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Abstract. This paper investigates the effects of centrifugal forces on the frequencies of a rotating system and 
then provides an optimal redesign process. The rotational effects have a profound influence on the eigenfrequen- 
cies and are important in optimal structural redesign where the frequencies must be adjusted. The optimal 
redesign is done by deriving nonlinear inverse perturbation equations for the problem. Structural changes 
typically meet the frequency goals to within three percent. 

Introduction 

The desire to minimize weight while meeting design requirements is a key concept in optimal 
structural design. In any structural redesign problem, there are several possible candidate 
designs that would meet the new criteria. The objective function for redesign may be quite 
different from the objective function in the original design of a part. It may be necessary to 
obtain the optimal design that requires the least possible change from the original design in 
terms of some dimension, such as thickness. This is a "minimum change" criterion for 
optimization. 

Some structures are subject to body forces in addition to loadings caused by boundary 
forces. Rotating bodies experience centrifugal effects. In a rotating frame, the centrifugal 
effects may be viewed as a reverse-effective pseudo-force. If the rotational speed is small 
enough, these forces can be neglected. In high speed applications, however, centrifugal forces 
can result in stiffening. This introduces a nonlinearity in a classical analysis sense. 

The objective of this study is to first solve for the stiffening effect of the centrifugal force 
and to calculate the mode shapes and frequencies of a structure composed of several types of 
elements. Then, nonlinear inverse perturbation will be used to account for the stiffening effect 
as the redesign progresses. This scheme measures design changes as perturbations of the 
original structure. The method will be applied to a problem involving a typical curved 
compressor blade. Coriolis effects are not included in this paper but have been considered 
separately. 

Theoretical overview and solution procedure 

Motion of rotating system 

For the free vibration problem involving no damping or gyroscopic effects, the equation of 
motion of the discretized system may be expressed by: 

[ M ] ( / i }  + [ K ] ( u }  = (0}. (1) 

Elsevier Science Publishers B.V. 



318 ll.D. Gans, W.J. Anderson /Structural optimization 

Solutions admit n eigenvalues o h and n associated eigenvectors (q~)~ where n represents the 
number of degrees of freedom. The lowest eigenvalue, o~1, is the fundamental frequency which 
typically is a bending mode. The corresponding mode shape is { q, } r 

In the total optimization approach, the forward problem encompasses the modal analysis of 
the rotating structure. This can be thought of as a free vibration problem, with a centrifugal 
force acting as a stiffening effect. This can be quantified by examining the nonlinear compo- 
nents of the structural stiffness matrix. 

In nonlinear analysis, the stiffness matrix is represented by [KT] which is a tangent matrix 
such that: 

[KT] = [K0] -4- [KD] 4- [KL] , (2) 

where [KT] is the tangent stiffness matrix, [K0] is the small-displacement stiffness matrix, [KD] 
is the differential stiffness matrix (often called geometric stiffness or initial stress matrix), and 
[KL] is the large-displacement matrix. 

In solving the rotating problem, it is assumed that displacements are small; therefore, [KL] is 
neglected in eqn. (2). The differential stiffness matrix, which is retained, does not explicitly 
contain displacements, but is dependent on the stress level. The matrix [K0] is given by 
Zienkiewicz [1] and others. Furthermore, it can be" shown [2] that for a beam: 

f [01 [01 ] 
L[0] [0] Is] 

where [k~] is the element differential stiffness matrix, [N ' ]  is the spatial derivative of the shape 
function matrix, and [s] is the matrix of applied stresses such that: 

Otx0 Txy 0 TxzO ] 
[ s ] =  "rxyO °gO ¢y~O . (4) 

L ¢~o 'ryzO °zo 

Nonl inear  inverse perturbat ion m e t hod  

The predictor-corrector method for structural optimization employing nonlinear inverse 
perturbation was developed by Hoff  et al. [3], based on the work by Stetson [4], Stetson and 
Palma [5], and SandstriSm and Anderson [6]. This method was expanded to rotating structures 
by Gans [7]. 

The predictor-corrector method will be developed by the use of a simple rotating canti- 
levered beam as shown in Fig. 1. The first design change seeks a 10% increase in the 
fundamental flexural model frequency. In the predictor step, we will assume that the element 
change tit e is small; therefore, the quantity (1 + Ore) 3 -- 1 may be approximated by 3a e. This 
results in a 3.11% error, but is done so as to facilitate solving for Ore, which we shall see is the 
unknown in the inverse perturbation scheme. 

The element change property a e is given by: 

a e = Ate/te,  (4) 

where t e is the element thickness and At e is the change in element thickness. Thickness for the 
beam in Fig. 1 is in the z-direction in the cross section. Let M i be the generalized mass for the 
ith mode, o h be the eigenfrequency and [kem~ ], [ke~,, ], [ke~.d ] and [me] be the element 
membrane stiffness, differential stiffness, and bending stiffness and mass matrices, respectively. 
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Fig. 1. Rotating beam. 
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Therefore, the scalar equation that gives the relationship between ote and the desired change in 
natural frequency A60 i including centrifugal effects is given by: 

P 
A(60 2) = Mi --1 ~ [{ ~b}iX([k . . . .  b] + [ked~,,] + 3[ke~.a]){~b }iae 

e = l  

-602{ ~k }~[me]  { ~/' } ,ae] ,  (5) 
where the approximation of the expansion of (1 + ~te) 3 as 3a e is applied. 

The above equation is called the predictor. It relates the element changes to a prescribed 
change in the desired eigenfrequency. In this way, the equation predicts what the system 
configuration should be for a given amount of frequency change. 

Using the results from the static analysis, one finds the eigenvalues and eigenvectors for the 
rotating system by finite element modal analysis using MSC/NASTRAN as modified with Direct 
Matrix Abstraction Programming (DMAP). Then, eqn. (5) is used as an equality constraint in the 
Augmented Lagrange Multiplier (ALM) procedure described by Vanderplaats and used in the 
optimization program ADS [8]. Inequality constraints are also formulated for upper and lower 
bounds on a e. 

A minimum-change objective function is given by: 
P 

f ( { a e ) )  = E (tire) 2' (6) 
effil 

where { a e } is the vector of element change properties a e. Alternatively, the function to be 
minimized could be minimum weight. For a system of uniform density, this function is given 
by: 

P 
/ ( { , , e } )  = E Ae e, (7) 

e = l  

where A e is the element planform area perpendicular to the thickness. 
The corrector examines the potential energy imbalance between the system output from the 

predictor and the desired system and corrects the imbalance through additional elemental 
changes. This enforces the natural frequency constraint on the ith mode: 

P 
E ({ ~b' }~ [k,]  { ~b' }, - 60;2{ ~/" }~[ me] ( ~,b' })  ae 

effil 
,2 , r ~ ,  ~ ,  ~ ,  =60,{¢},[Ml{ } , - {  }S[K]{ },, (8) 
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where { ~k' }i is the perturbed eigenvector, ~0,' is the desired eigenvalue, and [K] and [M] are the 
global stiffness and mass matrices, respectively, and 

[ke] = [k . . . .  ] --~ [kedit,] -~- 3[kel~end ] . (9) 
The perturbed eigenvectors may be obtained in one of two ways. The first method, 

mentioned above, is to simply rerun the predictor. This yields the full, nonlinearly perturbed 
matrix of eigenvectors and the desired mode can be easily partitioned out. The second 
procedure involves the application of the following equation, where the change to the k th 
degree of freedom for the ith mode is: 

ml~ki= e=l ~ j=l ~ [ g j (  602 - 0)2) ((l~)f([kemembl Ar[kedi"l)(l~}iOle 
T 3 +{ q~ )j[k .. . .  ]( ~ },(3ae + 3a~ +a . )  

-o~{#} f [m . ] (#} ,a . } ] }  (for j 4= i).  (10) 

F.E. ANALYSIS F.E. ANALYSIS 

PREDICTOR CONSTRAINT CORRECTOR CONSTRAINT 

OPTIMIZATION OPTIMIZATION 

F.E. ANALYSIS F.E. ANALYSIS 

PERTURBED SYSTEM OPTIMIZED SYSTEM 

Fig. 2. Predictor overview. Fig. 3. Corrector overview. 
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This equation is a linear approximation of the perturbations in the eigenvectors. Using the 
results of reanalysis, one obtains the full, nonlinear changes in the eigenvector. 

These two candidate procedures have definite trade-offs. Using eqn. (10) avoids another 
finite element run. However, eqn. (10) involves many matrix multiplications and manipulations 
and additional programing. Doing the reanalysis involves another finite element run, but it is 
simple to do and provides the exact intermediate answers. It also incorporates the changes in 
centrifugal force due to mass changes, which is something eqn. (10) cannot do. As a side 
benefit, the intermediate result of the predictor method alone is provided. 

Overviews of the predictor and corrector are given in Figs. 2 and 3, respectively. For the 
predictor, the finite element solver is first run, to generate the system structural matrices and 
the eigenvectors. Then, using this information, the equation of constraint for the predictor is 
used using the frequency change equation. This constraint is used in the next step, the 
optimizer. Optimization is accomplished with respect to minimum weight or minimum change. 
Finally, a finite element analysis is done to obtain the system matrices and eigenvectors for the 
perturbed system produced by the predictor. The corrector Uses a similar procedure with the 
energy balance equation serving as the constraint. 

Results 

The next step is to use the above method on a complex problem. Figure 4 shows a finite 
element model for a curved rotating cantilevered blade. The blade is made of Inconel 718 steel, 
has a radius of 254.0 ram, a length of 69.34 mm, and rotates at a speed of 200 Hz. It has an 
angle of attack of 30 degrees and is modeled after a NACA 64 airfoil. The blade is 10% thick at 
the root and tapers to 5% thickness at the tip. 

The finite elements are each divided into two superimposed subelements; one with mem- 
brane properties and one with bending properties. This finite element model has approximately 
1000 degrees of freedom. In the corrector, the lower limit on a e will be changed so that no 
region will have a thickness less than one-half of the thickness of the original region. 

For  the nonrotating system, the fundamental frequency is 7665.6 rad/s .  For the rotating 
system including centrifugal effects, the fundamental frequency is 8380.2 rad/s .  This implies a 
9.32% increase in fundamental frequency due to the centrifugal effect. The first eigenvector is a 
flapping, or bending, mode and the second one is a twisting, or torsional mode. 

The problem of the rotating blade was analyzed for two cases, one involving a minimum- 
change objective in the predictor and in the corrector and another case involving minimum- 
weight objective. In cases 1 and 2, a 10% increase in the fundamental eigenfrequency was 
desired, with the objective function for case 1 being minimum change and the objective 
function for case 2 being minimum weight. Results of both predictor and corrector are shown 
in Table 1. Note that the predictor results can be considered to be results from a linear, 
one-step analysis since the effect of redesign on the eigenvectors does not enter into the 

Fig. 4. Rotating blade. 
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Table 1 
Optimization results for blade, 10% change 

Case Objective wl to1 a w~ %Ap %AWp w] %A c %AI, V c 
function a (rad/s) (rad/s) (rad/s) (rad/s) 

1 C/C 8380 9218 9246 103 4.09 9220 100 0.025 
2 W/W 8380 9218 9210 99.1 - 14.1 8948 67.7 - 37.3 

C/C/:  minimum change in both predictor and corrector steps; W/W: minimum weight in both steps. 

predictor procedure. Improvements  from the predictor-to-corrector step show the benefit of the 
use of the nonlinear optimization techniques. 

In Table 1, the first column denotes the objective functions used in the predictor and the 
corrector respectively. The symbol C / C  denotes minimum change in both steps. If  W / W  is 
indicated, minimum weight was used in both the predictor and corrector. The next heading to1 
indicates the fundamental frequency for the system. The desired frequency is denoted by toa. 
The fundamental frequency resulting from the predictor geometry is indicated by to p . The 
percentage of the desired frequency change accomplished by the predictor is %Ap. The percent 
weight change resulting from the predictor is %AWp. The fundamental frequency of the 
corrector geometry is to~. The percentage of the desired frequency change accomplished by the 
corrector is given by %A c. In the final column, the percent weight change %AW~ resulting from 
the corrector is given. 

The final spanwise optimized thickness of the structure for Case 1 is given in Fig. 5 and for 
Case 2 in Fig. 6. Notice that in the minimum-change example (Case 1), emphasis is given to 
adding material at the root. In the minimum-weight example (Case 2), all of the regions except 
for the root have been reduced to the lower limit on thickness. This is the pathological case in 
optimization where the system is driven to an extreme. In this example, undesirable side effects 
occur, such as mode switching. The first bending mode is no longer the fundamental frequency 
and the the solution to the problem in optimization is no longer dependable. The frequency 

T 
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Fig. 5. Optimally redesigned blade, case 1: minimum change. 
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Fig. 6. Optimally redesigned blade, case 2: minimum weight. 
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Table 2 
Optimization results for blade, 305g change; iterative procedure, minimum change 

323 

Case Objective ,01 ~d top %Ap %AWp ~0~ %A c %AWe 
function (rad/s) (rad/s) (rad/s) (rad/s) 

3 C/C 8380 10890 11470 123 13.7 10920 101 9.80 
4 C/C 10020 10890 10890 100 9.68 10890 100 9.68 

Table 3 
Optimization results for blade, 30% change; incremental procedure, minimum change 

Case Objective ~o I ~0~ ,0 F %Ap %AWp w~ %A c %A c 
function (rad/s) (tad/s) (tad/s) (rad/s) 

5 C/C 8380 9218 9246 103 4.09 9220 100 0.025 
6 C/C 9220 10060 10080 103 8.62 10070 100 8.46 
7 C/C 10070 10900 10910 102 13.7 10900 100 13.6 

results shown for the corrector are for the bending mode; however, this frequency is technically 
no longer o~ 1. 

Two other problems were studied; both involved large (30%) changes in the fundamental  
frequency. In Case 3, the 30% change is accomplished in one step. A second iteration is 
performed to obtain an improved solution (Case 4). In another situation, the 30% change is 
broken down into three 10% increments (Cases 5-7). In all of these examples, only a minimum 
change objective function is used. Table 2 shows the results of the iterative procedure. The 
linear predictor step obtains the desired frequency change with 23% error,but at the end of the 
first design iteration, the desired frequency change is accomplished to within 1%. The second 
iteration is done for completeness, and gives the desired change in fundamental  frequency to 
within 1/100 of 1%. 

In Table 3, each increment obtains the desired change in frequency for that step to less.than 
1%. The final increment, which completes the 30% frequency change, gives the desired change 
to within 9 /100  of 1%. These two tables show that excellent accuracy on the frequency goal is 
obtained, showing the feasibility of making large changes. 

The use of the word "accuracy" needs some close examination. "Accuracy" has been used to 
describe how close the frequency change obtained by solving the problem in optimization is to 
the desired frequency change. This is done in terms of a discrete finite element model. 
Closed-form solutions to complicated structural systems are difficult to obtain. Therefore, in all 
discussions on accuracy, comparisons are made from one discrete model to another. 

One of the reasons behind the lack of accuracy surrounding the problem of frequency 
control with minimum-weight objective is that this objective function in the presence of the 
nonlinear effects of the corrector drives most of the structure to the pathological extreme of the 
lower bound on thickness. This is an undesirable solution. Not  only does it introduce 
inaccuracies that somewhat distance the frequency change from the desired value, but it also 
causes mode switching. 

Conclusions 

The predictor-corrector  method for optimal redesign as extended in this dissertation 
obtained the desired frequency changes with excellent accuracy. MSC/NASTRAN finite element 
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solut ion sequences were modi f ied  to incorpora te  ro ta ry  effects. DMAP and FORTRAN languages  
were used to implemen t  the der ived equat ions  of  const ra int .  A u t o m a t e d  Des ign  Synthesis  (ADS) 
was used to ob ta in  the o p t i m u m  solution.  The  me thods  used were app l ied  to several  test  
p roblems,  one  be ing  a curved b l ade  with near ly  one thousand  degrees of  f reedom. In  each case, 
the desired f requency change  was ob ta ined  to within a few percent .  Therefore,  the a p p r o a c h  
works  and can be  app l i ed  to a var ie ty  of  p rob lems  in op t ima l  redesign.  The  technology  
deve loped  is t r anspor t ab le  to o ther  sites by  anyone  famil iar  with MSC/NASTRAN and  DMAP. 
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