The Peroxisome and the Eye

STEVE J. FOLZ, B.S., AND JONATHAN D. TROBE, M.D.

The W.K. Kellogg Eye Center, and Departments of Ophthalmology and Neurology, University of Michigan Medical Center, Ann Arbor, Michigan

Abstract. Several childhood multisystem disorders with prominent ophthalmological manifestations have been ascribed to the malfunction of the peroxisome, a subcellular organelle. The peroxisomal disorders have been divided into three groups: 1) those that result from defective biogenesis of the peroxisome (Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum's disease); 2) those that result from multiple enzyme deficiencies (rhizomelic chondrodysplasia punctata); and 3) those that result from a single enzyme deficiency (X-linked adrenoleukodystrophy, primary hyperoxaluria type 1). Zellweger syndrome, the most lethal of the three peroxisomal biogenesis disorders, causes infantile hypotonia, seizures, and death within the first year. Ophthalmic manifestations include corneal opacification, cataract, glaucoma, pigmentary retinopathy and optic atrophy. Neonatal adrenoleukodystrophy and infantile Refsum's disease appear to be genetically distinct, but clinically, biochemically, and pathologically similar to Zellweger syndrome, although milder. Rhizomelic chondrodysplasia punctata, a peroxisomal disorder which results from at least two peroxisomal enzyme deficiencies, presents at birth with skeletal abnormalities and patients rarely survive past one year of age. The most prominent ocular manifestation consists of bilateral cataracts. X-linked (childhood) adrenoleukodystrophy, results from a deficiency of a single peroxisomal enzyme, presents in the latter part of the first decade with behavioral, cognitive and visual deterioration. The vision loss results from demyelination of the entire visual pathway, but the outer retina is spared. Primary hyperoxaluria type 1 manifests parafoveal subretinal pigment proliferation. Classical Refsum's disease may also be a peroxisomal disorder, but definitive evidence is lacking. Early identification of these disorders, which may depend on recognizing the ophthalmological findings, is critical for prenatal diagnosis, treatment, and genetic counselling. Surv Ophthalmol 35:353-368, 1991

Key words. infantile Refsum's disease • neonatal adrenoleukodystrophy • peroxisome • peroxisomal disorders • primary hyperoxaluria type • Refsum's disease • rhizomelic chondrodysplasia punctata • Zellweger syndrome

As the result of recent developments in cellular biochemistry, a group of childhood diseases with prominent ophthalmological manifestations can now be attributed to the malfunction of a subcellular organelle called the "peroxisome." Discovered in 1954, the peroxisome is known to harbor a large number of important catabolic and anabolic reactions, among them the degradation of very-long-chain fatty acids. The build-up of these very-long-chain fatty acids and characteristic ocular abnormalities are principal markers of the peroxisomal disorders.

I. The Peroxisome

A. HISTORICAL PERSPECTIVE

While observing mouse kidney cells in 1954, Rhodin noted a single membrane-bound organelle with a granular matrix measuring about one-half micrometer which he called simply a "microbody." A few years later, de Duve et al discovered that this microbody oxidized certain substrates by utilizing molecular oxygen (O₂) and producing hydrogen peroxide (H₂O₂), leading them to designate this organelle the "peroxisome."
Peroxisomes are believed to be present in nearly all human cells, including those of the eye, but their abundance and distribution vary depending upon the developmental stage of the tissue. Most abundant in liver and kidney cells, they are also present during the first two weeks of life in neurons of the cerebrum and cerebellum. They are especially numerous in oligodendrocytes, which are responsible for myelin formation within the central nervous system.

B. BIOGENESIS

Peroxisomal enzymes are encoded by nuclear genes and are synthesized on cytoplasmic polyribosomes. The enzymes then enter preformed peroxisomes post-translationally. With one known exception (beta-ketoacyl-CoA thiolase), peroxisomal enzymes have been shown to be synthesized in their final form, not requiring proteolytic cleavage for activation. Once formed, peroxisomes are believed to grow to a certain size and then split in two. In those childhood disorders ascribed to imperfect biogenesis of peroxisomes, many enzymes cannot be incorporated into the peroxisomes. Stranded in the cytosol, these enzymes and the "ghost" peroxisomes are rapidly degraded.

C. CATABOLIC REACTIONS

The best understood catabolic reaction of the peroxisome is the oxidative degradation of long-chain fatty acids, those with 16 or more carbon atoms. Very-long-chain fatty acids, those with 22 or more carbon atoms, are oxidized exclusively in the peroxisome. The organelle is also involved in pipecolic acid metabolism in primates, cellular oxidation reactions generating H₂O₂, and possibly phytic acid metabolism.

1. Very-long-chain Fatty Acid Degradation

The shorter-chain fatty acids enter the mitochondrion by a carnitine acyl transferase carrier system and are catabolized by a process known as beta-oxidation, which consists of the repeated removal of two carbon fragments in the form of acetyl-CoA from the carboxyl end of the fatty acid molecule. The acetyl-CoA then enters the tricarboxylic acid (Krebs) cycle and generates energy for the cell. Very-long-chain fatty acids, as well as fatty acids consisting of 14 or more carbons, are oxidized by a similar process, but predominantly in peroxisomes, by enzymes which are distinct from their mitochondrial analogs (Fig. 1). Another difference is that very long-chain fatty acids enter the peroxisome via a non-carnitine acyl transferase carrier system. The peroxisomal enzymes involved in very long-chain fatty acid oxidation have been identified as acyl-CoA ligase, acyl-CoA oxidase, bifunctional protein (acyl-CoA hydratase and acyl-CoA dehydrogenase), and beta-ketoacyl-CoA thiolase. Malfunction of this pathway leads to a build-up of very long-chain fatty acids, the chief biochemical clue to the diagnosis of peroxisomal disorders.

2. Pipecolic Acid

In primates, the peroxisome is responsible for the catabolism of L-pipecolic acid, which is, in turn, formed from the catabolism of the amino acid lysine. It has been suggested that the L-pipecolic acid synthetic pathway may be the major degradative pathway of lysine. All disorders of peroxisomal biogenesis give rise to abnormally high serum levels of pipecolic acid.

3. H₂O₂-forming Oxidation

The peroxisome gets its name from its ability to oxidize a number of substrates utilizing O₂ and forming hydrogen peroxide (H₂O₂) in the process. The formed H₂O₂ is converted to H₂O by the peroxisomal enzyme catalase, the main histochemical marker of this organelle. When the peroxisomes are poorly formed, catalase is found in the cytosol rather than in the peroxisomes.

4. Phytic Acid Degradation

Whether the peroxisome is involved in the catabolism of phytic acid remains a debated issue. A branched 20-carbon fatty acid of dietary origin, phytic acid undergoes beta-oxidation after an initial alpha-oxidation step. Evidence for a peroxisomal role comes from the work of Van den
THE PEROXISOME AND THE EYE

Branden et al,156 who showed that administration of phytol, a precursor of phytanic acid, induces peroxisomal proliferation and leads to a five-fold increase in peroxisomal acyl-CoA oxidase levels. Furthermore, an elevated serum phytanic acid level is found in the peroxisomal biogenetic disorders.

D. ANABOLIC REACTIONS

Anabolic reactions that take place in the peroxisome include ether lipid synthesis (a plasmalogen precursor),45 bile acid synthesis,g5 and possibly cholesterol synthesis.66 Peroxisomal biogenetic disorders leave these substances in deficit or pile up excessive intermediates.

1. Ether Lipids

Peroxisomes prepare ether lipids, the major precursors for plasmalogen synthesis, from dihydroxyacetone phosphate. Plasmalogens comprise up to 20% of mammalian cell membranes135 and 15% of myelin lipids.91 Whereas conventional phospholipids contain an ester-linked fatty acid at the first position of the glycerol backbone, plasmalogens contain a 1,2 unsaturated long-chain vinyl ether linkage at the first position. The predominant plasmalogens in most tissues is phosphatidylethanolamine, although heart and liver cell membranes contain predominantly phosphatidylcholine.53 The final synthetic reactions of plasmalogen synthesis occur in the endoplasmic reticulum.47 Defective plasmalogen synthesis may be partially responsible for some of the neurologic manifestations of peroxisomal disorders.

2. Bile Acids

Certain steps of bile acid synthesis occur in the peroxisome which accounts for the proportionally higher levels of bile acid intermediates observed in patients with peroxisome biogenesis disorders.85 Two bile acid precursors, dihydroxyprostanic acid and trihydroxyprostanic acid, are detectable clinically and may aid in the diagnosis.

3. Cholesterol

Peroxisomes may possess a pathway for cholesterol synthesis146 that is distinct from the better known microsomal pathway. Disruption of the peroxisomal pathway may lead to the low plasma cholesterol levels observed in some patients with peroxisomal disorders.97

II. Peroxisomal Disorders

The peroxisomal disorders have been divided into three groups: those that result from defective biogenesis of the organelle, those resulting from more than one enzymatic abnormality but with intact peroxisome structure, and those that appear to result from one faulty enzyme.97 The relative frequency of the various peroxisomal disorders has been reported for 1981-1988 from the Kennedy Institute87 (Table 1).

A. PEROXISOME BIOGENESIS DISORDERS (TABLE 2)

The peroxisomal disorders that result from abnormal biogenesis of the organelle include Zellweger (Cerebro-hepato-renal) syndrome, neonatal adrenoleukodystrophy, and infantile Refsum's disease. Disorders of peroxisome biogenesis all share a panel of ultrastructural or biochemical abnormalities,86 which include: 1) absent or reduced numbers of peroxisomes; 2) catalase present in the cytosol (instead of in the peroxisome); 3) reduced tissue levels of plasmalogen; 4) defective oxidation and accumulation of very long-chain fatty acids; 5) deficient oxidation and age-dependent accumulation of phytanic acid; 6) defects in certain steps of bile acid synthesis and accumulation of bile acid intermediates; 7) defective oxidation and accumulation of L-pipecolic acid; and 8) increased urinary excretion of dicarboxylic acids due to inadequate H2O2-based oxidation.

Genetic analysis of the peroxisomal biogenesis disorders has shown that at least five complementation groups (genes) exist.15,18 Alteration of any of three different genes may result in Zellweger syndrome. Likewise, there are two separate genes whose disruption will yield neonatal adrenoleukodystrophy, and one which can result in infantile Refsum's disease. Because the complementation group which encompasses infantile Refsum's dis-

TABLE 1

<table>
<thead>
<tr>
<th>Disorder</th>
<th>No. Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-linked adrenoleukodystrophy hemizygotes</td>
<td>575</td>
</tr>
<tr>
<td>X-linked adrenoleukodystrophy heterozygotes</td>
<td>504</td>
</tr>
<tr>
<td>Zellweger Syndrome</td>
<td>105</td>
</tr>
<tr>
<td>Neonatal adrenoleukodystrophy</td>
<td>54</td>
</tr>
<tr>
<td>Rhizomelic chondrodysplasia punctata</td>
<td>18</td>
</tr>
<tr>
<td>Infantile Refsum's disease</td>
<td>12</td>
</tr>
<tr>
<td>Classical Refsum's disease</td>
<td>4</td>
</tr>
<tr>
<td>Primary hyperoxaluria type 1</td>
<td>Not monitored</td>
</tr>
<tr>
<td>Insufficient information for classification</td>
<td>55</td>
</tr>
<tr>
<td>Others (including hyperpipecolic acidemia and isolated defects of very long chain fatty acid metabolism)</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>1,345</td>
</tr>
</tbody>
</table>
ease is also one of the three complementation groups for Zellweger syndrome, the disruption of one gene may produce either Zellweger syndrome or infantile Refsum's disease. The factors which determine which of the two diseases will occur are currently unknown.

1. Zellweger Syndrome (Cerebro-hepato-renal Syndrome)

In 1964, Bowen et al\(^1\) described a severe neonatal disorder with distinctive craniofacial dysmorphism marked by a high forehead, epicanthal folds, hypoplastic supraorbital ridges and nasal

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxisomal Disorders with Ocular Manifestations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inheritance</th>
<th>Zellweger Syndrome</th>
<th>Neonatal Adrenoleukodystrophy</th>
<th>Infantile Refsum’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset</td>
<td>Autosomal Recessive</td>
<td>Neonatal</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Peroxisomal Defect</td>
<td>Neonatal</td>
<td>Imperfect biogenesis</td>
<td>First decade</td>
</tr>
<tr>
<td>Peroxisomes</td>
<td>Markedly reduced or absent</td>
<td>Markedly reduced or absent</td>
<td>Markedly reduced or absent</td>
</tr>
<tr>
<td>Ophthalmologic Findings</td>
<td>Pigmentary retinopathy and retinal arteriolar attenuation</td>
<td>Pigmentary retinopathy and retinal arteriolar attenuation</td>
<td>Pigmentary retinopathy and retinal arteriolar attenuation</td>
</tr>
<tr>
<td></td>
<td>Optic atrophy</td>
<td>Optic atrophy</td>
<td>Optic atrophy</td>
</tr>
<tr>
<td></td>
<td>Corneal clouding</td>
<td>Pigment epithelial clumping</td>
<td>Extinguished ERG</td>
</tr>
<tr>
<td></td>
<td>Glaucoma</td>
<td>Optic atrophy</td>
<td>Extinguished ERG</td>
</tr>
<tr>
<td></td>
<td>Cataract</td>
<td>Extinguished ERG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extinguished ERG</td>
<td>Extinguished ERG</td>
<td></td>
</tr>
<tr>
<td>Other Clinical Findings</td>
<td>Craniofacial dysmorphism</td>
<td>Adrenal cortical atrophy</td>
<td>Deafness</td>
</tr>
<tr>
<td></td>
<td>Seizures and hypotonia</td>
<td>Seizures and hypotonia</td>
<td>Psychomotor retardation</td>
</tr>
<tr>
<td></td>
<td>Psychomotor retardation</td>
<td>Psychomotor retardation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal cysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pimelic acid</td>
<td>Pimelic acid</td>
<td>Pimelic acid</td>
</tr>
<tr>
<td></td>
<td>Phytanic acid</td>
<td>Phytanic acid</td>
<td>Phytanic acid</td>
</tr>
<tr>
<td></td>
<td>Bile acids</td>
<td>Bile acids</td>
<td>Bile acids</td>
</tr>
<tr>
<td>RBC: Plasmalogen</td>
<td>RBC: Plasmalogen</td>
<td>RBC: Plasmalogen</td>
<td>RBC: Plasmalogen</td>
</tr>
</tbody>
</table>

\(^*\)VLCFA = Very-long-chain fatty acids
bridge, micrognathia, high arched palate, and hypertelorism (Fig. 2). The externally apparent ocular abnormalities include corneal clouding, cataracts, and glaucoma.

Zellweger syndrome babies also have seizures, psychomotor retardation, severe hypotonia, talipes equinovarus, limb contractures with limited finger extension (camptodactyly), hepatomegaly, severe hearing impairment, ventricular septal defects, jaundice, and hypoprothrombinemia. Death occurs within a few months.

As globes were inspected after death, it became evident that the posterior ocular segment is also affected, with narrowed retinal arterioles, retinal pigment clumping, and optic disc pallor and hypoplasia. Most observers have noted that the abnormal dispersion of retinal pigment lacks the perivascular "bone spicule" pattern associated with typical retinitis pigmentosa. The extensive retinal abnormalities were foretold by the finding of extinguished electroretinograms in all cases.

The brain pathology of Zellweger syndrome consists of a failure of neuronal migration and patchy demyelination. The areas of demyelination are attended by perivascular macrophages laden with inclusions which, on electron microscopy, are found to consist of two electron-dense leaflets separated by a lucent space. These inclusions have been identified as cholesterol esters of very-long-chain fatty acids.

Several reports have now characterized the ophthalmic pathology. Anteriorly, corneal epithelial edema, posterior embryotoxon, cataract, and glaucoma have been inconsistently documented. The cause of the corneal clouding is uncertain, as no pathologic inclusions have been found in the cornea. The cataracts, of variable density, appear to be caused by vacuolations of cortical lens fibers. Although anterior chamber angle anomalies have been described, the pathogenesis of glaucoma is not definite.

The posterior segment abnormalities are far more severe (Fig. 3). Most striking is a loss of photoreceptors, but all retinal neurons are reduced in number, including retinal pigment epithelium and ganglion cells. Scattered through the retina and the subretinal space are numerous macrophages containing pigment and nonpigmented cytoplasmic bileaflet inclusions identical to

<table>
<thead>
<tr>
<th>Rhizomelic Chondrodysplasia Punctata</th>
<th>X-linked Adrenoleukodystrophy</th>
<th>Primary hyperoxaluria Type 1</th>
<th>Classical Refsum's Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosomal recessive</td>
<td>Autosomal recessive</td>
<td>Autosomal recessive</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Neonatal</td>
<td>First decade</td>
<td>First or second decades</td>
<td>First to fourth decades</td>
</tr>
<tr>
<td>Plasmalogen synthesis</td>
<td>VLCFA oxidation (deficient</td>
<td>Glyoxalate metabolism (deficient alanine:glyoxalate aminotransferase)</td>
<td>Phytanic acid oxidation</td>
</tr>
<tr>
<td>Phytic acid oxidation</td>
<td>lignoceroyl-CoA ligase)</td>
<td>Present</td>
<td>(deficient phytanic acid alpha-hydroxylase)</td>
</tr>
<tr>
<td>Thiolaic processing</td>
<td>Optic atrophy</td>
<td>Black parafoveal ringlets</td>
<td>Present</td>
</tr>
<tr>
<td>Present</td>
<td>Anterior and posterior visual pathway demyelination</td>
<td>with or without white fibrous material deep to the lesion</td>
<td>Night blindness</td>
</tr>
<tr>
<td>Cataract</td>
<td>Normal ERG</td>
<td>Optic atrophy</td>
<td>Optic atrophy</td>
</tr>
<tr>
<td>Normal ERG</td>
<td></td>
<td></td>
<td>Reduced ERG</td>
</tr>
<tr>
<td>Shortening of proximal extremities</td>
<td>Adrenal cortical atrophy</td>
<td>Renal failure</td>
<td>Chronic polyneuropathy</td>
</tr>
<tr>
<td>Dermatitis</td>
<td>Dark skin pigmentation</td>
<td>Osteodystrophy</td>
<td>Ataxia</td>
</tr>
<tr>
<td>Psychomotor retardation</td>
<td>Emotional lability</td>
<td>hydrocephalus</td>
<td>Hearing loss</td>
</tr>
<tr>
<td>Radiographic epiphyseal stippling</td>
<td>Cognitive decline</td>
<td></td>
<td>Increased CSF protein</td>
</tr>
<tr>
<td></td>
<td>Hearing loss</td>
<td></td>
<td>Cardiopathy</td>
</tr>
<tr>
<td></td>
<td>Incoordination and spasticity</td>
<td></td>
<td>Anosmia</td>
</tr>
<tr>
<td>RBC: Plasmalogen</td>
<td>RBC: VLCFA</td>
<td>Liver: Alanine:glyoxalate aminotransferase in percutaneous biopsy</td>
<td>Fibroblasts: Phytanic acid</td>
</tr>
</tbody>
</table>
Fig. 3. Midperipheral retina in case of Zellweger syndrome, showing loss of photoreceptors and ganglion cells. An aggregate of pigmented macrophages (arrow) is present in the subretinal space (hematoxylin and eosin, by in situ hybridization in neuronal cells in a latently ×290; reprinted from Cohen et al* with permission of the authors and The Ophthalmic Publishing Co., Chicago, IL).

those seen in the brain. These inclusions are also found in the retinal pigment epithelium. The optic nerve is profoundly demyelinated, its axons interleaved with the familiar inclusion-bearing macrophages. The posterior vitreous contains enough of these bileaflet-bearing macrophages to appear hazy in some cases. One may speculate that the accumulation of very-long-chain fatty acids kills the neurons and the myelin-forming oligodendrocytes, and that the macrophages scavenge the debris.

In 1973, Zellweger syndrome became the first human disease to be linked to the peroxisome. By utilizing histochemical staining procedures, Goldfischer et al. were able to show that tissues from Zellweger syndrome patients lacked catalase-containing particles (peroxisomes). Using more sophisticated techniques, Santos et al. have recently been able to demonstrate that membrane structures similar to peroxisomes are present in Zellweger syndrome patients, but do not contain the normal complement of enzymes. Subsequent studies confirmed that many peroxisomal enzymes are synthesized normally in Zellweger syndrome but are not assembled into the organelle and many are therefore quickly degraded in the cytoplasm.

Zellweger syndrome shares the biochemical profile common to all peroxisomal biogenetic disorders, but may be biochemically distinct in having the highest very-long-chain fatty acid accumulation and lowest level of plasmalogens.

The diagnosis of Zellweger syndrome should be considered in a severely hypotonic infant with seizures, craniofacial dysmorphism, narrowed retinal arterioles, retinal pigment dispersion, and optic disc pallor. Corneal clouding and cataract are not necessary features. With these findings, Zellweger syndrome can be distinguished from intrauterine infections, Lowe’s syndrome, galactosemia, and lysosomal storage abnormalities by finding elevated plasma very-long-chain fatty acids and reduced plasmalogens levels. If these tests are not normal, pipercolic acid and bile acids may be measured for confirmation. These specialized tests, which are still available only in a small number of medical centers, have now been extended to prenatal diagnosis.

Because Zellweger syndrome is an autosomal recessive disorder, genetic counseling of families that have had an affected offspring is critical. Unfortunately, there is yet no treatment available.

2. Neonatal Adrenoleukodystrophy

Neonatal adrenoleukodystrophy was first described in 1978 by Ulrich et al. They observed a severely hypotonic infant who developed seizures at 4 days and died at 20 months. Because their patient had adrenal cortical atrophy and patchy brain demyelination reminiscent of the already well known X-linked adrenoleukodystrophy, they chose to label the disease neonatal adrenoleukodystrophy. It subsequently became clear that neonatal adrenoleukodystrophy is an autosomal recessive disorder which is clinically, pathologically, and biochemically much closer to Zellweger syndrome than to X-linked adrenoleukodystrophy.

Neonatal adrenoleukodystrophy may look exactly like Zellweger syndrome and cause death within the first year, but more commonly the disease is milder than Zellweger syndrome, with patients manifesting no dysmorphic features and living an average of four years — some even into the second decade. Patients typically have adrenal cortical atrophy, but rarely manifest adrenal insufficiency. Anterior ocular segment abnormalities are uncommon, but retinal pigmentary degeneration and optic atrophy are disabling and diagnostically important.

We have had the opportunity to perform ophthalmological examinations on two of the longest-surviving patients with neonatal adrenoleukodystrophy — brothers aged 12 and 15. In both boys, visual acuity was 20/200 OU. The older brother had a comitant 30 prism diopter right exotropia, while the younger brother’s motility examination was normal. Both patients demonstrated smooth ocular movements without nystagmus. The pupils of both patients reacted moderately, but sluggishly to light,
Fig. 4. Fundus photographs from right eye (left) and left eye (right) of a 15-year-old boy with Neonatal Adrenoleukodystrophy. Note marked retinal arteriolar attenuation, optic disc pallor, and loss of pigment epithelium especially evident in macular area.

![Fundus photographs from right eye (left) and left eye (right) of a 15-year-old boy with Neonatal Adrenoleukodystrophy. Note marked retinal arteriolar attenuation, optic disc pallor, and loss of pigment epithelium especially evident in macular area.](image)

White Flash Dark Adapted

"Rod Response" Dim Blue Flash Dark Adapted

"Cone Response" White Flash Light Adapted

<table>
<thead>
<tr>
<th>Patient BM</th>
<th>Patient RM</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 y/o WM</td>
<td>15 y/o WM</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Electroretinograms (ERGs) from two boys with neonatal adrenoleukodystrophy, showing extinguished responses.

![Electroretinograms (ERGs) from two boys with neonatal adrenoleukodystrophy, showing extinguished responses.](image)

Fig. 6. Left: Retina from patient with neonatal adrenoleukodystrophy, showing loss of photoreceptor and ganglion cells, similar to that seen in Zellweger Syndrome (hematoxylin and eosin, × 100). Right: Electron micrograph × 27,000 of a vitreous macrophage displaying inclusion (arrow). Inset (× 95,000) shows that inclusion consists of two electron dense leaves separated by a central lucent zone. (Reprinted from Glasgow et al. with permission of the authors and Ophthalmology.)

![Retina from patient with neonatal adrenoleukodystrophy, showing loss of photoreceptor and ganglion cells, similar to that seen in Zellweger Syndrome.](image)

![Electron micrograph × 27,000 of a vitreous macrophage displaying inclusion (arrow). Inset (× 95,000) shows that inclusion consists of two electron dense leaves separated by a central lucent zone.](image)
Fig. 7. Retina from patient with X-linked adrenoleukodystrophy. Note loss of ganglion cells but preservation of photoreceptors. There is postmortem artifactual detachment of the photoreceptor layer (Hematoxylin and eosin, ×40; Reprinted from Wray et al.166 with permission of the authors and the Ophthalmic Publishing Co., Chicago, IL).

and there were no other anterior segment abnormalities. The optic nerves exhibited waxy pallor with marked attenuation of the retinal vessels (Fig. 4). Pigment was clumped and scattered throughout the retinal mid-periphery; the perifoveal area was markedly depigmented. The electroretinogram showed the cone and rod responses to be decreased 95 to 98% (Fig. 5).

The pathologic findings of neonatal adrenoleukodystrophy in the central nervous system are similar to those of Zellweger syndrome.7 Ocular pathologic findings are confined to the posterior segment but otherwise are identical to those described in Zellweger syndrome22,58 (Fig. 6A). Characteristic birefringent inclusions are present in the adrenal cortex, pigment epithelial cells, photoreceptor cells, and retinal and vitreous macrophages59 (Fig. 6B).

The link to the peroxisome came first in 1982, when Brown et al.14 demonstrated deficient peroxisomal very-long-chain fatty acid oxidation in tissues from neonatal adrenoleukodystrophy patients. Then in 1985, Goldfischer et al.40 discovered that peroxisomes are significantly reduced in number and size in neonatal adrenoleukodystrophy patients. It has since been learned that neonatal adrenoleukodystrophy patients share the biochemical aberrations found in Zellweger syndrome patients, except that neonatal adrenoleukodystrophy shows increased serum levels of saturated very-long-chain fatty acids,63 but normal or reduced levels of mono-unsaturated very-long-chain fatty acids.67

Neonatal adrenoleukodystrophy should be regarded clinically as a mild form of Zellweger syndrome. Patients frequently survive the years of infancy, show no dysmorphic features, and have markedly diminished vision. Because of the retinal findings, they may initially be diagnosed as having “Leber’s congenital amaurosis”50 or suspected of having the infantile form of neuronal ceroid lipofuscinosis.96,150 When hearing loss is present, they may be labelled “Usher’s syndrome.” The correct diagnosis can now be made, as with Zellweger syndrome, by demonstrating the plasma abnormalities shared by the peroxisomal biogenetic disorders.

3. Infantile Refsum’s Disease

Infantile Refsum’s disease is the least severe of the peroxisome biogenesis disorders, and was first described in 1982 by Scotto et al.126 and Bolthausen et al.10. They observed patients presenting in the first year of life with pigmentary retinopathy, neurosensory deafness, growth and mental retardation, hepatomegaly, and mild facial dysmorphism consisting of epicanthal folds, flat nasal bridge, and

Fig. 8. Fundus photograph from a 2½ year old girl with Primary hyperoxaluria Type 1 demonstrating confluent, black, subretinal parafoveal ringlets and white fibrosis (Reprinted from Small et al.153 with permission of the authors and the American Medical Association).
low set ears. Increased serum levels of phytanic acid led them to surmise that these patients suffered from an infantile form of Refsum's disease, despite the fact that adult patients with Refsum's disease do not have facial dysmorphism or cognitive impairment.

Although microphthalmia, strabismus, and nystagmus have been described, the most consistent ophthalmic abnormalities are retinal arteriolar attenuation and motiled pigmentation of the retina with prominent loss of perifoveal pigment. The electroretinogram demonstrates severely reduced rod and cone mediated responses.

The pathologic manifestations of infantile Refsum's disease have been documented in only one case study by Torvik et al., who noted micronodular liver cirrhosis and hypoplastic but nonatrophic adrenal changes. The central nervous system showed severe hypoplasia of the cerebellar granular layer and reduction of axons and myelin in various areas including the optic nerves. Large numbers of perivascular macrophages with bilamellar inclusions were present in these areas, but no active demyelinative process was seen. There was neuronal loss in all layers of the retina.

Shortly after infantile Refsum's disease was first described, further biochemical studies indicated that phytanic acid accumulation was not the only abnormality. Excessive tissue amounts of very-long-chain fatty acids, pipecolic acid, and bile acid intermediates were discovered, overlapping those of the biogenetic peroxosomal disorders, Zellweger syndrome and neonatal adrenoleukodystrophy, but much less severe. Several investigators have now reported a deficiency of peroxisomes in tissues from infantile Refsum's disease patients.

B. PEROXISOMAL DISORDERS RESULTING FROM MORE THAN ONE ENZYME DEFICIENCY

Rhizomelic chondrodysplasia punctata is currently the only disorder in this category. There is defective plasmalogen synthesis, phytanic acid oxidation, and abnormal processing of the peroxisomal enzyme thiolase. Unlike the peroxisomal biogenesis disorders, peroxisomes are present but may be abnormal.

Due to perturbed synthesis, plasmalogen levels are profoundly reduced and are lower than in Zellweger syndrome. Phytanic acid levels are increased and are comparable to those seen in classical Refsum's disease. However, pipecolic acid, bile acid intermediates, and very long chain fatty acid levels are normal in rhizomelic chondrodysplasia punctata, indicating that some peroxisomal functions are intact.

1. Rhizomelic Chondrodysplasia Punctata

In 1914, Conradi described chondrodysplasia punctata as a condition marked by stippling foci of calcification in the epiphyses. In 1971 Spranger et al. delineated the rhizomelic form of chondrodysplasia, known as rhizomelic condrodysplasia punctata, characterized by autosomal recessive inheritance, shortening of the proximal extremities, dermatitis, psychomotor retardation, cataracts, and death usually before the end of the first year. Rhizomelic chondrodysplasia punctata was shown to be a peroxisomal disorder by Heymans et al. They noted the striking clinical similarities of rhizomelic chondrodysplasia punctata to Zellweger syndrome, then discovered a deficiency of plasmalogen synthesis and elevated levels of phytanic acid which are indicative of peroxisome dysfunction.

Rhizomelic chondrodysplasia punctata is to be distinguished from Conradi-Hunermann chondrodysplasia, which is an autosomal dominant disease with a normal life span and normal intellect. It is not a peroxisomal disorder.

Ocular findings in patients with rhizomelic chondrodysplasia punctata include alternating esotropia, lateral gaze nystagmus, and wandering eye movements. However, cataracts are the most prominent and debilitating ophthalmologic manifestation.

A characteristic radiographic manifestation of rhizomelic chondrodysplasia punctata is irregular calcification (stippling) of the cartilage of the extremities. Primary ossification centers may be absent in the lower femur, and histologically abnormal chondrocytes are observed. Clefing of vertebral bodies, cerebral hypoplasia, and reduced neurons in the cerebrum, cerebellum, medulla, and spinal cord have also been reported.

Ocular pathologic features consist of bilateral anterior capsular cataracts containing acid mucopolysaccharides, posterior lenticonus, posterior embryotoxon, and hypoplasia of the choroid and ciliary body. The cataracts are believed to be histologically similar to the usual anterior capsular cataract. Hypoplasia of retinal ganglion cells, nerve fibers, and optic nerve may also be present.

C. PEROXISOME DISORDERS RESULTING FROM A DEFICIENCY OF A SINGLE ENZYME

X-linked adrenoleukodystrophy and primary hyperoxaluria type 1 appear to result from a deficiency of a single peroxisomal enzyme. Although classical Refsum's disease is also frequently attributed to a single peroxisomal enzyme deficiency, definitive evidence is lacking.

The biochemical perturbation observed when the peroxisome disorder is caused by a single faulty en-
zyme is much more limited than in the peroxisome biogenesis disorders. One such example is the very-long-chain fatty acid build-up in X-linked adrenoleukodystrophy because of deficient lignoceroyl-CoA synthetase (an acyl-CoA ligase).50,73,125,160,162 Primary hyperoxaluria type 1 results from a deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase and manifests increased serum levels of glyoxalate and oxalate.25,66 Classical Refsum's disease results from defective phytanic acid oxidation, a consequence of deficient phytic acid alpha-hydroxylase.31,59 However, this reaction has not yet been localized to the peroxisome.

1. X-Linked Adrenoleukodystrophy

In 1923 Siemerling and Creutzfeldt first recognized a disorder that manifested adrenal hypofunction and cerebral demyelination.128 Because the children appeared tanned due to adrenal dysfunction, and their post-mortem brains and spinal cords showed demyelination with gliosis, the authors called the condition "bronzed sclerosing encephalomyelitis." The condition was later named "adrenoleukodystrophy," and was found to have X-linked inheritance.77,85,86

There are two predominant phenotypes associated with X-linked adrenoleukodystrophy: a childhood form, in which visual loss is a prominent feature, and an adult form, called adrenomyeloneuropathy, in which color vision deficits have been the only reported ophthalmologic disturbance.120 In the childhood form, the first symptoms usually begin mid-way through the first decade, with emotional lability and hyperactivity. "Attention deficit disorder" is usually diagnosed, but cognitive decline soon sets in, followed by loss of sight and hearing, incoordination, and spastic quadriplegia. Adrenal hypofunction is present in nearly all cases, but may precede or follow neurologic signs.123 Death usually supervenes within a decade of onset.

The visual loss in X-linked adrenoleukodystrophy appears to result from demyelination of any or all portions of the visual pathway, from optic nerve to visual cortex.165,166 A delayed, broad, low amplitude visual evoked response that becomes extinct with time and a normal electroretinogram161,166 are consistent with neural visual pathway damage that spares the outer retina.

The central nervous system pathology of X-linked adrenoleukodystrophy bears superficial resemblance to that seen in Zellweger syndrome and neonatal adrenoleukodystrophy, but there are fundamental differences.67,125 As in the biogenetic peroxisomal disorders, there are macrophages filled with bileaflet inclusions scattered throughout the demyelinating regions. But unlike the biogenetic peroxisomal disorders, X-linked adrenoleukodystrophy shows very severe and focal demyelination, most marked in the parietal and occipital lobes. Perivascular lymphocytes are abundant; neurons appear normal. There are characteristic striated inclusions in Schwann cells, testis, brain, and adrenal cortex which represent cholesterol esters of very-long-chain fatty acids.32,101,102,103,122

Because these changes are occurring in children who are old enough to have myelinated their cerebrum, the contrast between normal and abnormal areas is striking. It can be imaged with CT and MRI, which vividly demonstrate forward progression, from occipital to frontal lobes, of areas of low signal intensity surrounded by a "torch-like" rim of high signal intensity, reflecting breakdown of the blood-brain barrier.64 Impressed by the intensity of this surrounding inflammatory response, observers have wondered if some other disease mechanism besides metabolic dysfunction is at work.

Ocular pathologic studies show loss of the ganglion cell layer51,166 (Fig. 7), and atrophy and gliosis of the ncrv fiber layer and optic ncrv.23 Bileaflet-bearing macrophages have been found in the optic nerve in one case.23 Unlike the peroxisomal biogenetic disorders, the outer retina remains histologically normal.

Although X-linked-adrenoleukodystrophy is the most common peroxisomal disorder, it was not until 1976 that Igarshi et al62 demonstrated that there is an accumulation of very-long-chain fatty acids present as cholesterol esters in the brain and adrenal tissues from X-linked adrenoleukodystrophy patients. The definitive connection came in 1984, when Singh et al130,131 showed that very-long-chain fatty acid oxidation is localized to the peroxisome and that X-linked adrenoleukodystrophy results from its interruption. Since then, the specific biochemical defect has been identified as a deficiency of the peroxisomal enzyme lignoceroyl-CoA synthetase,20 the first enzyme in the very-long-chain fatty acid oxidative pathway, and one that is embedded in the peroxisomal membrane. This leads to very-long-chain fatty acid accumulation, the only distinguishing biochemical abnormality of X-linked adrenoleukodystrophy. The pile-up of very-long-chain fatty acids, as dramatic as it is, may not be the explanation for neurologic dysfunction, since the degree of dysfunction is poorly correlated with the levels of very long chain fatty acids.66

X-linked adrenoleukodystrophy should be suspected in boys aged under ten years who exhibit hyperactive behavior and psychomotor regression together with visual loss. Ophthalmologic findings include cortical blindness and optic atrophy. The diagnosis is made definitively by finding elevated
plasma levels of very-long-chain fatty acid. The current treatment of childhood X-linked adrenoleukodystrophy consists of replacement of adrenal steroids and dietary restrictions of fatty acid intake. It has been shown that plasma levels of very-long-chain fatty acid can be reduced to normal levels by special dietary manipulation but there is no evidence that this will induce improvement or even stabilization of the disease. Immunosuppression, used in an attempt to reduce the "inflammatory" component of X-linked adrenoleukodystrophy, has been ineffective. Aubourg et al have reported reversal of neurologic deficits and brain MRI abnormalities in an eight-year-old boy treated with bone marrow transplantation. They hypothesize that the transplanted marrow cells crossed the blood-brain barrier and supplied the missing peroxisomal functions.

2. Primary hyperoxaluria Type 1

There are two types of genetically determined primary hyperoxaluria. Type 1 is an autosomal recessive disorder which results from a deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase. Accumulation of glyoxylate and its conversion to oxalate result in the deposition of oxalate in various tissues, including the eye. Primary hyperoxaluria type 1 usually becomes manifest during early childhood or adulthood and patients present with renal failure or nephrolithiasis. Infantile onset is correlated with more severe features and death due to renal failure. Primary hyperoxaluria type 2 results from a deficiency of D-glycerate dehydrogenase and is not a peroxisomal disorder.

Primary hyperoxaluria type 1 causes in a distinctive retinal pigmentary disturbance secondary to deposition of oxalate. Findings are confined to the posterior pole and are bilaterally symmetric. Mild cases show small parafoveal subretinal black ringlets with a bright white or yellow center (Fig. 8). More advanced cases show single large, black, well-circumscribed central macular lesions with white fibrous material deep to the black area and below the sensory retina. These lesions are believed to be nonprogressive. Surprisingly, visual acuity tends to be unaffected by these lesions.

The other manifestation of primary hyperoxaluria type 1 is optic disc pallor which may be secondary to increased intracranial pressure or to retinal arteriolar occlusion. Of 24 cases followed at a single institution, three were noted to have optic disc pallor. Two of these cases previously had enlarged ventricles, papilledema, and increased intracranial pressure. The third had retinal arteriolar attenuation believed secondary to oxalate deposition in the vessel walls. Visual acuity was subnormal in all cases.

The pathologic features of primary hyperoxaluria type 1 consist primarily of renal deposition of oxalate which causes nephrolithiasis and nephrocalcinosis. Osteodystrophy has been reported and may result in pathological fractures with mild trauma. Hydrocephalus and mental retardation are also rarely seen.

Ocular pathologic findings in patients with primary hyperoxaluria type 1 consist of calcium oxalate crystal deposition in the retinal pigment epithelium, ciliary body, retina, and ocular muscles. Crystals of oxalate have also been documented in the wall of retinal vessels and all vascularized ocular tissues, including the conjunctiva, iris, inner retinal layers (especially ganglion cell layer), optic disc, choroid, and episclera. The black pigmented lesions of primary hyperoxaluria type 1 are believed to represent retinal pigment epithelium hypertrophy and/or hyperplasia in response to irritation by oxalate crystal deposition. The white fibrosis has been postulated to represent subretinal neovascularization. Diffuse optic atrophy secondary to papilledema may be caused by impeded cerebrospinal fluid drainage due to oxalate crystal deposition, in as much as Scowens et al demonstrated elevated calcium oxalate levels in the cerebrospinal fluid of a patient with primary hyperoxaluria type 1.

In the past, patients with primary hyperoxaluria type 1 succumbed to renal failure at an early age. However, renal transplantation is prolonging sur-
vival and more patients are living long enough to demonstrate ocular lesions.

3. Classical Refsum’s Disease

Classical Refsum’s disease, or “heredopathia atactica polynéuritiformis” was first described in 1945 by Refsum, who noted night blindness, pigmentary retinopathy, hearing loss, peripheral neuropathy and ataxia. Other features are an increase in the CSF protein level with a normal cell count, cardiopathy, skeletal malformations primarily of the metatarsals and metacarpals, and skin changes resembling ichthyosis. Classical Refsum’s disease may have its onset from the first to the third decade, either with night blindness, extremity weakness, or ataxia. It runs an indolently progressive course with death often caused by cardiac arrhythmia. Present in all cases of classical Refsum’s disease, the pigmentary retinopathy is granular rather than corpuscular, but otherwise quite like typical retinitis pigmentosa in having narrowed retinal arterioles, visual fields that show ring scotomas and progressive constriction, and electroretinography that indicates marked loss of rod and cone function.

The nervous system pathology of classical Refsum’s disease involves principally the peripheral nerves, the spinal cord, and the retina. The rods and cones are almost entirely absent, the outer nuclear and outer plexiform layers are completely atrophic, the ganglion cells are reduced in number, the inner nuclear layer is thinned, and the nerve fiber layer is thickened due to gliosis. Retinal vessels are narrowed and occluded, their walls swelled by lipid material. The pigment epithelium may be absent in many areas of the posterior segment. Where it is present, it is thickened and loaded with lipid. The optic nerves may show demyelination, but gliosis has not been reported. The iris sphincter and dilator muscles are also infiltrated with lipid.

Whether classical Refsum’s disease is truly a peroxisomal disorder is still unsettled. Whether classical Refsum’s disease is truly a peroxisomal disorder is still unsettled. The peroxisomal disorders must be added to the list of conditions with inborn errors of metabolism that present in infancy or childhood with multiorgan dysfunction and retinal abnormalities (Table III). The three peroxisomal biogenesis disorders — Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum’s disease — will manifest a noncorpuscular pigmentary retinopathy and optic atrophy. The only peroxisomal disorder caused by multiple enzyme abnormalities — rhizomelic chondrodysplasia punctata — will present ophthalmologically with cataract. Of the three disorders attributable to a single enzyme defect, X-linked adrenoleukodystrophy will usually manifest optic atrophy but the retina will appear normal; primary hyperoxaluria type I has distinctive posterior pole retinal findings of black parafoveal ringlets surrounding yellow-white patches; classical Refsum’s disease manifests a pigmentary retinopathy similar to that of Zellweger syndrome and neonatal adrenoleukodystrophy.

The ophthalmologist should be aware of the genetic implications of these disorders, that biochemical tests now exist for rapid, even prenatal, diagnosis, and that in two disorders (classical Refsum’s disease, X-linked adrenoleukodystrophy) treatment is available.

References

We wish to thank Amiya K. Hajra, Ph.D., and Pamela C. Sieving for their help in preparing this manuscript. Funded in part by The University of Michigan Student Biomedical Research Program.

Reprint address: Jonathan D. Trobe, M.D., W.K. Kellogg Eye Center, 1000 Wall St., Ann Arbor, MI 48105.