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INTRODUCTION

Let G be a finite group and & be a field whose characteristic p divides the
order of G. In [3] we introduce the notion of Auslander-Reiten system of
G on a symmetric interior G-algebra 4 (that is a symmetric k-algebra
together with a homomorphism ¢: G —» 4*), as a generalization of the
notion of almost split sequences of kG-modules. The language of interior
G-algebras proves to be useful to study their restriction to certain subgroups
such as the defect group (vertex) of their extremity. Furthermore we show
in [3] that each non projective primitive idempotent i of A€ (see Section 1)
is the extremity of a unique Auslander-Reiten system, up to embedding of
A into other symmetric interior G-algebras and to conjugacy (cf. [3, VI],
recall embeddings are those one-to-one homomorphisms f: 4 — B which
satisfy Im f= f(1) Af(1)). Thus in particular the middle term of “the”
Auslander-Reiten system terminating in i is well defined (up to embedding
and conjugacy), and we may look at its decomposition into primitive idem-
potents. Now if we set A[G] =4 ® kG, we have a symmetric algebra again,
which is similar to kG in many ways, and which enables us to view our
systems of G over 4 ([3, I]) as short exact sequences of modules: to any
idempotent i of 4%, we associate the A-projective 4[G]-module i4 (with
(b® g)-ia=¢(g) iab). This way any system & =(i,i°, i’,d, d') of G over
A determines an exact sequence of A[G]-modules

0 S PA—% A% — 0,

which is almost split if and only if the system & is an Auslander-Reiten
system (cf. [3]). Moreover if #: 0 —» Q%(id) > R — iA — 0 is almost split
on A[G], then all its terms are 4-projective and we can embed A into the
symmetric interior G-algebra B=End, (4® Q%(iA)® R), where the
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sequence # gives rise to an Auslander-Reiten system of G over B. Therefore
the study of the Auslander-Reiten quiver of the algebra A[G] (actually we
may restrict ourselves to the components of A4-projective modules), will
provide us with information about the decomposition of the middle terms
of Auslander-Reiten systems terminating, first in an idempotent of A¢, and
then also in those idempotents which appear in such a middle term after
several steps of “associating to each primitive non projective idempotent in
the middle term, the Auslander-Reiten system terminating in it” (each such
step may require embedding into a larger symmetric interior G-algebra). In
this paper we generalize P. Webb’s main theorem in [5] to the algebra
A[G]. The proof depends on the construction of a subadditive function on
a connected component of the stable Auslander-Reiten quiver: we show
how the simple (non cohomological) construction given by T. Okuyama in
[4] may be generalized to our setting.

THEOREM 1. Let 4 be a connected component of the stable Auslander-
Reiten quiver of A[G]. If 4 contains A-projective A[GJ-modules, then the
tree class and the reduced graph of A are both either a Dynkin diagram
(finite or infinite) or a Euclidian diagram.

As a consequence we obtain information on the middle terms of
Auslander-Reiten systems of G over A:

THEOREM 2. Let n (resp. ny) be the number of idempotents (resp. of
projective idempotents) in a primitive decomposition of the middle term of an
Auslander-Reiten system of G over A. Then n<5, ny<1, and n—n,<4.
Moreover if k is algebraically closed we have n—ny < 2.

Theorem 2 follows from Theorem 1 via an analogous statement (which
we omit here) about the maximum number of indecomposable direct sum-
mands in the middle term of an almost split sequence of A-projective
A[GJ-modules (see [1, 2.31.3, 4, and the comments above]).

1. NOTATIONS

Throughout the paper we let 4 be a symmetric interior G-algebra and
denote by 4> the group of units of 4. The action of G on 4 by g-a=
#(g~') ag(g) = a® makes it into a G-algebra. If H is any subgroup of G, we
denote by A the algebra of H-fixed elements of 4, and by Trf: 4 —» 4¥
the relative trace map defined by Tr¥(a) =) a*, where x runs over H; its
image is the two-sided ideal A% of 4%. Regarding our comments about
Auslander-Reiten systems in the introduction, we refer the reader to [3]
and recall that any idempotent i of a 4 may be written as a finite sum of
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mutually orthogonal primitive idempotents of 4, and that the corre-
sponding set of primitive idempotents is unique up to (A4¢)*-conjugacy.
We call it a primitive decomposition I of i. The subsets In AY and I\A]
are then also unique up to (4¢)*-conjugacy. We say that i is projective
(over G) if ie A¥. See also Section 2.1.

All our modules and algebras are finite dimensional k-spaces, and our
modules are right modules. We let .#(A) be the Green ring of 4: as a
group it is the free Z-module generated by the isomorphism classes of
indecomposable 4-modules. We denote respectively by ITM, QM, and IM
a projective cover, a Heller translate and an injective hull of the module M,
and if N=QM, we write M=Q !N and QN=Q>M. The space of all
projective homomorphisms from an A-module M to an A-module N
(i.e., of those homomorphisms M — N which factor through a projective
module) is denoted by Proj ,(M, N). We use the notation k for the trivial
kG-module, and the symbol ® without precision for tensor products
over k.

We refer the reader to [1] for the terminology on quivers and sub-
additive functions.

2. BACKGROUND ON A[G]-MODULES

Let M be an A-projective A[G]-module. The following are elementary
facts:

1. The algebra End ,(M) is a symmetric interior G-algebra and we
have End 4;41(M) = End ,(M)C, Proj 4;61(M, M)=End ,(M){.

Let H be a subgroup of G. For any A[G]-module M, we denote by
Res§ (M) the A[H]-module obtained by restriction through the injection
A[H] - A[G]. We then extend this by linearity and consider the functor
Res$ from #(A[G]) to M(A[H]).

Induction. Just in the same way as with kH-modules, one may induce
any A[H]-module N to A[G]: we define the A[G]-module Ind$(N) by

Indf,(N) = N®A[H] A[G],

with A[G] acting on the right of the term A[G]. We then extend our
definition linearly to a functor Ind¢ from #(A[H]) to #(A[G]).

2. If the A[H]-module N is projective, then so is the A[G]-
module Ind$(N). Moreover we have for all N: Ind§(JIN — QN) =
I(Ind§(N)) — 2(Ind & (N)).

Note that N®,, kG also is an A[ G]-module, with 4 acting on N only,
so that the actions of A and kG are compatible. It is easy to show that

3. We have Ind$(N) ~ N®,4 kG, as A[G]-modules.
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Now let M be an A[G]-module. For all kG-modules U, the tensor
product M ® U is an A[G]-module, with 4 acting on M and G acting on
both M and U.

4. One has M ®Ind§(ky) ~IndS(Res%(M)), as A[ G]-modules.

Proof. We first view M as a kG-module only. We have the following
sequence of kG-modules identities

M@ IndS(k,) ~ (ResS(M) ®k 1) ® iy kG ~ ResS(M) @, kG,

and we may substitute the last expression with Ind§(Res$(M)) by 3; we
then check that the corresponding actions of 4 are consistent (A acts on
M only).

We consider the inner product (, )¢ on #(A[G]) obtained by
extending the form dim, Hom ,44( , ) bilinearly:

5. We have (Ind§(N), M); = (N, Res$(M)),, for any N in
M(A[H]) and any M in #(A[G]).

6. For all A[G]-modules L and M, we have (L, M);= (IIL—QL,
HM_QM)G.

Proof. This follows by applying successively statements (ii) and (i) of
the elementary

LEMMA (Notations of 6). (i) We have (L, IIM — QM); =
dim Proj 4r67(L, M).

(i) We have (L, M) =dim Proj ,;61(ITL, M) —dim Proj (2L, M),

Proof. (i) We apply the left exact functor Hom (L, ) to the
projective cover of M: the range of the second morphism is precisely
Proj 4641(L, M).

(ii) Projective and injective modules coincide on the symmetric
algebra A[G]. Thus the space Proj,1(R2L, M) is precisely the range of
the second morphism in the exact sequence 0— Hom (L, M)—
Hom 46 (/IL, M) —» Hom 4 (2L, M).

3. PerioDIC MODULES

In the following we fix an A-projective A[G]-module X which is
indecomposable and non projective, and denote by 4 the connected com-
ponent of the stable Auslander-Reiten quiver of A[G] which contains X.
Since X is not projective, there exists a minimal p-subgroup P of G (P # 1),
such that Res%(X) is not projective (cf. Section2.1). We choose an
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indecomposable direct summand Y of Res$(X) which is not projective, and
let Q be a maximal subgroup of P. So the module Resg(Y) is projective.
Following Okuyama, we turn to a lemma of Carlson [2, 2.5] to conclude
that the module Y is periodic of period at most two; actually we need to
adjust the lemma to consider A[P]-modules, using the remarks of
Section 2.

PROPOSITION 1. We have Y ~ Q%Y.

Proof. The conditions @ <t P and P/Q cyclic ensure the existence of an
exact sequence of kP-modules of the type

0— kp—1Indj(ky)— Indj(ky) = kp—0,

(see [2, 2.5]). Following Carlson, we apply to it the exact functor Y® ,
thus obtaining an exact sequence of A[ P]-modules (cf. Section 2). Now
we use statement24 to rewrite Y®k, as Y, and Y®Indj(ky) as
Indj(Res5(Y)):

0— Y —>Ind/(Resy(Y)) » Indf(Resg(Y)) - ¥ = 0.

The module Indg(Res’é(Y)) is projective since Resg( Y) is (Section 2.2), so
we conclude.
Taking an injective hull of ¥, let us consider the element

s=Ind§(Y—-1Y+Q7'Y)

of #(A[G]), and set d(M)= (s, M);, for all M in #(A[G]) (cf. Sec-
tion 2).

4. SUBADDITIVE FUNCTIONS

Following Okuyama’s steps in [4], we prove that the map d above
satisfies three basic properties:

ProrosiTiON 2. (1) We have d(4) =N, and d(X) > 0.
(2) Setting XM =Q>M + R— M, where M e A and the sequence 0 —
Q*M — R— M -0 is almost split, we have d(EM) >0, and if d M) >0,
then M is periodic.

(3) For any A[G]-module M, we have d(M) = d(2*M).
Proof. (1) The first part follows by applying the left exact functor

Hom ,(¢y( , M) (M in 4) to the exact sequence 0 — Ind3(Y) — Ind (1Y)
— Ind§(27'Y) -0, and taking dimensions. Now suppose d(X)=0. It
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follows from (2.5) that (Y —IY + 27'Y, Res$(X)), = 0. Therefore all
homomorphisms from Y to Res$(X) are projective, and so are in particular
all endomorphisms of Y, since Y is a direct summand of Res$(X). Thus ¥
is projective, contradiction.

(2) Wehave d(ZM)=(Ind$(Y®Q™'Y), ZM);— (Ind§(IY), ZM),.
The definition of almost split sequences shows that the map ( , ZM),
takes on non negative values on A[G]-modules, and takes on the value 0
on all modules of which M is not a direct summand. Since this is the case
for the projective module Ind$(/Y) (Section2.2), we conclude that
d(ZM) > 0. Moreover if d(XM) >0, then M is a direct summand of either
Ind$(Y) or Ind$(2~'Y). But those two modules are periodic by Proposi-
tion 1. So M itself is periodic.

(3) We apply Assertion 2.6 twice, starting from d(M)= (s, M) and
using bilinearity. The right-hand term becomes ITM — I1(2M)+ Q°M.
On the left we use the identity of Section22, and obtain
Ind$(ITY — I(QY)+ Q*Y—IY+ II(Q~'Y)— Y+ QY). This simplifies
to the element s, by Proposition 1. The exactness of the functor
Hom ,6( , ), for any injective module 7, now shows that our expression
for d(M) reduces to (s, 2°M) . Therefore d(M)=d(Q2°M).

COROLLARY. The function d is subadditive on A and satisfies d(M)=
d(Q*M) (all M in A). Furthermore, if d is not additive, then 4 contains a
periodic module.

Proof. The labelling on A [1, p. 154] is such that statement (2) of the
proposition, together with (1), tells us exactly that the function d is sub-
additive. Moreover it is additive whenever d(ZM) in (2) is always 0.

Proof of Theorem 1. Condition d(M)=d(2*M) (M in 4), ensures that
d induces a function on the reduced graph of 4. The functions induced by
d on both the reduced graph and the tree class of 4 are then subadditive,
like d. We conclude by [1, 2.30.6(i)].
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