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H2-optimal Control with an H -constraint. 
The State Feedback Case* 

M A R I O  A.  R O T E A t  and  P R A M O D  P. K H A R G O N E K A R ~ t  

A state-space approach solves the problem o f  finding among all state 
feedback controllers that minimize an HE-performance measure one that 
also satisfies an Ha-norm bound. 
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Abstract--In this paper we consider a mixed HZ//-/~-optimal 
control problem. It is assumed that the plant as well as the 
feedback controller are finite-dimensional and linear 
time-invariant, and that the plant state is available for 
feedback. More specifically, among all the state-feedback 
controllers that minimize the HE-norm of a closed loop 
transfer matrix, we give necessary and sufficient conditions 
for the existence of a controller that also satisfies a 
prescribed H®-norm bound on some other closed loop 
transfer matrix. When these conditions are met, the solution 
to the above problem is also a global solution to the 
contrained optimization problem of minimizing an HE-norm 
performance measure subject to an H®-norm constraint. We 
also give state-space formulae for computing the solutions. 
Some easily checkable sufficient conditions for the existence 
of solutions are given. Finally we give an example in which 
all solutions to the constrained optimization problem are 
necessarily dynamic, i.e. there is no static gain solution even 
though plant state is available for feedback. 

1. INTRODUCTION AND PROBLEM 
FORMULATION 

THE CONTROL p r o b l e m  a d d r e s s e d  in this  p a p e r  
concerns  the  f in i t e -d imens iona l  l inear  t ime-  
invar ian t  f e e d b a c k  sys tem d e p i c t e d  in Fig.  1. 
The  signals Wl and  WE d e n o t e  e x o g e n o u s  inputs  
while  Zl and  z2 d e n o t e  con t ro l l ed  ( i .e .  r egu l a t e d )  
signals.  The  s ignals  u and  y d e n o t e  the  con t ro l  
input  and  the  m e a s u r e d  ou tpu t ,  r espec t ive ly .  T h e  
t ransfe r  mat r ices  of  the  p l an t  and  the  con t ro l l e r  
are  d e n o t e d  by  G and  K, respec t ive ly .  I t  is a lso 
a s sumed  tha t  bo th  G and  K a re  r e a l - r a t i ona l  and  
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p r o p e r  t ransfe r  mat r ices .  F ina l ly ,  for  g iven a 
r ea l - r a t iona l  and  p r o p e r  con t ro l l e r  K, we let  
TI(K) and  T2(K) d e n o t e  the  c losed  l oop  t rans fe r  
mat r ices  f rom Wl to Zl and  w2 to z2, respec t ive ly .  
W h e n  the re  is no  poss ib i l i ty  of  confus ion ,  the  
d e p e n d e n c e  of  T1 and  T2 on  K will be  o m i t t e d .  

In  this p a p e r  we a s sume  tha t  the  s ta te  o f  the  
genera l i zed  p lan t  G is ava i l ab le  for  f eedback .  To  
be m o r e  prec i se  let  a s t a t e - space  desc r ip t ion  o f  
G be given by:  

dx 
- -  = Ax + Blwl + BEwE + B3u (1 .1a)  
dt  

Zl = ClX + Dlu (1 .1b)  

z2 = CEX + DEU (1. l c )  

y = x  (1 .1d)  

where  all  the  ma t r i ces  in (1.1) a re  rea l  ma t r i ce s  
of  c o m p a t i b l e  d imens ions .  A l t h o u g h  no expl ic i t  
f r equency  d e p e n d e n t  weights  were  i n t r o d u c e d ,  it  
is a s sumed  tha t  all we igh t ing  func t ions  have  been  
a b s o r b e d  in the  gene ra l i zed  p l an t  G. N o t e  tha t  
the re  a re  no f e e d t h r o u g h  t e rms  f rom the  
exogenous  signals w to the  con t ro l l ed  signals  z. 
A l t h o u g h  it is poss ib le  to inc lude  these  t e rms ,  we 
have  chosen  not  to inc lude  t h e m  in o r d e r  to  k e e p  
the p r e se n t a t i on  as s imple  as poss ib le .  

A given con t ro l l e r  K is ca l led  admissible (for 
the plant G) if K is r e a l - r a t i ona l  p r o p e r ,  and  the  
min imal  rea l i za t ion  of  K in te rna l ly  s tabi l izes  the  

s ta te - space  rea l i za t ion  (1.1) o f  G. Le t  II-112 and  
I1.11~ deno te  the  usual  H 2 and  H ~ no rms ,  
respect ive ly .  The  two p r o b l e m s  c ons ide r e d  in 
this p a p e r  a re  def ined  as fol lows:  

Problem A: Minimal HE-norm subject to an 
H~-norm constraint. F o r  the  p l an t  G def ined  in 
(1.1),  find an admiss ib le  con t ro l l e r  K tha t  
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FIG. 1. T h e  syn thes i s  f r a m e w o r k .  

achieves 

inf { II T~ ( g )  ll 2: g admissible and II TdK)II ~ < 1}. 

Problem B: Simultaneous HZ / H ~ optimal 
control. For the plant G defined in (1.1) find an 
admissible controller K that achieves 

inf { II T1 (K)112: K admissible) 

and such that II T2(K)IG < 1. 

Note that while Problem A represents a 
constrained optimization problem, Problem B is 
to find (if it exists) a solution to the 
unconstrained problem of minimizing an H 2- 
performance measure that also satisfies an 
He-norm bound. The key point is that a solution 
to Problem B is also a solution to Problem A but 
the converse need not be true, 

Recently Problem A has received a great deal 
of attention, mainly because it represents a 
problem of optimal nominal performance with 
robust stability [see, for example, Bernstein and 
Haddad (1989), Mustafa and Glover (1988), 
Doyle et al. (1989b)]. Indeed, if we consider that 
a stable (possibly nonlinear) perturbation A is 
connected from z2 to w2 (see Fig. 1), then the 
small gain theorem ensures stability of the 
perturbed system if the nominal system (A = 0) 
is internally stable and IIT211~ < 1, provided that 
the induced operator norm of A is less than or 
equal to one. Among all the admissible 
controllers K that provide robust stability, 
Problem A is to find a controller that minimizes 
the variance of the output z~ (with A--0)  when 
w~ is zero mean unit variance white noise. 

Currently, no analytic solution to Problem A 
is known. Some attempts have been made to 
solve "modified" versions of this optimization 
problem. Mustafa and Glover (1988) and Glover 
and Mustafa (1989) have considered the special 
case in which B 1 - -  B 2 ,  C 1 = C 2 ,  D 1 --- D 2 ,  and 
hence 7"1 = T2 (see Fig. 1). For this case, they 
have solved the problem of maximizing an 
entropy functional subject to an H~-norm 
constraint. This problem formulation is related 
to Problem A in that the (negative of the) 
entropy of a transfer matrix is an upper bound 
for its H2-norm. Bernstein and Haddad (1989) 

have considered the case of one exogeneous 
signal. In our setting, this means B1 = B 2 ,  They 
have also considered the minimization of an 
upper bound ("auxiliary cost", as defined by 
them) for IITlll2 subject to an H~-norm 
constraint on T2. Using a Lagrange multiplier 
technique, and under the assumption that the 
order of the controller is specified, they have 
derived necessary conditions for optimality. See 
also Bernstein et al. (1989) for more recent work 
on this approach and Mustafa (1989) for an 
explicit connection between the entropy and the 
auxiliary cost for the special case T1 = T2. 
Finally, Doyle et al. (1989b) have considered a 
similar problem with one controlled output, i.e. 
C 1 = C 2 and D1 = 0 2 .  They have derived 
necessary conditions and sufficient conditions for 
this modified problem to have a solution. As 
shown in Doyle et al. (1989b), there may be a 
gap between these conditions. It is important to 
note that these papers address the more general 
and interesting situation of output feedback. 

Problem B has not been considered before. 
Our objective in this paper is twofold. Firstly, 
we want to parametrize the set of all solutions 
for the (unconstrained) H2-optimal control 
problem inf { II TI(K)II2 : K admissible). Secondly, 
we want to find necessary and sufficient 
conditions for the existence of a solution to 
Problem B. Since a solution to Problem B is also 
a solution to Problem A, these conditions are 
sufficient for Problem A to have a solution. 
While it may seem that the solvability of 
Problem B is a very strong sufficient condition 
for the solvability of Problem A, it will be seen 
that if imB1 and imB2 are linearly independent, 
then Problem B and Problem A become 
equivalent. 

It is important to note that the problems 
considered in this paper can also be approached 
with the aid of convex nonlinear programming; 
see, for example, Boyd et al. (1988). Since our 
results are analytical, they complement the 
numerical optimization approach taken by Boyd 
et al. (1988) and related papers. 

A brief summary of our results and the 
organization of the paper is as follows. In 
Section 2 we give a parametrization of all 
H2-optimal state feedback controllers. This 
parametrization is obtained in terms of a free 
transfer matrix in R H  2. Furthermore, any closed 
loop transfer matrix is affine in this free 
parameter. Using this parametrization along 
with the recent solution to the standard H ~ 
problem given in Glover and Doyle (1988) and 
Doyle et al. (1989a), Section 3 gives necessary 
and sufficient conditions for the existence of 
solutions to Problem B (cf. Theorem 2). These 
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conditions involve two algebraic Riccati equa- 
tions (AREs) and a coupling condition. The first 
ARE reflects the fact that there must exist an 
admissible (state-feedback) controller such that 
IIT211~< 1. The second A R E  and the coupling 
condition arise due to the requirement of the H a 
optimization. Since a solution to Problem B is 
also a solution to Problem A, these conditions 
are sutficient for Problem A to have a solution 
(cf. Corollary 1). When these conditions are 
satisfied, a "dynamic" state-feedback controller 
that solves Problem B (and Problem A) is given. 
Finally, in Section 4, we consider the special case 
in which imB1 and imB2 are linearly independ- 
ent. In this case we show that Problem A has a 
solution if and only if there exists an admissible 
controller such that IIT211~ < 1. Thus, under the 
mild condition of linear independence of imB1 
and imB2, one gets a complete solution to 
Problem A. In this section we also show (by 
example) that there are situations in which any 
solution to either Problem A or Problem B must 
necessarily be dynamic. This is in significant 
contrast to the fact that in either H 2 or H ~ 
optimal control problems, when states are 
available for feedback, the controller can be 
chosen to be a memoryless gain [see, for 
example Kalman (1960) and Khargonekar et al. 
(1988)]. This example appears to indicate that 
the mixed H2/H ~ problems are likely to be much 
more complicated than standard H a and H ~ 
problems. Finally in Section 5 the conclusions of 
this work are given. 

The notation is fairly standard. The identity 
matrix is denoted by L For a constant matrix M, 
let imM and kerM denote its range and null 
space, respectively. The spectral radius of M is 
denoted by p(M). The transpose of M is 
denoted by M'.  Let M ÷ denote the Moore-  
Penrose inverse of M. If M = 0 we shall define 
M+:=0 .  The orthogonal complement of a 
subspace S c R p is denoted by S ±. Packed matrix 
notation is used to represent state-space 
realizations, i.e. 

[A~-~DB ] := C ( s I - A ) - I B +  D. 

For a transfer matrix G, we define G -  as 
G-(s) := G'(-s )  for all complex s. The spaces 
H 2 and H 2± denote the Hardy spaces of matrix- 
valued functions that are square integrable on 
the imaginary axis with analytic extensions into 
the right and left half plane, respectively. The 
Hardy space H ~ consists of matrix-valued 
functions that are bounded on the imaginary axis 
with analytic extension into the right half plane. 
The norms in these spaces are defined in the 

usual way: 

[,G,12:= "~/-~n f~_ trace (G-G)(jto) dto 

II G II ~: = sup o { G (j to) }, (tr : = max singular value). 
t o E R  

When R is used as a prefix, it denotes real 
rational. Given real matrices A, R = R ' ,  and 
Q = Q',  will say that the algebraic Riccati 
equation (ARE) A ' X  + XA + XRX + Q = 0 ad- 
mits the (unique) stabilizing solution X~ if Xs is 
real and symmetric, Xs satisfies the ARE,  and 
A + RXs has eigenvalues in the open left half 
plane. A similar definition is used for the 
antistabilizing solution with the obvious 
modifications. 

In the rest of the paper, the following standard 
assumptions on the plant G are made: 

(i) {m, B3} is stabilizable. (1.2a) 
(ii) D1 and DE both have full column rank. (1.2b) 

(iii) For each to e R and for k = 1, 2 

[Aio, 
C, 

has full column rank. 

Note that assumption (1.2a) ensures that the 
set of admissible controllers is non-empty while 
assumptions (1.2b, c) are standard and guarantee 
that the LQR problem corresponding to the 
quadratic cost  [[Zk[[2 has an admissible solution. 
Without loss of generality we further assume 
that 

(iv) D~[C2 D21 = [0 I]. (1.2d) 

In fact, as is well known, a preliminary feedback 
transformation will enforce this last equation. 

2. PARAMETRIZATION OF ALL H2-OPTIMAL 
CONTROLLERS 

In this section we parametrize the set of all 
admissible unconstrained H2-optimal state- 
feedback controllers for the interconnection of 
Fig. 1. The development is carried out using a 
frequency domain approach. More specifically, 
the YJBK parametrization of all stabilizing 
compensators is used to solve this problem (see 
for example Vidyasagar, 1984). The final 
formula for the solution to this problem is given 
in state-space (cf. Theorem 1). 

Consider the block diagram of Fig. 1, where 
the plant G is as in (1.1). It is a classical fact that 
[under assumptions (1.2a-c)] there exists an 
admissible controller that minimizes IlTlll2. One 
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such admissible controller is K0 = F, where the 
constant real matrix F is computed according to 

F:--- -(D~D1)-I(D~Ca + B~XI), (2.1a) 

and the constant matrix X1 is the unique 
stabilizing solution of the (LQR) ARE 

A ' X  + XA - (O~Cl + B~X)t(D~D1) -1 

× (D'IC1 + B~X) + C'ICI = 0. (2. lb) 

Perhaps, it is less well known that (2.1) is not 
the only admissible controller that minimizes 
IITlII2. Our first result (Theorem 1) gives a 
complete parametrization of all solutions to this 
optimization problem. With reference to the 
realization of the plant G given in (1.1) and with 
F given by (2.1), define 

H I : = I -  BIB~{, (2.2) 

AF:=A + B3F, (2.3) 

C,F:= Ck + OkF; k = 1, 2. (2.4) 

The matrix 171 is the orthogonal projection onto 
(imB1) ±. Note that Ar  is a stability matrix. 
Define the set of transfer matrices: 

S :=  {Q m RH=: Q = Wl-I~(sI - A v ) ,  W E RH2}. 

(2.5) 

Theorem 1. Consider the feedback system of 
Fig. 1, with the plant G given by (1.1). Let S be 
defined by (2.5). Let K denote an admissible 
controller and T~ the corresponding closed loop 
transfer matrix from 14/1 to zl. Then, K minimizes 
[I Till2 if and only if K equals the transfer matrix 
from y to u in 

U ~ ! 

Q 

for some Q E S. 

I~ ,  y 

0 

J : =  F 

1 
i 3 ] 

(2.6) 

Note that if imB1 = R n (n:=state dimension) 
then l l l = 0  and (2.7) reduces to the single 
state-feedback controller K0 = F. On the other 
hand, if imB1 is a proper subspace of R n then 
(2.6) generates a family of controllers para- 
metrized by W. This extra freedom can be used 
to satisfy some additional constraints. 

The next lemma will be useful for establishing 
Theorem 1. It provides state-space formulae for 
the YJBK parametrization of all admissible 
controllers. The formulae given below are more 
appropriate for our setting (state-feedback) than 

the well known formulae in terms of an 
"observer-based" stabilizing compensator. 

Lemma 1. Consider the feedback system of Fig. 
1, where G is given by (1.1). Then, a given 
controller K is admissible if and only if there 
exists Q E R H  ~ such that K equals the transfer 
matrix from y to u in (2.6). 

Proof. First, note that a given controller K is 
admissible for G if and only if K is admissible for 
G y , : = ( s I - A ) - I B 3  . With F given by (2.1), 
define the R H  ~ matrices 

" L l r O J '  

M : = I  + FN, N : = N ,  ~ t : = I  + NF, 

X : = F ,  Y : = I ,  X : = F ,  IT:=L 

Then, it is straightforward to verify that 

Gyu = N M  -1 = AT/-1/V 

These equations provide a (doubly) coprime 
factorization over R H  °~ for Gr,. It now follows 
(see, for example, Vidyasagar, 1984) that K is 
admissible for Gy, if and only if there exists 
Q ~ R H  ~ such that 

K = ( X  + M Q ) ( Y  + NQ )  -1 

= F + Q ( I  + N Q ) - ' ,  

which is of the form (2.6). Q.E.D. 

Proof of  Theorem 1. From Lemma 1 and after 
some standard algebraic manipulations, it 
follows that the set of all admissible closed loop 
transfer matrices from wl to 21 (i.e. those that 
are generated by admissible controllers) can be 
parametrized by the formula 

T1:=SI+U~QV1, Q E R H  ~, (2.7) 

S1 : =  

LC~FI OJ' LC~FID~_I' 

vi:_- [A: I 
L I  I O J '  

where AF and C~F are defined in (2.3) and (2.4), 
respectively. 

It is now standard to show (using some simple 
algebra and (2.1)) that RI:=D;D~ = UTUt and 
that UTSI•  H 21. Using these properties, we 
conclude from (2.9) that if Q e R H  ~ then 

II T, II~ = IIS, ll~ = + IIU, QVll~ 

= IIS, II~ + l i v e ,  OV~ll~. 



Mixed H2/H=-optimal control 311 

It is now clear that Q e RH" minimizes IIT~}I2 if 
and only if Q satisfies 

V ~  QV~ =O¢~Q(sI--AF)-~BI=O. (2.8) 

To complete the proof we must show that 
Q e RH" satisfies (2.8) if and only if Q e S. 
Clearly, if Q e S  then Q e R H  = and satisfies 
(2.8). The converse is as follows. Let Q ~ RH = 
be given and suppose that it satisfies (2.8). 
Define W := Q(sl - AF) -~. Note that W ~ RH 2, 
for AF is a stability matrix. Moreover, from (2.2) 
and (2.8), it follows that 

WII1 = Q(sI - A F )  -1 ~ Wl-I~(sl - Av) = Q. 

Therefore, Q ~ S. Q.E.D. 

We conclude this section with a state-space 
representation for the controller of Theorem 1 
that will be useful for establishing the main 
result of this paper (Theorem 2). Let W ~ RH 2 
be given by 

W = / c w  I 0 J "  

Then it is easy to show that Q--WI- I~(s l -  AF) 
is given by 

Q = f A ,  ] A , B , H , -  CwB,l-I1 1 

Substituting this realization of Q in (2.6), and 
after deleting unobservable modes, the control- 
ler K of Theorem 1 is given by 

A r  = A,¢ - B~I-I1BaCw, (2.9a) 

[ A r  l AKB~II1-  B~II1AF] (2.9b) 
K = Cw F + CwBwl-I1 J" 

3. THE SIMULTANEOUS H2/I-I ~ PROBLEM 
In this section we solve the simultaneous 

HE/H ~ optimization problem (Problem B) 
defined in Section 1. The development is carried 
out using Theorem 1 along with the recent 
solution to the standard H=-optimization prob- 
lem given in Glover and Doyle (1988) and Doyle 
et al. (1989a). For the sake of completeness, a 
slightly modified statement (suitable for our 
purposes) of the main result of Glover and 
Doyle (1988) has been included in a separate 
appendix. 

Our first result in this section gives necessary 
and sufficient conditions for the existence of 
solutions to Problem B. Consider the plant G 
given by (1.1) and let H1 denote the projection 
matrix defined in (2.2). Define also 

V 2 " ~-- I~ 1B 2. (3.1) 

Note that Vz = 0 if and only if imB2 c imB1. The 

following algebraic Riccati equations (for X and 
Y) will play an important role in stating our 
conditions for the existence of solutions to 
Problem B: 

A ' X  + XA + X(B2B~ - B3B~)X + C~C2 = 0 

(3.2) 
V 2 V2)B 2 0 Y(CI 2r)Y+ a 2 ( I -  ÷ ' = 

(3.3) 

where F, AF, and C2F are defined in (2.1), (2.3) 
and (2.4), respectively. 

Theorem 2. Consider the feedback system of 
Fig. 1, with the plant G given by (1.1). Then 
there exists an admissible controller K that 
solves Problem B if and only if the following 
conditions hold: 

(i) The ARE (3.2) admits the stabilizing 
solution X2, and X2 -> 0. (3.5a) 

(ii) The ARE (3.3) admits the stabilizing 
solution I:2- (3.5b) 

(iii) p(Y2X2) < 1. (3.5c) 

Moreover, when these conditions are met, one 
solution to Problem B is given by 

[HAO A0X-XA, ] (3.6a) 
K : =  F F ( I - Z ) + H Z J '  

where 

Ao:=A + (I - Z)B3H + ~-,BaF + (I - ~,)B2B~X2, 

(3.6b) 

~:=ZEBzVfl-I1, H : =  - B ~ ( 2 ,  

Z 2 : = ( I -  YzX2) -1, (3.6c) 

and F, A v a r e  defined in (2.1) and (2.3), 
respectively. 

It should be noted that, under assumption 
(1.2d), condition (3.5a) is equivalent to the 
existence of an admissible controller K such that 
]]T2[]®< 1 (Doyle et al., 1989a). The other two 
conditions, namely (3.5b, c), reflect the fact that 
one of these admissible controllers must also 
minimize II Tdl2. As it will become clear from the 
proof of Theorem 2, when imB2cimB1, 
Problem B has a solution if and only if condition 
(3.5b) holds. In this case, the constant gain F 
defined in (2.1) is a solution to Problem B. 

Since a solution to Problem B is also a 
solution to Problem A, Theorem 2 may be used 
to produce a sufficient condition under which 
Problem A can be solved. It is obvious that 
Problem A makes sense only if condition (3.5a) 
holds. In other words, if (3.5a) is not satisfied 
then, there is no state-feedback controller that 
internally stabilizes the plant G and yields 
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II T211~ < 1. An immediate consequence of 
Theorem 2 is the following. 

Corollary 1. Consider the feedback system of 
Fig. 1, with the plant G given by (1.1). Suppose 
that conditions (3.5) hold. Then the controller 
given by (3.6) is an admissible controller that 
solves Problem A. Furthermore, 

inf { II Tl112: K admissible and II Tdl~ < 1 } 

= inf { II Tl112 : K admissible}. 

We conclude this section with a number of 
intermediate results that will lead to a proof of 
Theorem 2. In the light of Theorem 1, solving 
Problem B reduces to that of finding a controller 
of the form (2.7) such that II T2II~ < 1. Let F, AF, 
and C2F be defined by (2.1), (2.3) and (2.4), 
respectively. An easy calculation shows that 
when the controller given in Theorem 1 is 
connected to the plant G, the closed loop 
transfer matrix from w2 to z2 equals 

T2:=S2--I- U2WV2, W e R H 2 ( f r e e ) ,  (3.8a) 
where 

S2:=LC2FI 0 J U2:= ' L CZF I D2 J 

Vz:=H1B 2. (3.8b) 

From (3.8b) we observe that if imBz  c imB~ 
then V2 = 0, and T2 = Sz for all W E R H  2. 
Therefore, in this particular case, we can not 
exploit the transfer matrix W to reduce [I TzII=. In 
other words, for all W ~ R H  z it follows that 
T2 = Tz(F), where F is the constant gain given in 
(2.1). The following lemma gives necessary and 
sufficient conditions for the existence of W e 
R H  2 such that IITz[I~< 1 and it will become 
useful for establishing Theorem 2. 

L e m m a  2. Consider the transfer matrix Ta given 
in (3.8). Assume that V2¢0. Then, there exists 
W e R H  2 such that IIT211~<l if and only if 
conditions (3.5) hold. In this case, a transfer 
matrix W e R H  2 such that IIT211~ < 1 is given by 

W : : [  A'+(I-Z)B2B;X2H-F Z2%2V~-], (3.10) 

where A H : = A + B 3 H ,  and H, Z and Z2 are 
defined in (3.6c). 

Proof. First we factor the non-zero constant 
matrix V: as V2=MoM~, where M0 is a full 
column rank matrix and M~ satisfies M~M; = 1. 
(Note that this factorization always exists.) Now 
it is easy to see that the closed loop transfer 
matrix T2 given in (3.8) equals the transfer 
matrix from w2 to z2 in the following diagram: 

w 2 ~ ~ z 2 

v r 

C 

P : =  e 0 2 C : = W M o .  (3.11) 

Me 

Note that the full column rank property of M0 
guarantees that the existence of W e R H  2 such 
that IIT211~ < 1 is equivalent to the existence of 
C E RH 2 such that II T211~ < 1. 

Next, we show that conditions (3.5) are 
necessary and sufficient for the existence of such 
a transfer matrix C. First note that since the 
open loop transfer matrix P,~ (from v to r) in 
(3.11) is identically zero, and since AF is a 
stability matrix, it is obvious that a given 
controller C is admissible for P if and only if 
C e R H  ~. We claim that the auxiliary plant P 
defined in (3.11) satisfies all the assumptions of 
Theorem A.7 (see the Appendix). This claim 
will be verified later. 

Now, applying the result of Theorem A.7 to 
the auxiliary plant P and after some algebra, one 
concludes that there exists C e R H  ~ such that 
II T~II~ < 1 if and only if the following conditions 
are met: 

(a) The ARE (3.2) admits the stabilizing 
solution Xa, and X 2 - 0 .  [Here we have 
used assumption (1.2d).] 

(b) The ARE (3.3) admits the stabilizing 
solution Ya, and Y2- 0. [Here we have used 
the identity M~Mi = V~V2.] 

(c) p(Y2Xe)  < 1. 

The equivalence between the condition (b) 
above and (3.5b) is obtained by observing that 
the stability of AF implies that any symmetric 
solution to the ARE (3.3) is positive semidefin- 
ite. We must also show that when the above 
conditions are met there is a choice of C not only 
in R H  ~ but also in R H  2. This immediately 
follows from the construction of the controller 
given in Theorem A.7. In fact, from (A.8a), we 
observe that C can be chosen to be strictly 
proper. 

Finally, assuming that conditions (3.5) hold, 
the formula for W given in (3.10) follows from 
(A.8) (to obtain a formula for C), and solving 
the linear equation indicated in (3.11) for the 
transfer matrix W. In this step we have used the 
fact that there always exist a choice of Mi and M0 
such that V f  = M ~ M o  (where Mo denotes a left 
inverse of M0). 
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To complete the proof, we must verify that the 
auxiliary plant P in (3.11) satisfies all the 
assumptions of Theorem A.7. Clearly, (A.1) 
follows from the stability property of AF. 
Assumption (A.2) follows from (1.2d) and the 
identity MiM~ = L Finally, using (1.2c) and the 
identity 

A r - j t o l  B3 [ A - j t o I  B3][I 
C2e D2] = C2 D2JLF ~] '  

we conclude that (A.3) is satisfied. The fact that 
assumption (A.4) holds is a consequence of the 
nonsingularity of Ar  and the full row rank 
property of M i. Q.E.D. 

Proof of Theorem 2. We consider two cases. 
Case 1. Suppose that imB2 ¢ imB1. In this 

case V2¢0 (cf. (3.1)). Combining the results of 
Theorem 1 and Lemma 2 it is clear that among 
the admissible controllers that minimize l iT 1 liE 
there exists one such that II T2[I~ < 1 if and only if 
conditions (3.5) hold. Suppose that these 
conditions hold and let W be given by (3.10). 
Define 

Aw : = A n  + (I - ~ ) B 2 B ~ X 2 ,  

Bw:=Z2BEV~, Cw:=H-F.  

Using these equations and the fact that 
X := BwH1 [cf. (3.6c)], it follows from (2.11) that 
a solution to Problem B is given by (3.6). 

Case 2. Suppose that imBEcimB1. In this 
case V2 and V~- are both zero [cf. (3.1)]. 
Therefore, from (3.8a), we conclude that 
Problem B has a solution if and only if 

II5211~ < 1, (3.12) 

where the transfer matrix Sz is defined in (3.8b). 
We claim that (3.12) and (3.5b) are equivalent. 
In fact, since Ae is a stability matrix, from 
Lemma 4 in Doyle et al. (1989a) it follows that 
(3.12) is satisfied if and only if the ARE 

YA'F + ArY  + Y(C~Z72e)Y + B2B~ = 0, (3.13) 

admits the stabilizing solution. The claim is 
finally established by observing that V~'V2=0 
implies that the AREs (3.3) and (3.13) are the 
same. Next, we show that conditions (3.5a) and 
(3.5c) are necessary for Problem B to have a 
solution. 

Suppose that Problem B has a solution; then 
(3.12) holds. From (3.8a) it follows that the 
admissible controller F defined in (2.1) yields the 
closed loop transfer matrix T2(F)= $2. Hence, 
from (3.12) and item FI.4 in Doyle et al. 
(1989a), we conclude that condition (3.5a) must 
hold. 

The necessity of condition (3.5c) will be 

proved under the technical assumption that the 
pair (C2, A) is observable. (Even if this is not 
the case, the result is still true, and can be 
obtained by factoring the unobservable subspace 
out.) Suppose that Problem B has a solution, 
then conditions (3.5a, b) are satisfied. It is easy 
to show [using the observability of the pair 
(C2, A)] that the stabilizing solution to the ARE 
(3.2) satisfies X2>0. Define Y+:=X~ -1. From 
(3.2) it follows that Y÷ satisfies 

AY÷+ L A ' +  

(A + Y+ c~c2)' 

= - y 7 1 ( A  

Hence, Y+ is 

Y+C~C2Y+ + B2B~ - B3B~ = O, 

+ (B2B~- B3B;)X2)Y+. (3.14) 

the (unique) anti-stabilizing 
solution to the ARE (3.14). We now show that if 
Y denotes any real symmetric solution to the 
ARE (3.3) then 

II+ -> Y. (3.15) 

Indeed, using a "completion of squares" 
argument, it follows that any solution Y of (3.3) 
satisfies the quadratic matrix inequality 

A Y  + YA' + YC~C2Y + BEB~ -- BaB~ 

= - ( B ;  + FY)'(B; + FY) -< 0. 

Hence, from Ran and Vreugdenhil (1988), it 
follows that inequality (3.15) must hold. 

Note that the pair (C2F, AF) is observable. 
This follows from the observability of (C2, A) 
and assumption (1.2d). Since (3.5b) holds we 
conclude from Willems (1971) that the anti- 
stabilizing solution to the ARE (3.3), say Y_, 
exists and 

Y- > II2, (3.16) 

where Y2 denotes the stabilizing solution to the 
ARE (3.3). Combining (3.15) and (3.16) we 
obtain that Y+ - Y_ > Y2, which implies that 
X21 > Y2. Therefore, condition (3.5c) is 
satisfied. 

To complete the proof we must show that 
when conditions (3.5) hold, the controller K in 
(3.6) solves Problem B. This is immediate since 
V~-=0 implies that 5 :=0 [cf. (3.6c)]. Thus 
(3.6a) reduces to 

Since F is an admissible controller, the result 
follows from (3.12) and the fact that T2(F) = $2. 

Q.E.D. 

4. SPECIAL CASES 
In this section we will focus on Problem A. 

Corollary 1 tells us that if conditions (3.5) hold, 

AUTO 27:2-G 



314 M . A .  ROTEA and P. P. KHARGONEKAR 

then there is a solution to the unconstrained 
problem inf { II T~(g)lh: K admissible} that also 
solves Problem A. Therefore, one might be 
tempted to conclude that these conditions are 
too restrictive. We claim that this is not the case. 
In this section we show that if imBl f3 imB2 = 0, 
then conditions (3.5b, c) hold. In fact, under this 
geometric condition, a much stronger result is 
true. As before, let H ~ : = I - B ~ B ~  and V2: = 
H 182. (4.1) 

Lemma 3. Consider the feedback system of Fig. 
1, with the plant G given by (1.1). Assume that 
i m B l N i m B 2 = 0 .  Let F~ and F2 denote two 
(arbitrary) constant state-feedback matrices for 
the plant G. Then the dynamic state-feedback 
controller 

where 

A 1 A I A - A A ~ ,  ] 
K : =  Fz-F~ F I ( I - A ) + F z A J '  

(4.2a) 

A , : = A  + ( I -  A)B3F2 + AB3F~, (4.2b) 

AF,:=A+B3F1,  A:=B2V~-FI1, (4.2c) 

achieves the following closed loop transfer 
matrices: TI(K) = TI(FO and TE(K) = T2(F2). 
Moreover, K is admissible if and only if both F~ 
and F2 are admissible. 

Proof. Note that A B I = 0 ,  since H~ is the 
orthogonal projection onto ( imB0 x. Next we 
show that ABE = BE. It is easy to see that 
imB1 f) imB2 -- 0 implies that kerV2 = kerB2. 
Since V~V2 and B~B2 are the orthogonal 
projections onto (kerV2) l and (kerB2) ~ 
respectively, and since orthogonal projections 
are unique, we conclude that 

V~V2 = B~B2. 
Therefore, 

AB2 = B2V~V2 = B2B~B2 = B2. 

(Actually, A is a projection onto imB2.) 
Let the controller K be given by (4.2). Let x 

and ~ denote the states of G and K respectively. 
Consider the interconnection of Fig. 1 and define 
new coordinates x,  and ~ according to 
x~ := (I - A)x - ~ and ~n := Ax + ~. It is easy to 
verify that the transformation from (x, 5) to 
(x,, ~ )  is invertible. Using the fact that AB1 = 0 
and AB2 = B2, a trivial computation shows that 
the closed loop equation for the block diagram 
of Fig. 1 is given by 

dx, 
- ~  = (A + B3FOxn + Blwl 

d~,, 
- -  = (A + B3F2)~, + Bzw2 
dt 

zl = (Cl -4- DiF1)x n -4- (C1 4- D1F2)~n 

z2 = (c2 + O2F1)xn + (C2 + D2G)~.  

which completes the proof. Q.E.D.  

Lemma 3 tells us that whenever the two 
subspaces imB~ and imB2 are independent, there 
exists a dynamic state-feedback controller that 
simultaneously achieves closed loop transfer 
matrices 7"1 and T2, provided there exist constant 
state feedback matrices F1 and F2 such that 
T1 = Ti(F1) and T2 = T2(F2). The connection 
between Lemma 3 and Problem A is given by 
the following lemma. 

Lemma 4. Consider the feedback system of Fig. 
1, with the plant G given by (1.1). Suppose that 
imB1 f3 imB2 = 0. Then Problem A is solvable if 
and only if there exists an admissible controller 
K such that IIT2(K)II~ < 1. In this case, a solution 
to Problem A is given by (4.2) with FI := F and 
F2:=H, where F and H are defined in (2.1) and 
(3.6c), respectively. 

Proof. The necessity immediately follows from 
the definition of Problem A. The sufficiency part 
is as follows. First, note that the existence of an 
admissible controller K such that IIT2(K)II~< 1 
implies that condition (3.5a) holds. In this case, 
the constant matrix H in (3.6c) is an admissible 
controller such that IIT2(H)II~ < 1. (See Doyle et 
al., 1989a). Note also that the constant matrix F 
in (2.1) is an admissible controller that 
minimizes IITl112. Choosing F I : = F  and F2:=H, 
the result follows from Lemma 3. Q.E.D.  

It is also interesting to establish a connection 
between Lemma 4 and Corollary 1. Suppose that 
imB1 f3 imB2 = 0. We will show that conditions 
(3.5b, c) are automatically satisfied. Recall from 
the proof of Lemma 3 that under this geometric 
condition, V~V2 = B~B2. Hence, the ARE (3.3) 
reduces to 

YA'F + AFY  + Y(C~FC2F)Y = 0, (4.3) 

which has the unique stabilizing solution Y2 = 0. 
(Recall that Ar  is a stability matrix.) Thus, 
conditions (3.5b, c) hold and from Corollary 1 
we conclude that Problem A has a solution if 
and only if condition (3.5a) holds. In this case, a 
trivial computation shows that the controllers of 
Corollary 1 and Lemma 4 are the same. 

We conclude this section with an example. 
Our objective in this example is to show that 
although Problem A need not have a unique 
solution, there are situations in which any 
solution must necessarily be "dynamic".  With 
reference to Fig. 1, let G be given by [note that 
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G satisfies Assumptions (1.2)] 

G : =  
zl{ 

y{ 

W 1 W 2 

0 0 

U 

1 

(4.4) 

First, note that the ARE (3.2) admits the 
stabilizing solution 

which is positive definite. Thus, the set of 
admissible controllers K such that IIr211~<1 is 
non-empty. Since imBl Cl imB2 = 0, Lemma 4 
may be used to solve Problem A. From (2.1) it 
follows that F =  [0 0]. This is obvious since 
z l = u  and the plant G is stable. Next, we 
compute the gain H : = - B ~ ' 2 .  In this case we 
obtain H = - [ 0 . 5  0.5]. Finally, from (4.2) it 
follows that a solution to Problem A is given by 

I -I 1-11 ] 
K =  0 -1  0 1 

-0.5 -0.5 0.5 -0.5 

which obviously has McMillan degree equal to 
two. We now show that in this example any 
other solution to Problem A must be dynamic. 
First, note that 

inf { 11TI(K)112: K admissible and 

II T2(K)II~ < 1} = 0. 

Using some simple algebra it is easily seen that 
the unique state feedback "gain" that achieves 
this optimal performance is F =  [0 0]. From 
(4.4) it follows that IIT2(F)II~=V~. Thus we 
conclude that for this particular example any 
solution to Problem A must be necessarily 
dynamic. 

5. CONCLUSIONS 

For the state-feedback case we have com- 
pletely solved a mixed H 2 / H  ~ control problem 
(Problem B). Necessary and sufficient conditions 
for the existence of solutions to Problem B were 
given in terms of solutions to certain AREs. A 
closed form expression for a solution was also 
provided. A solution to Problem B (when it 
exists) also solves the constrained optimal 
control problem of minimizing an H 2 perfor- 
mance measure subject to an H °° constraint 

(Problem A). This problem is well motivated 
since it models a problem of optimal nominal 
performance with robust stability. Previous 
authors have only considered the minimization 
of an upper bound for the H 2 design objective. 
In this sense, the results of this work constitute 
the first results on this problem. 

From Lemma 3 it follows that if the two 
subspaces imB1 and imB2 are independent, then 
one can always find a dynamic state-feedback 
controller that simultaneously achieves given 
closed loop transfer matrices Tt and T2 provided 
they can be separately achieved using static 
state-feedback controllers. The simplest case for 
which the condition of independence of imB, 
and imB2 is not satisfied is when B, = B2. Recall 
from the proof of Theorem 2 that in this case 
Problem B has a solution if and only if 
IIT2(F)II~< 1, where F denotes the LQR gain 
defined in (2.1). Therefore Problem B does not 
help much in solving Problem A. In this sense, 
further research on Problem A for the case 
B~ = B 2 should be most useful. 

The example in Section 4 illustrates that, even 
though the plant state is available for feedback, 
Problems A and B need not have a static 
solution. This is in significant contrast to the 
classical results in the LQR theory (Kalman, 
1960) and the recent results in H ~ control 
theory (Khargonekar et al., 1988) which show 
that these optimal control problems always have 
a static state-feedback solution. This may have 
some implications in the output-feedback case. 
For instance, it might turn out that in the 
output-feedback case the dimension of optimal 
controllers in mixed H 2 / H  ~ problems exceeds 
the plant dimension. 
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APPENDIX 

State-space formulae for the standard H ~ problem 

The result given in this appendix provides a solution to the 
standard H®-optimal control problem, and is a slight 
modification of Theorem 1 in Glover and Doyle (1988). 
Consider the feedback system shown in Fig. 2, where both 
the plant P and the controller C are real-rational and proper. 
Let T(C) denote the closed loop transfer matrix from w to z. 

Assume that P has the following realization: 

P : =  C 1 0 1 , 
C2 D2 

along with the assumptions 

(i) (A, B2) stabilizable and (C2, A) detectable. (A.1) 
(ii) D'~D~ = I and D2D~ = I. (A.2) 

(iii) For each to e R 

[a-jtolc, B:]  (A.3) 

has full column rank. 

w i,d 

v I 

C 

z 

~ _ ~  Y 

FIG. 2. Feedback system. 

(iv) For each to e R 

has full row rank. 
Now, define the matrices 

A 1 : = A - B z D [ C  ~ A 2 : = A - B I D ~ C  2. 

In the result given below we will make use of the following 
algebraic Riccati equations for X and Y, respectively. 

A'IX + XA1 + X(B1B~ - B2B~)X + C~(I - D1D'OC 1 = 0 

(A.5) 

A2Y + YA~ + Y(C~C 1 - C~C2)Y + BI(I - D~D2)B ~ = O. 

(A.6) 

The next result is a slightly modified version of Theorem 1 
in GIover and Doyle (1988). 

Theorem A.7. Consider the feedback system of Fig. 2. Then 
there exists an admissible controller C such that II T(C)II® < 1 

if and only if the following conditions are satisfied: 

(i) The ARE (A.5) admits the stabilizing solution Xs, 
and X s - 0. 

(ii) The ARE (A.6) admits the stabilizing solution Y~, 
and Y~ -> 0. 

Off) p(Y~Xs) < 1. 

Moreover, when these conditions hold one such a controller 
is 

C:=[AF~ + (BI + Z'LsD2)B'IXs + ZsLsC2 I -ZsLs] ,  (A.7) 
F~ 

where 

L~ :=  -(Y~C~ + B,D~), F~ : =  -(B~X~ + D'IC1), 

A & : = A + B 2 F  ~, Zs:=(I-Y~X~) 1. (A.8b) 


