

COROLLARY 3.2. If G is a group of even order and has a cyclic Sylow 
2-subgroup, then G and G# are not harmonious. 

Proof. Since G has a cyclic Sylow 2-subgroup, G has a normal 
2-complement N [4, p. 2571. Let g,, . . . . g, be the elements of G, and let xN, 
x2N, x3N, . . . . x2mN be the elements of G/N. Then g, g, . . . g,N= 
(xN x2N x3N.. . x2”N)‘“’ = (x 2’m-“N) INI = x2”‘-“N, since 1 N] is odd. Thus 
ii!1 g2 . . . g, 4 N. However, G/N is Abelian, so G’ E N. Hence g, g, . . . g, 4 G’. 
By Theorem 3.1, G and G# are not harmonious. 1 

We remark that all groups of order 2k where k is odd satisfy the 
hypothesis of Corollary 3.2. 

THEOREM 3.3. Elementary Abeliun 2-groups are not harmonious. 

Proof. If a product gh = e, then g = h-l = h. 1 

4. DIRECT PRODUCTS 

THEOREM 4.1. Zf G and H are harmonious and H has odd order, then 
G x H is harmonious. 

Proof. Let g,, g,, . . . . g, and h,, h,, . . . . h, be harmonious sequences for 
G and H, respectively. Observe that since H has odd order, the mapping 
h + h2 is an injection of H. It follows that a harmonious sequence for G x H 
is (g,, A,), (g2, h), -., (g,, A,); (gl, h2), k2, h2), . . . . (g,, h,);-..; (gl, h,), 
(g2, h,), . . . . kv hn). I 
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THEOREM 4.2. Z, is harmonious if and only ifn is odd. Z,# is harmonious 
if and only if n is odd and greater than 3. 

ProoJ: In both instances necessity follows from Corollary 3.2. Now 
suppose n is odd and write n = 2k + 1. A harmonious sequence for Z, is 
0, 1, 2, . . . . 2k. 

For Zt , n odd and greater than 3, we consider two cases. A harmonious 
sequence for Z$+ , is 

2k + 2, 2k + 4, . . . . 4k, 2, 4, 6, . . . . 2k; 

2k - 1, 2k - 3, . . . . 1, 4k - 1, 4k - 3, . . . . 2k + 1. 

A harmonious sequence for Z$ + 3 is 

2k + 2, 2k + 4, . . . . 4k + 2, 2, 4, 6, . . . . 2k; 

2k+ 1, 2k- 1, . . . . 1, 4k+ 1, 4k- 1, . . . . 2k+3. 1 

In [2], Chang, Hsu, and Rogers defined a graph with q edges to be 
elegant if it is possible to label the vertices with distinct integers from 0 to 
q in such a way that when each edge xy is assigned the integer (x + y) 
modulo (q + l), the resulting edge labels are 1, . . . . q. Theorem 9 of their 
paper gave a partial characterization of the cycles that are elegant. Our 
Theorem 4.1 completes the characterization. In particular, our harmonious 
labeling of Z 4#k + 3 gives an elegant labeling of the cycle with 4k + 2 vertices 
that Chang, Hsu, and Rogers did only when 4k + 3 is prime. Our harmonious 
labeling of Zg + i also gives a new elegant labeling of the cycle with 4k 
vertices. 

As immediate consequences of Theorems 4.1, 4.2, and the fundamental 
theorem of finite Abelian groups, we have the following. 

COROLLARY 4.3. All non-trivial Abelian groups of odd order are 
harmonious. 

COROLLARY 4.4. Zf the Sylow 2-subgroup of a finite Abelian group is 
harmonious then the group is harmonious. 

LEMMA 4.5. Suppose K is a harmonious group of odd order, and there are 
harmonious sequences for both H and H # that begin and end with the same 
term. Then (H x K) # is harmonious. 

Proof: Let e = k,, . . . . k, be a harmonious sequence for K; h,, . . . . h, and 
Ji ,,...,?im--l b e h armonious sequences for H and H #, where h, = 5, and 
h,=h,-,. Then a harmonious sequence for (Hx K)# is (xl, k,), 
(h, k,), . . . . &,z-,, k,); (h,, k,), (h, W, ..a, (h,, k,);...; (A,, k,L -..> 
(hm,kJ I 
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5. HARMONIOUS GROUP EXTENSIONS 

In this section we develop a technique for constructing harmonious map- 
pings of group extensions. We then use the results of Section 4 to show that 
several classes of solvable groups are harmonious. 

LEMMA 5.1. Let G be a group and H a normal subgroup such that 
K = G/H is harmonious and K,, KZ, . . . . K, is a harmonious sequence of K. 
Suppose that there is a k in the coset K, Kz.. . K,, and complete mappings 
41, 42, .“, $,, of H such that the map h + hkb,&. . .4,, is an 1 Hi-cycle of H. 
Then G is harmonious. 

Proof For 1~ i< n, pick ki E Ki such that k, k,k, ... k, = k, let di: 
H + H be conjugation by ki, and let O: H + H be conjugation by k. Note 
that if 4 is a complete map of H and 0 is an automorphism of H, then 4’ 
(i.e., e-‘&3) is a complete map of H. For 1 <i< n let $i = d~‘“~ll”“‘-‘. We 
will now construct a harmonious mapping of G. Define I,+: G + G as follows 
(addition of subscripts is done modulo n): 

(k,h)~=(h~i+,)ki+,=ki+,((h~i+,)ai+,) for 1 <i<n, heH. 

Since each Ji is a permutation of H, II/ is a permutation of G. To see that 
II/ is a complete mapping, suppose that ki. h . (ki . h) $ = kj. h’(k, . h’) $. 
Then 

ki. h . h&+ , .ki+l=kj.h’.h’$j+l.kj+l. 

So, Ki K,, i = K,K,, , and i = j (since K, , K2, . . . . K, is a harmonious 
sequence). Then h = h’, since $,, i is a complete mapping. Therefore II/ is a 
complete mapping. Let 1,6: H -+ H be defined by 

k, . hll; = (k, . h)$“. 

Since Ki$ = K, + I, if $ is an lHl-cycle then it follows that II/ is a (Gl-cycle 
and G is harmonious. But $ = $ia, &al.. . Fnrrn = cdl&~3 . . . I$, which is 
by supposition an /HI-cycle. 1 

LEMMA 5.2. Let G be a group and H a normal subgroup of G such that 
K = G/H is harmonious and K, , K2, . . . . K,, is a harmonious sequence of K. 
If there is a k in K, K, . . . K,, that centralizes H and there are complete 
mappings 4, h, . . . . 4, of H such that dl&. ‘. 4, is an IHI-cycle, then G is 
harmonious. 

Proof. The map h --r hk4,& ... 4, is an I HI-cycle, so all of the condi- 
tions of Lemma 5.1 are satisfied. i 
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LEMMA 5.3. Let G be a group and H a normal subgroup such that 
K = G/H is harmonious and K, , K,, . . . . K,, is a harmonious sequence of K. 
Then there is a k in the coset K, K2 . . . K,, that centralizes H in the following 
circumstances: 

(i) K is Abelian. 

(ii) Out(H) is Abelian. 

(iii) IOut(H)‘I is relatively prime to [K’l. 

(iv) Every element of K’ contains a k which centralizes H. 

Proof First note that each of conditions (i) and (ii) implies (iii), so we 
assume (iii) holds. Let tI be the canonical homomorphism from G to 
Am(H). Since HO = Inn(H) we have the induced homomorphism 8: 
K+ Out(H). Since K’~s Out(H)‘, by (iii) of Lemma 5.3 we have that K’g 
is trivial. Suppose EE Ki E K’. Then E0 is an inner automorphism of H, so 
there is some h, E H such that hho = h” for all h E H. Then the element 
Eh; ’ E Ki centralizes H, so condition (iv) holds. Now suppose that condition 
(iv) holds. By Theorem 3.1 K, K2 . . . K,,EK’, so there is a kEK1K2...K,, 
which centralizes H. 1 

LEMMA 5.4. Let G be a group and H a normal subgroup of G such that 
K = G/H is harmonious, with harmonious sequence K,, K,, . . . . K,. If there is 
a k in the coset K, K2 + ‘. K,, that centralizes H, then each of the following 
implies G is harmonious: 

(i) I HI is odd and H is harmonious. 

(ii) [Kl is odd and H is Abelian and harmonious. 

(iii) H is harmonious and IHI and [Kl are relatively prime. 

Proof First observe that by Lemma 5.2, we need only show that there 
are complete mappings $1, q&, . . . . I$,, of H such that #1 &. . .4,, is an [HI- 
cycle. 

Suppose (i) holds. Then, since IHI is odd, the map h + h2 is bijective, 
and so the identity map I is a complete mapping of H. Let 4i = b2 = . . . = 
d,- i = Z, and let 4, be a harmonious mapping of H. Then the product 
$1q52...qSn=dn is an IHI-cycle. 

Next, suppose that (ii) is satisfied. Let 4 be a harmonious map of H. 
Since H is Abelian, 4-i is also a harmonious map of H. Let d1 = d3 = 
q&= . . =&=qj; +2=$4= . . . =dnP,=$-‘. Then 4,42.--4,,=4 is an 
IHI-cycle. 

Finally, suppose that (iii) is satisfied. Then let 4 be a harmonious map 
of H and let q$ = & = . . . = 4, = 4. Then I$, d2.. .c$,, = &’ is an I HI-cycle 
(since n and IHI are relatively prime). 1 
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THEOREM 5.5. Zf G has odd order, then G is harmonious. 

Proof: We use induction on IGI. If G is Abelian, we are done by 
Corollary 4.3. Otherwise, assume that every group of odd order smaller 
than IGl is harmonious. Let H= G’. By the Feit-Thompson Theorem, H is 
a proper subgroup of G, so by the induction hypothesis both H and G/H 
are harmonious. Since G/H is Abelian, condition (i) of Lemma 5.3 and (i) 
of Lemma 5.4 are met and G is harmonious by Lemma 5.4. m 

THEOREM 5.6. Zf H is a normal subgroup of G of odd order and G/H is 
harmonious and Abelian, then G is harmonious. 

Proof: By Theorem 5.5, H is harmonious, so condition (i) of 
Lemma 5.3 and condition (i) of Lemma 5.4 are met, and therefore G is 
harmonious. 1 

THEOREM 5.1. Zf the dihedral group D, is harmonious, then for all odd m, 
D nm is harmonious. Likewise, ty the generalized quaternion group Q,, is 
harmonious, then for all odd m, Q,,, is harmonious. 

Proof, Assume D, is harmonious and let G = (a, b (an”’ = b2 = e, 
a6 = a-‘) z D,,. Let H be the subgroup generated by a”. Since Out(H) is 
Abelian, condition (ii) of Lemma 5.3 is satisfied. Also IHI is odd, H is 
normal in G, and K= G/Hs D,. So the hypothesis and condition (i) of 
Lemma 5.4 are satisfied and G is harmonious. 

The same argument works if we substitute Qn and Q,, for D, and 
Dnrn. I 

Our next result provides an infinite family of dihedral groups that are 
harmonious. 

THEOREM 5.8. D2” is harmonious for n 2 2. 

Proof Let m = 2”-* and consider the 4 x 2m matrix 

ba4m-l ~,~4rn-2 &4m-3 ,,, ba3m ba3m-l ba3m-2 ,.. ba2" 

C= 

i 

b ba ba2 . . . ba”-’ barn barn+’ . . . ba2”-’ 
a2m-2 a2m-4 a2m-6 . . . e a2m-l a2m-3 . . . a 
a4m-2 a4m-4 ~4m-6 . . . $‘m a4m-1 a4”lm3 . . . a2m+ I 

i 

Let (ni}fr, = ( m, 1, m+2, 3, m+4, 5 ,..., 2m, m+1, 2, m+3, 4 ,.,., m-2, 
2m- 11, let {hkl~El = {cl,,,,, ~2.~~~ ~3,~~~ ~4,~~~ ~1,~~’ CZ,~~, --, ~3,~~~ ~4.~~)~ 
and let C’ be the 4 x 2m matrix with ck= hkh,+ , , where cil = hk. Then we 
have 
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i 

a 3 . . 

bagm3 . . . 

a2m-3 a2”-l a2m+l a2m+3 ... a4m-1 

ba2m-2 ba” barn-’ ba3”-’ ba3m-2 . . . ba2”’ 
C’ = 

a2m-4 a2m-8 . . . a2m+4 azm a2mp2 a2mp6 . . 

bah ba3m+l . . . ba4m-2 ba2m-l ba4m-l b . . . 

and c’ contains every element of D,, exactly once. Since c’ was con- 
structed to contain every product of the form h,hk+ , exactly once, {hi} is 
a harmonious sequence. m 

COROLLARY 5.9. If 4 divides n, D, is harmonious. 

Proof: The result follows from Theorems 5.8 and 5.7. 1 

Theorems 5.8 and 5.7 together show that the dihedral groups D2+,, are 
harmonious when n > 2 and m is odd. Since D, is harmonious, the groups 
D6,,, are harmonious for m odd. On the other hand, by Corollary 3.2, D, 
is not harmonious when n is odd. Also, no harmonious sequence exists for 
Q2 (by computer search), but one does exist for Q4. For Q,,, where n is 
odd, no harmonious sequence exists by Corollary 3.2. 

6. HARMONIOUS ABELIAN GROUPS 

In this section we completely characterize the finite Abelian groups that 
are harmonious. 

LEMMA 6.1. The group Z, x Z, is harmonious if and only if m is even 
and greater than 2. 

ProojI Theorem 3.3 shows that Z, x Z, is not harmonious. That 
Z, x Z, is not harmonious when m is odd follows from Corollary 3.2. For 
m even and greater than 2 we consider two cases. 

Case 1. Z4,,xZ2z(a, bIa4”=b2=e, ab=ba). 

A harmonious sequence is 

e, a, a’, . . . . a2n, ba2”, ba2n-2, ba2” ~ 4 , . . . . b, a-‘, bat’, ap2, 
bae2, ap3, . . . . a’“+‘, ba2”+l, ba2”-l, ba2”-3, ba2”-‘, . . . . ba. 

(The products of consecutive terms are (in order) 

a, a3, a5, . . . . a-‘, b, a-2, ae6, a-l’, . . . . a’, ba-‘, ba-2, 
ba-3, . . . . ba2, e, ap4, ap8, . . . . a4, ba.) 
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Case 2. Z4,+2xZ2~ (a, bIa4”+‘=b2=e, ab=ba). 

A harmonious sequence is 

e, a’, a, a3, a4, a’, a6, ,,., a2”+ I, ba*” ba2n-2, ba2”-4, . . . . 
ba2, ba3, ba’, ba7, . . . . ba2” + ‘, a”’ + 2, ba’” + 2, a’“+ 3, baZn l 3, 
a2n+4 

, . . . . a -l, ba-‘, ba, b. 

(For n > 1, the products of consecutive terms are (in order) 

a*, a3, a4, a’, a9, a”, a13, . . . . a-‘, ba-‘, ae4, ap8, a-12, . . . . 
a6, a5, a*, a12, a16, . . . . a4n, ba, ba2, ba3, ba4, . . . . ba4”, e, 
a, b-1 I 

LEMMA 6.2. If G is Abelian, and G is an extension of Z, x Z, by a 
harmonious group H, then G is harmonious. 

Prooj Let H,, . . . . H,, be a harmonious labeling of the cosets of Z, x Z2 
and choose an element hi from each Hi. Then each g E G can be uniquely 
expressed as kh, and as k’h,,h,,+ , , where k and k’ belong to the Z, x Z2 
subgroup of G. 

Let a and b generate the subgroup Z, x Z, of G. 

Case 1. (H( ~0 (mod 3). 

A harmonious listing is 

eh,, eh,,..., eh,; bh,-,, al&-,, aL3, . . . . bh,-(3k+,), 
abh, - (3k+2)? ah +(J~+~), . . . . abh,, ah,; ah,, abh,, bh,, . . . . 
ah 3k+l? abh3k+,, bh3k+3, . . . . bh,; ah,-,, bh,-,, 

abh,-,, . . . . ah,-(3k+,,, bh,-c3k+2j, abh,-(,,+,,, . . . . bh,, 
abh,, . 

The products of adjacent terms are 

ehlh2, eh2h3, . . . . eh,-l h,; bL,h,; 4,-2h,-l, 
bhn-3L2, abL4L3, . . . . aL(3k+2,h,-(3k+,,, 
bh,- w+3jhn--(3k+2j, abh,-(3k+4,h,-(3k+3,, . . . . ah,h,, 
bh,h,; eh,,hl; bh,h2, ah2h3, abh3h4, . . . . bh3k+lh3k+2, 
ah 3k+2hk+3, abh3k+3h3k+4, . . . . ah,-,h,; ah-,A,; 
abL2h,-,, aL3, L2, bh,-,, bnp3, . . . . 
abh, - (3k+dh-(3k+1p ah h n-(3k+3) n-(3kf2)~ 

bh,-ok+&-(3k+31r ..-, abhlh2, ah,,h,+ 
abh,h,. 
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Case 2. (HI s 1 (mod 3). 

A harmonious listing is 

eh,, ehz, . . . . eh,; bh,-,, ah,-z, abh,- 37 ‘s.2 bhn-(3/c+ I)> 

ah,,- (3k+J, abhn-(3k+3,3 . . . . ah; ah,; ah,, bh,, abh3, 
ah 4, . . . . bb+2, abh3k+3, ah3k+4, . . . . abh,-,; bh,, ah,,-,, 
abL2, bL3, . . . . aLok+l)y abL(3k+2,, bL(3k+3), . . . . 
bh,; abh,. 

The products of adjacent terms are 

eh,h*, eh,h3, . . . . eh,-,h,; bh,_,h,; abh,-,h,-,, 
bk--3L-2, ah,-&,-,, . . . . abh,-,,,+,,h,-,,,+,,, 
bh,- w+3)hn-w+2), &-(3k+qh,-(3k+3), . . . . bh,h,; 
bh,hl; eh,h,; abh,h*, ahzh3, bh,h4, . . . . abh3k+lh3k+2, 
ah 3k+Ak+3, bh3k+3h3k+49 . . . . ah,-2Ll; ah,-,h,, 
a&-,h,, bL2Ll, ahn-3hn-2, . . . . abhn-(3k+l,hn-3k, 
bh, _ ok+&-w+lp ah,, ~ wc+&-w+2), ..-, ah,&; 
ah,h,, abh,h,. 

Case 3. IiYI E 2 (mod 3). 

A harmonious listing for IHI > 5 is 

4, eh2, . . . . 4; bh,-,, aL2, ah,-,, . . . . bh,-(3k+l,, 
ah,- (3kf2), a&z- (3k+3), . . . . ah,; bh2, ah, ah,, ah,, 

abh,; bh3, a&, ah,, . . . . b&k, Ubhjk+l, ah3k+2, . . . . abh,-,; 
bh,, ah,- I, abh,-,, bh,- 3, . . . . abh,; ah2, bh,, abh,. 

The products of adjacent terms are 

eh,h,, eh2h3, . . . . eh,-,h,; bh,-,h,; abh,-,h,-,, 
bhn-A-2, ahn--4L-3, ..-> abh,-(,k+,,h,~13k+,)r 
bh,-w+dL(3k+2), ah,- (3k+qhn-(x+3), . . . . abV4; 
abhzh3, ahlh2, bh,h,, eh,hl, bh,hz, ahlh3; ah3h4, bh4h5, 
ah&, ...p &&+,, bhx+lh3k+2, abh.+d’w+3, ..-, 
ah,-,h,-,; ah,-,h,; abh,-,h,, bh,-,h,-,, 
4-A-2, .a., abhn-(3k+l+Lvc, bh,-(w+z,h,-pc+l,, 
~hn-(,,+3,h,-(,,+,,~ .--, bh3h4, bh,h,; abh,h,, ah,h,, 
abh,h,. 

If IHI = 5, Gr Z, x Z,,, which is harmonious by Lemma 6.1. 1 
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LEMMA 6.3. If G is an Abelian 2-group and G is neither cyclic nor 
elementary, then G is harmonious. 

Proof The proof will proceed by induction on n, where IG( = 2”. There 
is no such G for n<3. For n=3 or 4, GzZ2xZ4, GrZ,xZ,, GE 
Z, x Z,, or G 2 Z, x Z, x Z,. Harmonious sequences for the first two cases 
are given in the proof of Lemma 6.1. A harmonious sequence for Z, x Z, z 
(a, bIa4=b4=e, ab=ba) is a, a3, a3b3, ab3, a2b2, b2, b3, a2b3, a3b, ab2, 
e, ab, a2b, a3b2, b, a2. A harmonious sequence for Z, x Z, x Z, E (a, b, 
cla2 = b2 = c4 =e, ab= ba, ac= ca, bc= cb) is ac3, ab, bc, c3, abc2, a, b, 
bc2, abc, abc3, e, c, ac, ac’, c2, bc3. 

For n > 4, by the induction hypothesis all non-cyclic, non-elementary 
Abelian 2-groups of order 2”-2 are harmonious. Since G is non-cyclic, it 
must be an extension of Z, x Z,. Assume G is an extension of Z, x Z, by 
the cyclic group Zan-z. Then either G r Z, x Z2”-,, which is harmonious by 
Lemma6.1, or GzZ, xZ, xZ2”-2, which is an extension of Z2xZ2 by 
Z, x Z2”-3, also harmonious by Lemma 6.1, in which case G is harmonious 
by Lemma 6.2. 

Assume now that G is an extension of Z, x Z2 by the elementary 
group (Z2)“-2. Since G is not elementary, Gz (Z2)n-2 x Z, or Gz 
(Z2)n-4 x Z, x Z, and these are extensions of Z, x Z2 by (Z,)“-” x Z, 
and (Z2)n-5 x Z, x Z,, respectively, which are both harmonious by the 
induction hypothesis. Again, G is harmonious by Lemma 6.2. 

Finally, if G is an extension of Z, x Z, by a non-cyclic, non-elementary 
2-group, G is harmonious by the induction hypothesis and Lemma 6.2. 1 

LEMMA 6.4. rf an Abelian group G is an extension of Z, x Z, x Z, by a 
harmonious group H, then G is harmonious. 

Proof. Since H is harmonious, there exists a harmonious sequence 
K 1, . . . . K, of the cosets of Z, x Z, x Z, in G. Choose k,, . . . . k, such that 
ki E Ki. Let a, b, c generate the Z, x Z, x Z, subgroup of G, and let 4 
be the permutation (c, b, a, bc, ab, abc, ac) on Z, x Z2 x Z,. Then a 
harmonious sequence is 

k,, k,, . . . . k,, 4”-2(c)k-1, V3(c)k,-2, . . . . 4(c)k2, ck,, 
g,kz, bk,, d(bP,, . . . . P2(bW,-,, g,k, 
#“-2(a)kn--lr . . . . d(ah ak,, g,k,,, bck,, qWc)k,, . . . . 
qF2(bc)k n--l, g,k,,, 4”-2(ab)k,-l, . . . . 4(abW2, abk,, 
g5k, abck,, d(abc)k2, . . . . 4n-2(abcW,-l, g&,, 
&-2(ac)kn--1, . . . . 4(ac)k,-,, . . . . 4(ac)k2, ack,, g,k,, 

where the values of g, are read from the following table: 
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g1 g2 g3 g4 L?, g, g7 

(HI r 0 (mod 7) c 0 b ab bc ac abc 
IHJ 3 1 (mod 7) ab ac c b abc bc 
IHI 3 2 (mod 7) abc ab be ac a ; c 
IH( 3 3 (mod 7) abc ac bc b 

c ac ab b”, 
ab c 

(HI 3 4 (mod 7) b abc 
IHI 3 5 (mod 7) b c ac a bc ai abc 
JH( 3 6 (mod 7) c a b ac bc ab obc 

Verification is straight forward with the observation that 4 is a complete 
mapping. 1 

LEMMA 6.5. If G is Abelian with an elementary noncyclic Sylow 
2-subgroup, and G is not a 2-group, then G is harmonious. 

Proof Obviously, G E (Z2)n x H, where n > 2, H is Abelian, and 1 HI is 
odd. Also, H is harmonious by Corollary 4.3. If n is even, Gz 
(Z, x Z2)“12 x H, so G is harmonious by n/2 applications of Lemma 6.2. If 
n is odd, then G z (Z, x Z2)(np3)‘2 x (Z,xZ,xZ,)x H, so G is har- 
monious by Lemma 6.4 and (n - 3)/2 applications of Lemma 6.2. 1 

We now prove the main result of this paper. 

THEOREM 6.6. If G is a finite, non-trivial Abelian group, then G is 
harmonious if and only $ G has a non-cyclic or trivial Sylow 2-subgroup 
and G is not an elementary 2-group. 

Proof ( (: ) If G is a 2-group the result follows from Lemma 6.3. 
Otherwise GE H x K, where H is the Sylow 2-subgroup of G and lK[ is 
odd. If H is trivial, then G is harmonious by Corollary 4.3. If H is non- 
elementary, then H is harmonious by Lemma 6.3, since H is non-cyclic by 
hypothesis, and so G is harmonious by Theorem 4.1. If H is elementary, G 
is harmonious by Lemma 6.5. 

( = ) This follows from Corollary 3.2 and Theorem 3.3. 

7. G* HARMONIOUS ABELIAN GROUPS 

DEFINITION 7.1. If G and G# have harmonious sequences h, , . . . . h, and 
I; 1, -0.3 L- 1, respectively, such that h, = E, and h, = xn--l, we say the 
sequences are harmoniously-matched, and G is a harmoniously-matched 
group. 

Remark 7.2. If h ,, . . . . h, is a harmonious sequence for an Abelian 
group, then 
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0) hi, hi+ ,, . . . . h,, h,, . . . . hi- I is a harmonious sequence, 1 < i < n, 
and 

(ii) h,, h,- 1, . . . . h,, h, is a harmonious sequence. 

THEOREM 7.3. Z, is harmoniously-matched if and only if n is odd and 
n> 5. 

Proof. If n is even, Z,X is not harmonious by Theorem 3.1. Also, Zr is 
clearly not harmonious. Now suppose n =4k+ 1, ka 1. Applying 
Remark 7.2 to the sequence in Theorem 4.2 gives the following harmonious 
sequence for Z n : 

2k, 2k f 1, . . . . 4k, 0, 1, 2, . . . . 2k - 1. 

A harmoniously-matched sequence for Z,X is 

2k, 2k - 2, .,., 4, 2, 4k, 4k - 2, . . . . 2k+4, 2k+2, 2k+l, 
2k + 3, . . . . 4k - 3, 4k - 1, 1, 3, . . . . 2k - 3, 2k - 1. 

Finally, suppose n =4k + 3, k 2 1. Again applying Remark 7.2 to 
Theorem 4.2, Z, has the harmonious sequence 

2k + 1, 2k + 2, . . . . 4k + 2, 0, 1, . . . . 2k- 1, 2k. 

A harmoniously-matched sequence for Zf is 

2k+l, 2k-l,..., 1, 4k+l, 4k-l,..., 2k+3, 2k+2, 
2k + 4, . . . . 4k + 2, 2, 4, 6, . . . . 2k. 1 

THEOREM 7.4. Z, x Z, is hamoniously-matched if m is even and greater 
than 2. 

Proof: A harmonious sequence for (Z,, x Z,)# is 

a, a2, a’, . . . . a’+‘, a’“, ba2n-1, ba2n-3, ba2”-‘, . . . . ba, b 
ba2, ba4, . . . . ba’“, azn+‘, ba2”+l, a2n+2, ba2n+2, . . . . a4n-L: 
ba‘h - 1 

(The products of consecutive terms are, in order, 

a3, a5, . . . . a4+‘, ba4”-l, a4n-4, a4”-‘, . . . . a4, a, a2, a6, . . . . 
a4”-‘, ba, ba2, ba3, . . . . ba4”-3, ba4”- 2, b.) 

Applying Remark 7.2 to this sequence and the sequence given in 
Theorem 4.2., both Z,, x Z, and (Z,, x Z,)# have harmonious sequences 
that begin with a2 and end with a. 

582a/56/2-5 



236 BEALSET AL. 

A harmonious sequence for (Z,, + 2 x Z,) # is 

2, a3, . . . . a’“, azn + I 
;a; . . . . ba2n--, ba+ 

ba2n ba2”-2 ba2n--4 ba2 b, ba, 
a2i+2, ba+ a,;;; ba;“+3 ,..., 

a 4n+1, ba4n+‘. 

(The products of consecutive terms are, in order, 

a3, a5, . . . . a4”+l, ba4”+ ‘, a4np2, a4n-6, . . . . a6, a2, a, a4, 
a’, . . . . a4n, ba, ba2, ba3, . . . . ba4n, b.) 

Applying Remark 7.2 to this sequence and the sequence given in 
Lemma 6.1, both Z4n+2 x Z, and (Z,,, 2 x Z,)” have harmonious sequen- 
ces that begin with ba2” and end with a2”+ ‘. 1 

LEMMA 1.5. The group Z, x Z3 is harmoniously-matched. 

Proof: A harmonious sequence for Z, x Z, is 

ab, a2b, b2, ab’, a2b2, e, a, a2, b. 

A harmonious sequence for (Z, x Z,) # is 

ab, a2, a2b, b2, a2b2, a, ab2, 6. 1 

THEOREM 7.6. Suppose K is a group of odd order and H is a har- 
moniously-matched group. Then (H x K) # is harmoniously-matched. 

Proof: By Theorem 5.5, K is harmonious. Then applying Remark 7.2 
to the sequence given in the proof of Lemma 4.5 we may obtain 
harmoniously-matched sequences beginning with (h2, k,) and ending with 
(h,> k2). I 

COROLLARY 7.7. All Abelian groups of odd order are harmoniously- 
matched except Z,. 

Proof For elementary Abelian 3-groups, the result follows from 
Theorem 7.5 and Theorem 7.6. Otherwise, the result follows from 
Theorem 7.3 and Theorem 7.6. l 

LEMMA 7.8. If an Abelian group G is an extension of Z, x Z2 by a 
harmoniously-matched group H, then G is harmoniously-matched. 

Proof: If HzZ,, then the result follows from Theorem 7.4. Assume 
then that H $k Z,. Let n= IG1/4, and let hI, . . . . h, and x1, . . . . A,-, be 
harmoniously-matched sequences of H and H#. Let g,, . . . . g,, be the 
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harmonious sequence of G constructed from h, , . . . . h, in the proof of 
Lemma 6.2. Then the sequence g, where 

gi = e?i,, l<i<n-1 

2, =gi+1, n<<<4n- 1 

is harmonious, and since g,-, = g, and gn = g, + r, G is harmoniously- 
matched by Remark 7.2. 1 

THEOREM 7.9. If an Abelian 2-group G is neither cyclic nor elementary, 
then G is harmoniously-matched. 

Proof: The proof is analogous to the proof of Lemma 6.3, using 
the corresponding theorems for harmoniously-matched groups instead 
of the theorems for harmonious groups. The group (2, x Z, x Z,)# z 
(a,b,cIa2=b2=c4=e, ab=b a, ac = ca, bc = cb ) has the harmonious 
sequence 

ac3, c3, ab, b, bc, c, a, ac2, abc3, c2, bc2, abc, abc2, ac, be3 

which is harmoniously-matched with the sequence in the proof of 
Lemma 6.3. m 

LEMMA 7.10. If an Abelian group G is an extension of Z, x Z, x Z, by a 
harmoniously-matched group, then G is harmoniously-matched. 

Proox The proof is analogous to the proof of Lemma 7.8, with the 
harmonious sequence constructed in Lemma 6.4 used in place of that 
constructed in Lemma 6.2. 1 

THEOREM 7.11. If G is Abelian and has an elementary, non-cyclic SyZow 
2-subgroup, and G is not a 2-group, then G is harmoniously-matched. 

Proof G z (Z,)” x H, IHI odd. If H is not isomorphic to Z, or n > 3, 
then the proof is analogous to the proof of Lemma 6.5. Otherwise, G is 
either (Z,)’ x Z, 2 Z2 x Z,, which is done in Theorem 7.4, or (Z2)3 x Z, z 
Z,xZ,xZ,z (a, b, cIa2=b2=c6=e, ab=ba, ac=ca, bc=cb), which 
has the harmonious sequences 

ab, c, ac’, c3, c2, c4, e, bc4, ci, abc3, bc2, ac4, ac3, bc, ac2, 
bc3, bc’, abc4, b, abc, abc2, a, abc’, ac 

and 
ab, b, ac’, bc, c, c2, bc’, abcs, bc5, ac3, abc2, abc3, abc, ac2, 
a, bc4, bc3, c3, abc4, c5, ac4, c4, ac. 

The proof for (Z,)” x Z,, n > 3, can proceed as in the general case. m 
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COROLLARY 7.12. If an Abelian group G has either a non-cyclic or trivial 
Sylow 2-subgroup, then G” is harmonious, unless G z Z,. 

Proof Follows from Corollary 7.7 and Theorems 7.9, 7.6, and 7.11. 1 
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