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We consider the problem of finding an easily implemented tie-breaking rule for 
a convergent set-valued algorithm, i.e., a sequence of compact, non-empty subsets 
of a metric space converging in the Hausdorff metric. Our tie-breaking rule is deter- 
mined by nearest-point selections detined by “uniqueness” points in the space, i.e., 
points having a unique best approximation in the limit set of the convergent 
algorithm. Convergence of the algorithm is shown to be equivalent to convergence 
of all such nearest-point selections. Under reasonable additional hypotheses, all 
points in the metric space have the uniqueness property. Consequently, all points 
yield convergent nearest-point selections, i.e., tie-breaking rules, for a convergent 
algorithm. 

We then show how to apply these results to approximate solutions for the 
following types of problems: infinite systems of inequalities, semi-infinite mathe- 
matical programming, non-convex optimization, and infinite horizon optimization. 
0 1991 Academic Press. Inc. 

1. INTRODUCTION 

Suppose (X, d) is an arbitrary compact metric space. Define an algorithm 
A in X to be a mapping n + A, of the positive integers into the set of 
closed, non-empty subsets X(X) of X (compare with [ 13, pp. 183-1841). 
Thus, an algorithm A is just a sequence {A,} in X(X). Suppose X(X) is 
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equipped with the Hausdorff metric D derived from d (see Section 2). We 
will say that the algorithm A converges if the sequence {A,} converges in 
(X(X), D). If A converges, then there exists an A, in X(X) such that 
&+A, relative to D. We may think of A, as the solution set to some 
problem and A, as the set of approximating solutions to this problem 
produced by the nth iteration of the algorithm A, for n = 1, 2, 3, . . . . 

Given a convergent algorithm A, how do we approximate a point in A,, 
i.e., how can we construct a sequence {xn} such that x, E A,,, all n, and 
(x,} converges to some element of A o. ? Such a construction will be called 
a tie-breaking rule. Of course, an arbitrary choice of x, in A, will not do, 
since the X, will not converge in general. (However, if they do converge, the 
limit will be an element of A, .) Moreover, the theoretical existence of such 
a convergent sequence is insufficient for practical purposes. One usually 
requires a constructive procedure which can be implemented to yield such 
a sequence. In this paper, we give such a procedure which depends on the 
familiar notion of best approximation or nearest-point. Specifically, given 
any point p in X, let x, be a point in A, which is nearest to p. Thus, the 
x, are values at the A,, of a nearest-point selection on X(X) defined by p. 
The question we ask is the following one. If the algorithm A is convergent, 
under what conditions will the sequence {x”} converge to an element of 
A,? We show that convergence of the algorithm A is equivalent to the 
desired convergence of the sequence {xn} for all points p in the uniqueness 
set of .4,, i.e., the set of points p in X having a unique best approximation 
in A,. In general, the uniqueness set may be difficult to find, thus making 
it difficult to choose p. In this case, our tie-breaking procedure is difficult to 
implement. However, in many important applications, the uniqueness set of 
A, is all of X. Therefore, in such cases, any point in X may be used as the 
defining point for a nearest-point selection whose values at the A, converge 
to a point in A,. (Note that this is in fact the case for convex subsets of 
a Hilbert space.) We apply these results to a variety of optimization 
problems. 

In Section 2, we review the topological results required concerning the 
Hausdorff metric, the lim inf and lim sup of sets and as well as their 
connections. 

In Section 3, we establish the selection convergence results. Specifically, 
we show that an algorithm is convergent if and only if selections canonically 
defined by continuous real-valued functions on X are convergent to an ele- 
ment of the algorithm’s limit set, provided the function attains its minimum 
at a unique point of the limit set. This is equivalent to convergence of the 
nearest-point selections defined by the uniqueness points of the limit set. 
We also give a parallel set of conditions involving convergent selections 
which are equivalent to the non-emptiness of the lim inf of the algorithm. 
We complete this section by showing that if, in addition, the algorithm 
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consists of convex subsets of a Hilbert space, then its limit set is convex 
and hence, its uniqueness set is the whole space. 

In Section 4, we apply our main results to approximation problems of 
the following types: (1) solving an infinite system of inequalities via 
approximate solution of finite subsystems, (2) semi-infinite mathematical 
programming via approximation by finite subprograms, (3 ) constrained 
optimization via grid approximation of the feasible region, and (4) infinite 
horizon optimization via finite horizon truncations. 

2. TOPOLOGICAL PRELIMINARIES 

For each x in X, the mapping y -+ d(x, y) is continuous on X. Thus, for 
each K in X(X), the minimum of d(x, y), for y in K, is attained and we 
may define 

4x7 K) = y& 4x, Y), x E X, KE X(X). 

Moreover, for such K, the mapping x -+ d(x, K) is also continuous on X [9, 
Thm. 4.21. Hence, for each C in X(X), the maximum of d(x, K), for x in 
C, is also attained and we may therefore define 

h(C, K) = max d(x, K), 
.k- E c 

C, KE X(X). 

Although h is not a metric on X(X) (it is not symmetric), we may obtain 
a metric D on X(X) if we define 

WC, K) = max(h(C, 9, MK, C)), C, KE X-(X). 

This is the well-known Hausdorff metric on X(X) [S, 10, 111. With this 
metric, X(X) is compact [lo, 123. Convergence in X(X) will be under- 
stood to be relative to D. 

Now let {K,} be an arbitrary sequence in X(X). As in [S, 10, 111, 
define lim sum K,, and lim inf K, as follows: 

(1) x E lim sup K, if and only if there exists a subsequence { Knk 1 of 
(K, > and a corresponding sequence { x,~} such that xnk E K”k, all k, and 
x,, -+x, as k + cv. 

(2) x E lim inf K, if and only if, for each n, there exists x, E K,, such 
that x,+x, as n+co. 

In general, lim inf K,, s lim sup K,,. Also, lim inf K,, and lim sup K, are 
closed subsets of X. In fact, lim sup K,, belongs to X(X), since it must be 
non-empty. However, lim inf K, may still be empty. 
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The next result summarizes the connection between these limit sets and 
Hausdorff convergence [lo, 11, 121. 

THEOREM 2.1. Let {K,, } be a sequence in AC(X) and K an element of 
,X(X). Then the following are equivalent: 

(i) K, -+ K in ,X(X) relative to D. 

(ii) K = lim sup K, = lim inf K,, i.e., KG lim inf K,, and lim sup K,, c K. 

COROLLARY 2.2. If lim sup K,, = {x}, then lim inf(K,} = {x} also. In 
this case, x, + x, as n + co, for all choices x, in K,,, all n. 

Proof: Let x, E K,,, all n. If x, f* x, then there exists a subsequence 
(x,,~} of {xn} h’ h b w ic is ounded away from x. Since X is compact, passing 
to a subsequence if necessary, we may assume there exists y in X such that 
x,, + y, as k + co. Consequently y E lim sup K,,, i.e., y = x, by hypothesis. 
Contradiction. m 

3. SELECTION CONVERGENCE RESULTS 

We define a seZection s on .X(X) to be a mapping s: ,X(X) + X satisfying 
s(K) E K, all K in .X(X). Note that selections are not required to be 
continuous. Our objective is to equate convergence of K,, to K in 
(,X(X), D) with convergence of s(K,) to s(K) in (X, d) for nearest-point 
selections sP corresponding to appropriately chosen points p in X. Before 
we can do this, we need to establish some additional concepts. 

Let f be a continuous real-valued function defined on X. Define 
m,.: ,X(X) -+ .CZ by 

q(K) = yj,‘: f(x), 

and M, : ,X(X)+3-(X) by 

Mf(K) = (x E K : f(x) = mf(K)}. 

Then m/(K) is the minimum value off on K and Mf(K) is the compact, 
non-empty subset of K on which this minimum is attained. (Note that 
Mf(K) being a singleton is a generalization of K being a singleton.) We 
then define an f-selection to be any selection sJ such that sf(K) E 
Mf(K), KE ~(9. 

Now let p be any point in X. Define 

f/Ax) = d(n XL x E x. 

Then f, is a continuous real-valued function on X. Denoting mr, by mp and 

409/155/l-19 
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M,, by M,, we see that mJ K) is the distance from p to K and M,,(K) is 
the subset of K where this distance is attained. As above, we will write sP 
for s,,. Observe that s,(K) is any point in K which is nearest to p. For this 
reason, we call sp a nearest-point selection defined by p. 

Now fix K in ,X(X). If p is such that there exists a unique x in K such 
that d(p, K) = d(p, x), i.e., M,(K) is a singleton, then we will say that p is 
a uniqueness point for K (relative to d). In this case, d(p, x) < d(p, J>), 
for all y in K different from x. Let U(K) denote the uniqueness set for 
K, KE ,X(X). If p E U(K) and s, is a nearest-point selection defined by p, 
then s,(K) is uniquely determined in K. In general, K E U(K) c X, K E 
,X(X). Note also that U(K) being equal to X is a generalization of K being 
a singleton. 

The next lemma shows that, in general, m,- is continuous, while M,- is 
only partially continuous. 

LEMMA 3.1. Iff: X+ 9 is continuous and K, + K, in .X(X), as n + a, 
then rn/( K,) -+ mf( K, ), as n + CC and lim sup MJK,,) G MJK). 

Proof: An application of the (minimum version of the) Maximum 
Theorem [S, p. 1161 yields the convergence of mf(K,) to m/(K,) as well 
as the upper semi-continuity (in the sense of [S, p. 1091) of the set 
mapping F(n) = MJK,,), n = co, 1, 2, . . . . where {co, 1, 2, . ..) is viewed as a 
compact metric space under stereographic projection. By [S, p. 112, 
Theorem 61 it follows that the mapping F is also closed. Consequently, 
lim sup Mf(K,,) G M,JK) by [S, p. 111, Theorem 41. 1 

There is an important special case where M, and all f-selections are 
continuous. 

THEOREM 3.2. Let KE ,X(X) and suppose f: X -+ 5%’ is continuous. If 
M,(K) is a singleton, then 

(i) The transformation Mf-: ,X(X) -+ m(X) is continuous at K. 

(ii) All f-selections s, : ,X(X) -+ X are continuous at K. 

Proof: Suppose K, -+ K in Z(X). By Lemma 3.1, lim sup MJK,,) c 
M,(K). Since lim sup M,(K,) is necessarily non-empty, it must be a 
singleton by hypothesis. The theorem then follows from Theorem 2.1 and 
Corollary 2.2 applied to {Mf(K,)}. 1 

COROLLARY 3.3. Let K be an element of SC(X) and p a point in U(K). 
Then 

(i) The transformation M,: ,X(X) -+ S(X) is continuous at K. 

(ii) All nearest-point selections s,, defined by p are continuous at K. 
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The following are our main results. The first says that, given a 
convergent sequence of sets, all nearest-point selections defined by 
uniqueness points of the limit set converge to a point in the limit set. 

THEOREM 3.4. Let {K,,} be a sequence in ,X(X) and K an element of 
X(X). Suppose lim sup K,, E K. Then the following are equivalent: 

(i) Kclim inf K,,, i.e., K,, + K relative to D in x(X), as n + CO. 

(ii) sr(K,,) + s,(K) in X, as n -+ co, for all nearest-point selections sr, 
defined by any p in U(K). 

(iii) sf(K,,) + s,(K) in X, as n + CO, for all f-selections sf defined by all 
continuous functions f: X -+ 22 for which A4JK) is a singleton. 

(iv) s(K,) + s(K) in X, as n -+ 00, for all selections s which are 
continuous at K. 

Proof (i) implies (iv): Apply Theorem 2.1 (iv) implies (iii): Apply 
Theorem 3.2. (iii) implies (ii): Ifpe U(K), then MJK) is a singleton, where 
f = f, is continuous. (ii) implies (i): Let p be an element of K, so that 
pi U(K). By (ii), s,(K,) + s,(K), as n -+ co, where s,(K,) E K,,, all n, and 
s,(K) = p. Hence, p E lim inf K,, by definition. 1 

COROLLARY 3.5. If U(K) =X, then the following are equivalent: 

(i) K,tK in ,X(X), as n-+ oo. 

(ii) s,(K,) + s,(K) in X, as n + co, for all nearest-point selections sp 
defined by any p in X. 

Analogously, we have the following result on existence of continuous 
selections. Intuitively, it is a dual version of Theorem 3.4. 

THEOREM 3.6. Let {K,,} be a sequence in ,X(X) and K an element of 
,X(X). Suppose lim sup K, E K. Then the following are equivalent: 

(i) d#liminfK,. 
(ii) s,(K,) + s,(K) in X, as n + CO, for all nearest-point selections sp 

defined by some p in U(K). 

(iii) s,(K,) -+ s,(K) in X, as n + co, for all f-selections sr defined by 
some continuous function f: X + 9 for which g/(K) is a singleton. 

(iv) s(K,) -s(K) in X, as n + CO, for some selection s which is 
continuous at K. 

Proof: (i) implies (ii): Let x be an element of lim inf K,. By definition, 
there exists x, in K,, all n, such that x, -+x, as n + co. By hypothesis, 
x E K, so that x E U(K). Let s, be any nearest-point selection corresponding 
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to x. Then d(x, s,(K,)) + 0, as n + m, since Ct(x, s,(K,)) dd(x, x,,), all n. 
Hence, s,(K,) +x =s,(K), as n + a. (ii) implies (iii): Let p be an element 
of U(K) and sP a corresponding nearest-point selection satisfying s,(K,,) -+ 
s,(K). As before, define f(x) = d(p, x), x E X. Then f is continuous on X, s,, 
is an Jselection and M,(K) is a singleton since p E U(K). (iii) implies (iv): 
Let S: X+ 9 be a continuous function for which M/(K) is a singleton. 
Then each f-selection st. has the desired properties (Theorem 3.2(ii)). (iv) 
implies (i): Let s be a selection which is continuous at K and satisfies 
s(K,,) + s(K), as n + co. Then s(K) E lim inf K, by definition. 1 

Remarks. (1) In the statement of Theorem 3.6 it suffices to assume 
more generally that lim sup K, c U(K). This is the case for example if 
U(K) = X. (2) Obviously, we are interested in approximating a point in 
lim inf K,,. Theorem 3.6 gives conditions under which this can be done. 
While this result is of theoretical interest, it does not tell us how to 
construct such an approximation. 

The previous results show that in dealing with nearest-point selections, 
it is essential that the reference point p be a uniqueness point of the 
relevant limit set. In general, such p may be difftcult to find. Thus, it is 
desirable that the uniqueness set be the entire space, so that any point can 
be chosen as a reference point. This will be the case, for example, if K is 
a convex subset of a Hilbert space. Specifically, we have: 

LEMMA 3.7. if X is a compact subset of a Hilbert space and K is a 
convex element of X(X), then U(K) = X. 

Proof Follows from [2, p. 151 or [S, p. 231. 1 

In order to apply this lemma, we need a useful sufficient condition for 
the limit of convex sets to be convex. The following lemma gives us this 
condition. 

LEMMA 3.8. Suppose X is a compact subset of a linear metric space. Let 
(K”> be a sequence in .X(X) hauing the property that each Km is convex, 
n = 1, 2, . . . . Then lim inf K, is also convex. Consequently, the limits of 
sequences of convex elements of X(X) are also convex. 

Proof Let x, y E lim inf K,, and 0 <ad 1. Then there exist sequences 
{x,} and {y,} such that x,, y,gK,, all n,x,+x and y,+ y, as n+ CO. 
Also, ax, + (1 - a) y, E K,, , all n, by hypothesis and ax, + (1 - a)y17 + ax + 
( 1 - a) y, which must be an element of lim inf K,,. Thus, lim inf K,, is 
convex. The remaining statement follows from Theorem 2.1. 1 

We conclude this section with several illustrative examples. 
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EXAMPLE 3.9. Let (X, d) be an arbitrary compact metric space with at 
least two distinct points. Suppose xi -+ x and yi -+ y in X, as i + co, where 
x # y. Define K, = {xi, vi}, i = 1,2, . . . . and K= (x, y}. Then it is easy to 
see that K E lim inf Ki and lim sup Ki E K, so that they are equal. Hence, 
Ki-+ K in X(X), as i+ co. Moreover, 

Let p be any element of U(K). Without loss of generality, assume d(p, x) < 
d(p, y ), so that s,(K) = x. Then s,(Ki) = xi eventually and s,(K,) + s,(K), 
as i+oo. 

EXAMPLE 3.10. Let X be any compact subset of a2 which contains the 
unit disk. For each n, let K,, be the ellipse given by x2 + ti*y” = 1, n = 
1, 2, . . . . Then K,, is a compact subset of X, n = 1, 2, . . . . i.e., {K,,} is a 
sequence in X(X) whose limit K is easily seen to be the compact, convex 
interval {(x, 0) : 1x1 6 l} in B2 [ 10, p. 1691. Moreover, it is also clear that 
the uniqueness set of K is all of X. Thus, for any p in X and any nearest- 
point selection sp defined by p, sJK,) + s,(K) in %Y2, as n + co. 

EXAMPLE 3.11. Let X denote the product of countably many copies of 
the interval [ - 1, 11. The compact product topology is metrizable by the 
metric d given by 

4x, Y)’ f Ixi-.Yil/2’, x, YE& 

i=l 

where x = (x,), y = (y,). Let 0 < a < 1 and consider the following infinite 
horizon mathematical program: 

subject to 

io 
max C cCxf 

i=l 
(MI’) 

lxil 6 l, i= 1, 2, . . . . 

Let X* denote the set of optimal solutions to (MP). It is easy to see that 

X*= {xEX:X;= fl,alli}, 

so that X* is uncountable. One interpretation of this is that for every 
discount factor ~1, there exist uncountably many infinite horizon optima for 
this problem. 
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Now let N be a positive integer and consider the following N-horizon 
version of (MP): 

,z 
max 2 r’.$ W’)h 

,=I 

subject to 

IXil d 1, i = 1, 2, . . ., N. 

If A’; denotes the set of optimal solutions to (MP),, then it is obvious that 

X$=(XEX:X~= +l, l<i<N), N= 1, 2, . . . . 

Thus, 

and 

x*= fi A-$. 
N=l 

It then follows [ll, p. 3391 that 

X* = lim inf X$ = lim sup Xx, 

so that X; + X* in K(X), as N + co. In fact, one may verify that 

D(XJ$, x*)<21pN, N= 1, 2, __.. 

The uniqueness set of X* is given by 

U(X*)={x~X:x~#O,alli}. 

Let p be an element of U(X*). Then a nearest-point selection sp defined by 
p satisfies 

1, 

sp(x*)i= _ 1 
{ ? 

if pi>O, 
if pi< 0, 

and 

i 

1, if 1 fi<Nandp,>O, 

s,(X$), = - 1, if l<i<Nandp,<O, 

Pi7 if i>N. 
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Note that s,(XX) is the unique element of X$ having the property that 
d(p, X$) = d(p, s,(X$)), N= 1, 2, . . . . Of course, s,(X$) -+ s,(X*), as n + co, 
as required by Theorem 3.4. In fact, we may verify that 

4. APPLICATIONS 

We are now ready to apply our main results on selection convergence. 
The following result will be very useful in this section. As in Section 1, let 
A be an algorithm in X, where we assume that X is a compact subset of 
some Hilbert space. 

THEOREM 4.1. Suppose each A, is convex, n = 1,2, . . . . and A is 
convergent to A,. Then for each p in X, we have sp( A,) + sp( A,) in X, as 
n -+ co, where sP is the unique nearest-point selection corresponding to p. 

Proof: Since {An} converges in .X(X), it follows that A, is also convex 
(Lemma 3.8). Hence, for each n = co, 1, 2, . . . . A, contains a unique nearest- 
point to any p in X (Lemma 3.7), i.e., the uniqueness set of A, is X. Thus, 
for each p in X, there exists a unique nearest-point selection delined by p. 
It follows from Corollary 3.5 that s,(A,) + s,(A,), as n + 00. i 

4.1. Systems of Inequalities 

Now consider the following problem of finding a solution to an infinite 
system of inequalities; that is, we seek x= (x,, . . . . x,) in 9” such that 
g,(x) < b,, i= 1, 2, . . . . where each gi is a real-valued continuous function of 
a real variable, and uj d xi d vj, j= 1, . . . . n [6, 73. Let X= n,“=, [u,, v,] so 
that X is a compact, convex subset of W”. For each N= 1,2, . . . . define 

K,= {xEX: g,(x)<b,, i= 1, . . . . N}. 

Then K, is the set of solutions in X to the first N inequalities. Moreover: 

(i) Each K, is a compact subset of X. 
(ii) The K, are decreasing, i.e., K,, , G K,, N= 1, 2, . . . . 

(iii) The set K, of all solutions to the original problem is equal to 
n;= I KN. 

THEOREM 4.2. Suppose K, # a, so that K, E .X(X), all N. Suppose also 
that gi is convex, i= 1, 2, . . . . If p is any point in X, then the sequence of 
points {x~}, where xN is the solution to the first N inequalities nearest to p, 
converges to the solution of the system of inequalities which is nearest p. 
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Proof: By hypothesis, each K,v is also convex, N = 1, 2, . . . . Moreover, 
KN+K, in X(X) relative to the Hausdorff metric [ll, p. 3391. Now 
apply Theorem 4.1 to complete the proof. 1 

Remark. Without loss of generality, we may assume the origin is in X. 
Thus, in particular, we may choose p to be the origin in B\“. Then the 
sequence of points in the K, closest to the origin converges to the solution 
of the original problem which is closest to the origin (i.e., of minimum 
norm). 

4.2. Semi-Infinite Programming 

Consider the following semi-infinite, convex mathematical program: 

max c(x,, . . . . x,) (PI 

subject to 

i ag(xj) < bi, i = 1, 2, . . . . 
j=l 

ujdX,dVi, j = 1) . ..) n, 

where -c and each aii are continuous and convex, j = 1, . . . . n, i = 1,2, . . . [ 1, 
p. 661. Define X as in the previous problem and let K denote the feasible 
region to (P). As above, K is a compact, convex subset of X. Assume 
K#@. 

For each N= 1,2, . . . . consider the finite subprogram given by 

max c(x,, . . . . x,) (PN) 

subject to 

5 au(xj) G b,, i = 1, . . . . N, 
j=l 

Uj<Xj<Vj, j=l , . . . . n. 

If K, denotes the corresponding feasible region, then the KN are as in the 
previous application. In particular, K, -+ K in X(X), as N -+ co. Let 

c;G=max{c(x) 1 XEK~), N= 1, 2, . . . 

c* = max { c(x) ( x E K}. 
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Then, by Lemma 3.1, we have cX + c*, as N+ co, i.e., value convergence 
holds. Also. let 

KS= {XE K, I c(x) =c;), N= 1, 2, . . . . 

and 

K*=(xEKI c(x)=c*>. 

Then K* and each X$ is a compact, non-empty subset of X, for N= 1,2, . . . . 
and in addition, lim sup K,$ E K* (Lemma 3.1), i.e., solution convergence 
holds partially in general. If (P) has a unique solution, i.e., K* is a 
singleton, then KE + K*, as N + co, by Corollary 2.2. 

THEOREM 4.3. Suppose A is an algorithm for the (PN) for which A, is a 
non-empty, compact, convex subset of K,$, N = 1, 2, . . . . If A converges, then 
for each point p in X, the sequence {xz}, where x$ is the solution to (P,,,) 
in A,,, nearest to p, converges to an optimal solution to (P). In particular, this 
is true if p is the origin in .9F’. 

Proof: By hypothesis, there exists A, in ,X(X) such that lim sup A,= 
liminfA,=A,. Since AN~X,$, N= 1, 2, . . . . it follows that A, L 
lim sup K$ [S, p. 1213, i.e., A, c K*. Now apply Theorem 4.1 and the 
succeeding remark. 1 

Remark. If (P) has a unique solution, then the theorem is valid for x5 
any element of A,, N= 1, 2, . . . . 

4.3. Non-Convex Optimization 

Consider the optimization problem 

where K is a non-empty, compact subset of m-dimensional Euclidean space 
.%? and f is a continuous function of m real variables [3]. Suppose we try 
to solve this problem by the following grid-approximation technique. 

For convenience, let X be any compact subset of 9” satisfying K E X. 
Assume also that K is the closure of its interior K”. For each n = 1,2, . . . . let 

Z,= {k/n:k=integer}, 

G,=Z,x ... xZ, (m times) 

and 

K,,=KnG,. 
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Then K,, is a finite subset of K which is eventually non-empty since K” is 
non-empty. Thus, {K,, 1 is a sequence in X(X), for sufficiently large n. 

LEMMA 4.4. The sequence {K,, } converges to K in X(X) relative to the 
Huusdocff metric. 

Proof: Since K,, c K, all n, it is clear that lim sup K, E K. Suppose x is 
an element of K” and I’ is an arbitrary neighborhood of x contained in K”. 
It is easy to see that V is eventually intersected by the K,,, i.e., .Y E lim inf K, 
[ 11, p. 33.51. Thus, K” c lim inf K,,, which implies that KE lim inf K,, since 
K is the closure of K”. The result then follows from Theorem 2.1. 1 

Let K* denote the non-empty, compact set of optimal solutions to (P) 
and f * the optimal objective value. Also let K,* denote the set of optimal 
solutions to the finite approximation problem 

maxfb), XEK" (P,) 

and f,* the corresponding optimal objective value, n = 1, 2, . . . (These are 
well defined for sufficiently large n.) Note that K,* is a finite, (eventually) 
non-empty subset of K,,, n = 1,2, . . . . i.e., {K,*} is a sequence in X(X), for 
large n. 

THEOREM 4.5. The sequence {f,* } converges to f *. Also, lim sup K,* G 
K*. Moreover, if K* is a singleton {CC*}, then any selection of x,* in K,*, 
n = 1, 2, . . . . converges to x*. 

ProoJ: Follows from Lemma 4.4, Lemma 3.1, and Theorem 3.2. u 

Remark. A sufficient (but not necessary) condition for K* to be a 
singleton is that K be convex and f be strictly convex. 

COROLLARY 4.6. If K is convex, then for any p in X, any sequence of 
solutions to the problem (P,) closest to p converges to a solution of(P). 

4.4. Discrete Infinite Horizon Optimization 

Consider an infinite sequential decision problem where the jth decision 
is to be chosen from the finite set (0, 1, . . . . M} (see [4]). An infinite 
sequence of such decisions is a strategy. (It is assumed that all strategies 
extend over the infinite time horizon.) In particular, let 8= (0, 0, . ..). The 
strategy space Y is then the product of countably many copies of the given 
decision set; it is a compact Hausdorff space relative to the product 
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topology. If we fix 0 < B < 1, then Y is also a metric space with metric 
given by 

d&G Y)’ 2 B’Ixj-Yjl, x, YE Y. 
j=l 

In general, not all strategies are feasible. Thus, we will assume there 
exists a closed, non-empty subset X of Y consisting of the feasible 
strategies. Also, let > denote the canonical lexicographic ordering of the 
elements of Y. As in Ryan, Bean, and Smith [ 151, it can be verified that 
if fl< l/(M + 1 ), then d,(0, x) > d,(e, y) if and only if x > y. Moreover, 
d,(0, x) is a continuous function of x in Y. Consequently, if K is any ele- 
ment of X(X), then 8 is in the uniqueness set of K and the unique element 
s,(K) of K closest to 0 is the lexicographic minimum of K relative to >. 

Suppose there is a cumulative net cost function associated with each 
strategy. In order to compare costs over a finite or infinite horizon, we 
continuously discount them to time zero relative to a suitable interest rate. 
Let X* denote the subset of X consisting of those feasible strategies having 
minimum discounted intinite horizon cost. Assume X* is non-empty and 
closed. Likewise, for T> 0, let X*(T) denote the subset of X consisting of 
those feasible strategies having minimum discounted T-horizon cost, As 
above, assume each X*(T) is non-empty and closed. Then X* is an 
element of X(X) and {X*(T) 1 T>O} is a generalized sequence in X(X). 
(Note that the results of Sections 2 and 3 are valid for sets indexed by 
T>O. We omit the details.) Let D, be the Hausdorff metric on X(X) 
corresponding to dP. Application of Theorem 3.4 yields: 

THEOREM 4.8. Suppose /I’ < l/(M+ 1). rf X*(T) + X* in X(X), as 
T-t m, relative to D,, then the generalized sequence of lexicographic 
minima of the X*(T) converges to the lexicographic minimum of X*. 

Remarks. (I) In the presence of Hausdorff convergence of the finite 
horizon optimal solution sets, the previous theorem yields a tie-breaking 
algorithm for approximating an infinite horizon optimum by finite horizon 
optima. (2) In [16], Shapiro and Wagner considered an infinite horizon 
version of the knapsack problem. Ryan [14] has shown that Hausdorff 
convergence holds in this case. Hence, this problem provides an example 
where Theorem 4.8 holds. 
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