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INTRODUCTION 

Let G be a finite group and k be a field whose characteristic p divides the 
order of G. In [3] we introduce the notion of Auslander-Reiten system of 
G on a symmetric interior G-algebra A (that is a symmetric k-algebra 
together with a homomorphism 4: G + A x ), as a generalization of the 
notion of almost split sequences of kG-modules. The language of interior 
G-algebras proves to be useful to study their restriction to certain subgroups 
such as the defect group (vertex) of their extremity. Furthermore we show 
in [3] that each non projective primitive idempotent i of AG (see Section 1) 
is the extremity of a unique Auslander-Reiten system, up to embedding of 
A into other symmetric interior G-algebras and to conjugacy (cf. [3, VI], 
recall embeddings are those one-to-one homomorphisms f: A + B which 
satisfy Im f = f (1) Af (1)). Thus in particular the middle term of “the” 
Auslander-Reiten system terminating in i is well defined (up to embedding 
and conjugacy), and we may look at its decomposition into primitive idem- 
potents. Now if we set A [G] = A @ kG, we have a symmetric algebra again, 
which is similar to kG in many ways, and which enables us to view our 
systems of G over A ([3, I]) as short exact sequences of modules: to any 
idempotent i of AG, we associate the A-projective A[G]-module iA (with 
(b@ g) . iu = d(g) iub). This way any system Y = (i, i”, i’, d, d’) of G over 
A determines an exact sequence of A[G]-modules 

O- i’A& i”A4’ iA- 0, 

which is almost split if and only if the system Y is an Auslander-Reiten 
system (cf. [3]). Moreover if 9: 0 + Q*(iA) + R + iA + 0 is almost split 
on A[G], then all its terms are A-projective and we can embed A into the 
symmetric interior G-algebra B = End,(A 0 D*(iA) @ R), where the 
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sequence W gives rise to an Auslander-Reiten system of G over B. Therefore 
the study of the Auslander-Reiten quiver of the algebra A[G] (actually we 
may restrict ourselves to the components of A-projective modules), will 
provide us with information about the decomposition of the middle terms 
of Auslander-Reiten systems terminating, first in an idempotent of AG, and 
then also in those idempotents which appear in such a middle term after 
several steps of “associating to each primitive non projective idempotent in 
the middle term, the Auslander-Reiten system terminating in it” (each such 
step may require embedding into a larger symmetric interior G-algebra). In 
this paper we generalize P. Webb’s main theorem in [S] to the algebra 
A[G]. The proof depends on the construction of a subadditive function on 
a connected component of the stable Auslander-Reiten quiver: we show 
how the simple (non cohomological) construction given by T. Okuyama in 
[4] may be generalized to our setting. 

THEOREM 1. Let A be a connected component of the stable Auslander- 
Reiten quiver of A[G]. If A contains A-projective A[G]-modules, then the 
tree class and the reduced graph of A are both either a Dynkin diagram 
(finite or infinite) or a Euclidian diagram. 

As a consequence we obtain information on the middle terms of 
Auslander-Reiten systems of G over A: 

THEOREM 2. Let n (resp. n,) be the number of idempotents (resp. of 
projective idempotents) in a primitive decomposition of the middle term of an 
Auslander-Reiten system of G over A. Then n < 5, n,< 1, and n-n, <4. 
Moreover if k is algebraically closed we have n - n, < 2. 

Theorem 2 follows from Theorem 1 via an analogous statement (which 
we omit here) about the maximum number of indecomposable direct sum- 
mands in the middle term of an almost split sequence of A-projective 
A[G]-modules (see Cl, 2.31.3, 4, and the comments above]). 

1. NOTATIONS 

Throughout the paper we let A be a symmetric interior G-algebra and 
denote by A x the group of units of A. The action of G on A by g. a = 
d( g- ‘) a&g) = ag makes it into a G-algebra. If H is any subgroup of G, we 
denote by AH the algebra of H-fixed elements of A, and by Try: A + AH 
the relative trace map defined by Trr(a) = C ax, where x runs over H; its 
image is the two-sided ideal Af’ of A*. Regarding our comments about 
Auslander-Reiten systems in the introduction, we refer the reader to [3] 
and recall that any idempotent i of a AC may be written as a finite sum of 



182 ODILEGAROTTA 

mutually orthogonal primitive idempotents of AC, and that the corre- 
sponding set of primitive idempotents is unique up to (A’) “-conjugacy. 
We call it a primitive decomposition I of i. The subsets In A? and I\AF 
are then also unique up to (A’) x -conjugacy. We say that i is projective 
(over G) if i E Ad. See also Section 2.1. 

All our modules and algebras are finite dimensional k-spaces, and our 
modules are right modules, We let M(A) be the Green ring of A: as a 
group it is the free H-module generated by the isomorphism classes of 
indecomposable A-modules. We denote respectively by 17M, QM, and ZM 
a projective cover, a Heller translate and an injective hull of the module M, 
and if N = QM, we write M = Q - ‘N and QN = SZ’M. The space of all 
projective homomorphisms from an A-module M to an A-module N 
(i.e., of those homomorphisms M -+ N which factor through a projective 
module) is denoted by Proj,(M, N). We use the notation k, for the trivial 
kc-module, and the symbol @ without precision for tensor products 
over k. 

We refer the reader to [l] for the terminology on quivers and sub- 
additive functions. 

2. BACKGROUND ON A[G]-MODULES 

Let M be an A-projective A[G]-module. The following are elementary 
facts: 

1. The algebra End,(M) is a symmetric interior G-algebra and we 
have End ACGI(W = End,(W’, ProjA~G1(~, M) = End,(W?. 

Let H be a subgroup of G. For any A [G]-module M, we denote by 
Res$(M) the A[H]-module obtained by restriction through the injection 
A[H] + A[G]. We then extend this by linearity and consider the functor 
Res$ from Jl(A[G]) to &(A[H]). 

Induction. Just in the same way as with kH-modules, one may induce 
any A[H]-module N to A[G]: we define the A[G]-module Ind$(N) by 

Indg(N) = NOACHl ACGI, 

with A[G] acting on the right of the term A [G]. We then extend our 
definition linearly to a functor Indg from .H(A[H]) to .Jl(A[G]). 

2. If the A[H]-module N is projective, then so is the A[G]- 
module Indg(N). Moreover we have for all N: Indg(Z7N - ON) = 
Z7(Indg(N)) -Q(Indg(N)). 

Note that NBkH kG also is an A[G]-module, with A acting on N only, 
so that the actions of A and kG are compatible. It is easy to show that 

3. We have Indg(N) 31 NC&~ kG, as A[G]-modules. 
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Now let M be an A[G]-module. For all kG-modules U, the tensor 
product MO U is an A [G]-module, with A acting on M and G acting on 
both M and U. 

4. One has M@Indg(k,) N Indg(Resg(M)), as A[G]-modules. 

ProoJ: We first view M as a kG-module only. We have the following 
sequence of kG-modules identities 

MOIndg(k,,)- (Resz(M)@k,)OkHkGN Resg(M)@,,kG, 

and we may substitute the last expression with Indz(Resg(M)) by 3; we 
then check that the corresponding actions of A are consistent (A acts on 
M only). 

We consider the inner product ( , )G on &(A [G] ) obtained by 
extending the form dim, Hom,r,,( , ) bilinearly: 

5. We have (Indg(N), M)G = (N, Resz(M)),, for any N in 
JZ(A[H]) and any M in &(A[G]). 

6. For all A[G]-modules L and it4, we have (L, &&= (ZZL-QL, 
LTM- S2M),. 

Proof: This follows by applying successively statements (ii) and (i) of 
the elementary 

LEMMA (Notations of 6). (i) We hoe (L, Z7M - i&H), = 
dim Proj,,,,(L, M). 

(ii) We have (L,M),=dimProj.r,,(L7L,M)-dimProj.rc,(QL,M). 

Proof: (i) We apply the left exact functor Hom,rc,(L, ) to the 
projective cover of M: the range of the second morphism is precisely 
Pro.h& M). 

(ii) Projective and injective modules coincide on the symmetric 
algebra A [G]. Thus the space Proj ACG,(!2L, M) is precisely the range of 
the second morphism in the exact sequence 0 + Hom,r,,(L, M) + 
Hom,&~4 M) -+ HomAcGl(QL, W. 

3. PERIODIC MODULES 

In the following we fix an A-projective A [G]-module X which is 
indecomposable and non projective, and denote by A the connected com- 
ponent of the stable Auslander-Reiten quiver of A [G] which contains X. 
Since X is not projective, there exists a minimal p-subgroup P of G (P # 1 ), 
such that ResF(X) is not projective (cf. Section 2.1). We choose an 
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indecomposable direct summand Y of Resg(X) which is not projective, and 
let Q be a maximal subgroup of P. So the module Resc( Y) is projective. 
Following Okuyama, we turn to a lemma of Carlson [2, 2.51 to conclude 
that the module Y is periodic of period at most two; actually we need to 
adjust the lemma to consider A[P]-modules, using the remarks of 
Section 2. 

PROPOSITION 1. We have Y N 51’ Y. 

Proof. The conditions Q Q P and P/Q cyclic ensure the existence of an 
exact sequence of kP-modules of the type 

0 + k, -+ Indi(ko) + IndP,(kg) -+ k, + 0, 

(see [2, 2.51). Following Carlson, we apply to it the exact functor Y@ , 
thus obtaining an exact sequence of A[P]-modules (cf. Section 2). Now 
we use statement 2.4 to rewrite Y@ k, as Y, and Y@ Indc(ko) as 
Indg(Resc( Y)): 

0 + Y + Ind$(ResG( Y)) + Indi(Resi( Y)) + Y + 0. 

The module IndG(Resc( Y)) is projective since Resi( Y) is (Section 2.2), so 
we conclude. 

Taking an injective hull of Y, let us consider the element 

s=Indz(Y-IY+W’Y) 

of A!(A[G]), and set d(M) = (s, A&, for all A4 in A(A[G]) (cf. Sec- 
tion 2). 

4. SUBADDITIVE FUNCTIONS 

Following Okuyama’s steps in [4], we prove that the map d above 
satisfies three basic properties: 

PROPOSITION 2. ( 1) We have d(A ) c N, and d(X) > 0. 

(2) Setting ZM = CJ*M + R - M, where ME A and the sequence 0 + 
S2’M + R + M -+ 0 is almost split, we have d(ZM) > 0, and if d(ZM) > 0, 
then M is periodic. 

(3) For any A [Cl-module M, we have d(M) = d(a*M). 

ProoJ (1) The first part follows by applying the left exact functor 
Horn aCc,( , M) (M in A) to the exact sequence 0 + Indz( Y) + Indz(lY) 
--* Indg(SZ-‘Y) +O, and taking dimensions. Now suppose d(X) =O. It 
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follows from (2.5) that (Y - ZY + LV’Y, ResF(X)), = 0. Therefore all 
homomorphisms from Y to Resz(X) are projective, and so are in particular 
all endomorphisms of Y, since Y is a direct summand of Resz(X). Thus Y 
is projective, contradiction. 

(2) We have d(CM) = (IndF( Y@Q-‘Y), ZM), - (Indz(ZY), CM),. 
The definition of almost split sequences shows that the map ( , CM), 
takes on non negative values on A [ G]-modules, and takes on the value 0 
on all modules of which M is not a direct summand. Since this is the case 
for the projective module IndF(ZY) (Section 2.2), we conclude that 
d(,XM) > 0. Moreover if d(L’CM) > 0, then M is a direct summand of either 
Indz( Y) or Indz(Q-‘Y). But those two modules are periodic by Proposi- 
tion 1. So M itself is periodic. 

(3) We apply Assertion 2.6 twice, starting from d(M) = (s, M), and 
using bilinearity. The right-hand term becomes ZZM - ZZ(QM) + Q*M. 
On the left we use the identity of Section 2.2, and obtain 
Indz(ZZY- ZZ(QY) +O*Y-ZY+ ZZ(52-‘Y) - ZZY+QY). This simplifies 
to the element s, by Proposition 1. The exactness of the functor 
Horn ACG,( , I), for any injective module Z, now shows that our expression 
for d(M) reduces to (s, Q2M),. Therefore d(M) = d(Q2M). 

COROLLARY. The function d is subadditive on A and satisfies d(M) = 
d(02A4) (all M in A). Furthermore, ly d is not additive, then A contains a 
periodic module. 

ProoJ The labelling on A [l, p. 1541 is such that statement (2) of the 
proposition, together with (l), tells us exactly that the function d is sub- 
additive. Moreover it is additive whenever d(ZM) in (2) is always 0. 

Proof of Theorem 1. Condition d(M) = d(Q2M) (M in A), ensures that 
d induces a function on the reduced graph of A. The functions induced by 
d on both the reduced graph and the tree class of A are then subadditive, 
like d. We conclude by [l, 2.30.6(i)]. 
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