A Generalization of Webb's Theorem to Auslander-Reiten Systems

ODILE GAROTTA

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by Michel Broué

Received February 1989

INTRODUCTION

Let G be a finite group and k be a field whose characteristic p divides the order of G. In [3] we introduce the notion of Auslander-Reiten system of G on a symmetric interior G-algebra A (that is a symmetric k-algebra together with a homomorphism $\phi: G \to A^{\times}$), as a generalization of the notion of almost split sequences of kG-modules. The language of interior G-algebras proves to be useful to study their restriction to certain subgroups such as the defect group (vertex) of their extremity. Furthermore we show in [3] that each non projective primitive idempotent i of A^G (see Section 1) is the extremity of a unique Auslander-Reiten system, up to embedding of A into other symmetric interior G-algebras and to conjugacy (cf. [3, VI]), recall embeddings are those one-to-one homomorphisms $f: A \rightarrow B$ which satisfy Im f = f(1) Af(1)). Thus in particular the middle term of "the" Auslander-Reiten system terminating in i is well defined (up to embedding and conjugacy), and we may look at its decomposition into primitive idempotents. Now if we set $A[G] = A \otimes kG$, we have a symmetric algebra again, which is similar to kG in many ways, and which enables us to view our systems of G over A ([3, 1]) as short exact sequences of modules: to any idempotent i of A^G , we associate the A-projective A[G]-module iA (with $(b \otimes g) \cdot ia = \phi(g) \ iab)$. This way any system $\mathcal{S} = (i, i^{\circ}, i', d, d')$ of G over A determines an exact sequence of $A \lceil G \rceil$ -modules

$$0 \longrightarrow i'A \xrightarrow{d'} i^{\circ}A \xrightarrow{d} iA \longrightarrow 0,$$

which is almost split if and only if the system $\mathscr S$ is an Auslander-Reiten system (cf. [3]). Moreover if $\mathscr R\colon 0\to\Omega^2(iA)\to R\to iA\to 0$ is almost split on A[G], then all its terms are A-projective and we can embed A into the symmetric interior G-algebra $B=\operatorname{End}_A(A\oplus\Omega^2(iA)\oplus R)$, where the

sequence \Re gives rise to an Auslander-Reiten system of G over G. Therefore the study of the Auslander-Reiten quiver of the algebra G (actually we may restrict ourselves to the components of G-projective modules), will provide us with information about the decomposition of the middle terms of Auslander-Reiten systems terminating, first in an idempotent of G, and then also in those idempotents which appear in such a middle term after several steps of "associating to each primitive non projective idempotent in the middle term, the Auslander-Reiten system terminating in it" (each such step may require embedding into a larger symmetric interior G-algebra). In this paper we generalize G-Reiten system in [5] to the algebra G-Reiten quiver we show how the simple (non cohomological) construction given by G-Reiten quiver: we show how the simple (non cohomological) construction given by G-Reiten quiver: G-Reiten quiv

THEOREM 1. Let Δ be a connected component of the stable Auslander-Reiten quiver of A[G]. If Δ contains A-projective A[G]-modules, then the tree class and the reduced graph of Δ are both either a Dynkin diagram (finite or infinite) or a Euclidian diagram.

As a consequence we obtain information on the middle terms of Auslander-Reiten systems of G over A:

THEOREM 2. Let n (resp. n_0) be the number of idempotents (resp. of projective idempotents) in a primitive decomposition of the middle term of an Auslander-Reiten system of G over A. Then $n \le 5$, $n_0 \le 1$, and $n - n_0 \le 4$. Moreover if k is algebraically closed we have $n - n_0 \le 2$.

Theorem 2 follows from Theorem 1 via an analogous statement (which we omit here) about the maximum number of indecomposable direct summands in the middle term of an almost split sequence of A-projective A[G]-modules (see [1, 2.31.3, 4, and the comments above]).

1. NOTATIONS

Throughout the paper we let A be a symmetric interior G-algebra and denote by A^{\times} the group of units of A. The action of G on A by $g \cdot a = \phi(g^{-1}) a\phi(g) = a^g$ makes it into a G-algebra. If H is any subgroup of G, we denote by A^H the algebra of H-fixed elements of A, and by $\operatorname{Tr}_1^H : A \to A^H$ the relative trace map defined by $\operatorname{Tr}_1^H(a) = \sum a^x$, where x runs over H; its image is the two-sided ideal A_1^H of A^H . Regarding our comments about Auslander-Reiten systems in the introduction, we refer the reader to [3] and recall that any idempotent i of a A^G may be written as a finite sum of

mutually orthogonal primitive idempotents of A^G , and that the corresponding set of primitive idempotents is unique up to $(A^G)^{\times}$ -conjugacy. We call it a *primitive decomposition I* of *i*. The subsets $I \cap A_1^G$ and $I \setminus A_1^G$ are then also unique up to $(A^G)^{\times}$ -conjugacy. We say that *i* is *projective* (over G) if $i \in A_1^G$. See also Section 2.1.

All our modules and algebras are finite dimensional k-spaces, and our modules are right modules. We let $\mathcal{M}(A)$ be the Green ring of A: as a group it is the free \mathbb{Z} -module generated by the isomorphism classes of indecomposable A-modules. We denote respectively by ΠM , ΩM , and IM a projective cover, a Heller translate and an injective hull of the module M, and if $N = \Omega M$, we write $M = \Omega^{-1}N$ and $\Omega N = \Omega^2 M$. The space of all projective homomorphisms from an A-module M to an A-module N (i.e., of those homomorphisms $M \to N$ which factor through a projective module) is denoted by $\operatorname{Proj}_A(M, N)$. We use the notation k_G for the trivial kG-module, and the symbol \otimes without precision for tensor products over k.

We refer the reader to [1] for the terminology on quivers and sub-additive functions.

2. Background on A[G]-Modules

Let M be an A-projective A[G]-module. The following are elementary facts:

1. The algebra $\operatorname{End}_A(M)$ is a symmetric interior G-algebra and we have $\operatorname{End}_{A[G]}(M) = \operatorname{End}_A(M)^G$, $\operatorname{Proj}_{A[G]}(M, M) = \operatorname{End}_A(M)^G_1$.

Let H be a subgroup of G. For any A[G]-module M, we denote by $\operatorname{Res}_{H}^{G}(M)$ the A[H]-module obtained by restriction through the injection $A[H] \to A[G]$. We then extend this by linearity and consider the functor $\operatorname{Res}_{H}^{G}$ from $\mathcal{M}(A[G])$ to $\mathcal{M}(A[H])$.

Induction. Just in the same way as with kH-modules, one may induce any A[H]-module N to A[G]: we define the A[G]-module $Ind_H^G(N)$ by

$$\operatorname{Ind}_{H}^{G}(N) = N \otimes_{A[H]} A[G],$$

with A[G] acting on the right of the term A[G]. We then extend our definition linearly to a functor Ind_H^G from $\mathcal{M}(A[H])$ to $\mathcal{M}(A[G])$.

2. If the A[H]-module N is projective, then so is the A[G]-module $\operatorname{Ind}_H^G(N)$. Moreover we have for all N: $\operatorname{Ind}_H^G(\Pi N - \Omega N) = \Pi(\operatorname{Ind}_H^G(N)) - \Omega(\operatorname{Ind}_H^G(N))$.

Note that $N \otimes_{kH} kG$ also is an A[G]-module, with A acting on N only, so that the actions of A and kG are compatible. It is easy to show that

3. We have $\operatorname{Ind}_{H}^{G}(N) \simeq N \otimes_{kH} kG$, as A[G]-modules.

Now let M be an A[G]-module. For all kG-modules U, the tensor product $M \otimes U$ is an A[G]-module, with A acting on M and G acting on both M and U.

4. One has $M \otimes \operatorname{Ind}_{H}^{G}(k_{H}) \simeq \operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G}(M))$, as A[G]-modules.

Proof. We first view M as a kG-module only. We have the following sequence of kG-modules identities

$$M \otimes \operatorname{Ind}_{H}^{G}(k_{H}) \simeq (\operatorname{Res}_{H}^{G}(M) \otimes k_{H}) \otimes_{kH} kG \simeq \operatorname{Res}_{H}^{G}(M) \otimes_{kH} kG$$

and we may substitute the last expression with $\operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G}(M))$ by 3; we then check that the corresponding actions of A are consistent (A acts on M only).

We consider the inner product $(,)_G$ on $\mathcal{M}(A[G])$ obtained by extending the form $\dim_k \operatorname{Hom}_{A[G]}(,)$ bilinearly:

- 5. We have $(\operatorname{Ind}_H^G(N), M)_G = (N, \operatorname{Res}_H^G(M))_H$, for any N in $\mathcal{M}(A[H])$ and any M in $\mathcal{M}(A[G])$.
- 6. For all A[G]-modules L and M, we have $(L, M)_G = (\Pi L \Omega L, \Pi M \Omega M)_G$.

Proof. This follows by applying successively statements (ii) and (i) of the elementary

LEMMA (Notations of 6). (i) We have $(L, \Pi M - \Omega M)_G = \dim \operatorname{Proj}_{A[G]}(L, M)$.

- (ii) We have $(L, M)_G = \dim \operatorname{Proj}_{A[G]}(\Pi L, M) \dim \operatorname{Proj}_{A[G]}(\Omega L, M)$.
- *Proof.* (i) We apply the left exact functor $\operatorname{Hom}_{A[G]}(L,)$ to the projective cover of M: the range of the second morphism is precisely $\operatorname{Proj}_{A[G]}(L, M)$.
- (ii) Projective and injective modules coincide on the symmetric algebra A[G]. Thus the space $\operatorname{Proj}_{A[G]}(\Omega L, M)$ is precisely the range of the second morphism in the exact sequence $0 \to \operatorname{Hom}_{A[G]}(L, M) \to \operatorname{Hom}_{A[G]}(\Pi L, M) \to \operatorname{Hom}_{A[G]}(\Omega L, M)$.

3. Periodic Modules

In the following we fix an A-projective A[G]-module X which is indecomposable and non projective, and denote by Δ the connected component of the stable Auslander-Reiten quiver of A[G] which contains X. Since X is not projective, there exists a minimal P-subgroup P of $G(P \neq 1)$, such that $Res_P^G(X)$ is not projective (cf. Section 2.1). We choose an

indecomposable direct summand Y of $\operatorname{Res}_P^G(X)$ which is not projective, and let Q be a maximal subgroup of P. So the module $\operatorname{Res}_Q^P(Y)$ is projective. Following Okuyama, we turn to a lemma of Carlson [2, 2.5] to conclude that the module Y is periodic of period at most two; actually we need to adjust the lemma to consider A[P]-modules, using the remarks of Section 2.

PROPOSITION 1. We have $Y \simeq \Omega^2 Y$.

Proof. The conditions $Q \triangleleft P$ and P/Q cyclic ensure the existence of an exact sequence of kP-modules of the type

$$0 \to k_P \to \operatorname{Ind}_Q^P(k_Q) \to \operatorname{Ind}_Q^P(k_Q) \to k_P \to 0,$$

(see [2, 2.5]). Following Carlson, we apply to it the exact functor $Y \otimes$, thus obtaining an exact sequence of A[P]-modules (cf. Section 2). Now we use statement 2.4 to rewrite $Y \otimes k_P$ as Y, and $Y \otimes \operatorname{Ind}_Q^P(k_Q)$ as $\operatorname{Ind}_Q^P(\operatorname{Res}_Q^P(Y))$:

$$0 \to Y \to \operatorname{Ind}_{\mathcal{Q}}^{P}(\operatorname{Res}_{\mathcal{Q}}^{P}(Y)) \to \operatorname{Ind}_{\mathcal{Q}}^{P}(\operatorname{Res}_{\mathcal{Q}}^{P}(Y)) \to Y \to 0.$$

The module $\operatorname{Ind}_{\mathcal{Q}}^{P}(\operatorname{Res}_{\mathcal{Q}}^{P}(Y))$ is projective since $\operatorname{Res}_{\mathcal{Q}}^{P}(Y)$ is (Section 2.2), so we conclude.

Taking an injective hull of Y, let us consider the element

$$s = \operatorname{Ind}_{P}^{G}(Y - IY + \Omega^{-1}Y)$$

of $\mathcal{M}(A[G])$, and set $d(M) = (s, M)_G$, for all M in $\mathcal{M}(A[G])$ (cf. Section 2).

4. SUBADDITIVE FUNCTIONS

Following Okuyama's steps in [4], we prove that the map d above satisfies three basic properties:

PROPOSITION 2. (1) We have $d(\Delta) \subset \mathbb{N}$, and d(X) > 0.

- (2) Setting $\Sigma M = \Omega^2 M + R M$, where $M \in \Delta$ and the sequence $0 \to \Omega^2 M \to R \to M \to 0$ is almost split, we have $d(\Sigma M) \geqslant 0$, and if $d(\Sigma M) > 0$, then M is periodic.
 - (3) For any A[G]-module M, we have $d(M) = d(\Omega^2 M)$.

Proof. (1) The first part follows by applying the left exact functor $\operatorname{Hom}_{A[G]}(\ ,M)$ $(M \text{ in } \Delta)$ to the exact sequence $0 \to \operatorname{Ind}_P^G(Y) \to \operatorname{Ind}_P^G(IY) \to \operatorname{Ind}_P^G(\Omega^{-1}Y) \to 0$, and taking dimensions. Now suppose d(X) = 0. It

follows from (2.5) that $(Y - IY + \Omega^{-1}Y, \operatorname{Res}_{P}^{G}(X))_{P} = 0$. Therefore all homomorphisms from Y to $\operatorname{Res}_{P}^{G}(X)$ are projective, and so are in particular all endomorphisms of Y, since Y is a direct summand of $\operatorname{Res}_{P}^{G}(X)$. Thus Y is projective, contradiction.

- (2) We have $d(\Sigma M) = (\operatorname{Ind}_P^G(Y \oplus \Omega^{-1}Y), \Sigma M)_G (\operatorname{Ind}_P^G(IY), \Sigma M)_G$. The definition of almost split sequences shows that the map $(\cdot, \Sigma M)_G$ takes on non negative values on A[G]-modules, and takes on the value 0 on all modules of which M is not a direct summand. Since this is the case for the projective module $\operatorname{Ind}_P^G(IY)$ (Section 2.2), we conclude that $d(\Sigma M) \geqslant 0$. Moreover if $d(\Sigma M) > 0$, then M is a direct summand of either $\operatorname{Ind}_P^G(Y)$ or $\operatorname{Ind}_P^G(\Omega^{-1}Y)$. But those two modules are periodic by Proposition 1. So M itself is periodic.
- (3) We apply Assertion 2.6 twice, starting from $d(M) = (s, M)_G$ and using bilinearity. The right-hand term becomes $\Pi M \Pi(\Omega M) + \Omega^2 M$. On the left we use the identity of Section 2.2, and obtain $\operatorname{Ind}_P^G(\Pi Y \Pi(\Omega Y) + \Omega^2 Y IY + \Pi(\Omega^{-1}Y) \Pi Y + \Omega Y)$. This simplifies to the element s, by Proposition 1. The exactness of the functor $\operatorname{Hom}_{A[G]}(\ , I)$, for any injective module I, now shows that our expression for d(M) reduces to $(s, \Omega^2 M)_G$. Therefore $d(M) = d(\Omega^2 M)$.

COROLLARY. The function d is subadditive on Δ and satisfies $d(M) = d(\Omega^2 M)$ (all M in Δ). Furthermore, if d is not additive, then Δ contains a periodic module.

Proof. The labelling on Δ [1, p. 154] is such that statement (2) of the proposition, together with (1), tells us exactly that the function d is subadditive. Moreover it is additive whenever $d(\Sigma M)$ in (2) is always 0.

Proof of Theorem 1. Condition $d(M) = d(\Omega^2 M)$ $(M \text{ in } \Delta)$, ensures that d induces a function on the reduced graph of Δ . The functions induced by d on both the reduced graph and the tree class of Δ are then subadditive, like d. We conclude by [1, 2.30.6(i)].

REFERENCES

- 1. D. J. Benson, Modular representation theory: New trends and methods, in "Lecture Notes in Math.," Vol. 1081, Springer-Verlag, New York, 1984.
- J. F. CARLSON, The dimensions of periodic modules over modular group algebras, *Illinois J. Math.* 23 (1979), 295-306.
- O. GAROTTA, "Suites presque scindées d'algèbres intérieures et algèbres intérieures des suites presque scindées," Thesis, University Paris 7, 1988.
- 4. T. OKUYAMA, On the Auslander-Reiten quiver of a finite group, J. Algebra 110 (1987), 425-430.
- 5. P. J. Webb, The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-121.