Calcium-dependent release of accumulated glutamate from synaptic vesicles within permeabilized nerve terminals

Phillip E. Kish¹ and Tetsufumi Ueda¹²

¹Mental Health Research Institute and ²Departments of Pharmacology and Psychiatry, The University of Michigan, Ann Arbor, MI 48109 (U.S.A.)

(Received 9 April 1990; Revised version received 16 October 1990; Accepted 16 October 1990)

Key words: Synaptic vesicle; Neurotransmitter release; Calcium-dependent; Glutamate; ATP-dependent uptake

We have studied glutamate release from synaptic vesicles in permeabilized synaptosomes, which were preloaded with [3H]glutamate in an ATP-dependent manner. The release was found to be calcium-dependent and to require a heat-labile cytosolic macromolecule factor for maximum activity. Maximal release occurred at 5 μM free Ca²⁺ and within 5 min. Of the other divalent cations tested, only barium stimulated release of vesicular glutamate. The release was inhibited by N-ethylmaleimide. These results are characteristic of exocytotic release of monoamines and peptides observed in endocrine systems, and constitute direct evidence for the notion that calcium-dependent release of glutamate originates from the vesicular pool.

Amassed evidence indicates that glutamate serves as a major excitatory neurotransmitter in the vertebrate central nervous system (for review, see ref. 4). Despite the increased recognition of the neurotransmitter role of glutamate, the mechanism by which glutamate is released from the nerve terminal remains in large part to be elucidated. Substantial evidence now has been accumulated that glutamate is specifically taken up into highly purified isolated synaptic vesicles in an ATP-dependent manner [6, 8, 12, 15–18, 22], suggesting that glutamate could be accumulated and stored in synaptic vesicles in vivo. This is in accord with immunocytochemical evidence provided by Storm-Mathisen et al. [21] suggesting that glutamate is concentrated in certain synaptic vesicles distinct from γ-aminobutyric acid (GABA)-containing vesicles. Recent evidence has indicated that glutamate released in a calcium-dependent manner originates from a non-cyttoplasmic pool [20]. These lines of evidence argue for the involvement of synaptic vesicles in synaptic release of glutamate. In this study, we have investigated the calcium-dependent release of glutamate from the synaptic vesicles in a more direct manner, using a permeabilized synaptosome preparation. Evidence is presented that glutamate is indeed released directly from the synaptic vesicle in a calcium-dependent manner, in the presence of a cytosolic factor.

Correspondence: T. Ueda, Mental Health Research Institute, The University of Michigan, 205 Washtenaw Place, Ann Arbor, MI 48109, U.S.A.
Fig. 1. Time course of glutamate from permeabilized synaptosomes. Permeabilized synaptosomes were loaded with [\(^{3}H\)]glutamate in the presence of ATP and a partially purified cytosolic factor, as described in the text, and further incubated for release for various periods of time in the presence or absence of calcium (5 \(\mu\)M free Ca\(^{2+}\)). The absence of calcium indicates the presence of 2 mM EGTA (free Ca\(^{2+}\), less than 0.1 \(\mu\)M). The data represent mean \(\pm\) S.E.M. obtained from experiments using 3 separate synaptosome and cytosolic factor preparations.

for 5 additional min. Each incubation was carried out in duplicate. Release was terminated by the addition of ice-cold 0.15 M KCl, followed by filtration on a glass fiber filter (GF-C). The glutamate release was expressed as % of the total \([^{3}H]\) glutamate accumulated at the end of 10 min uptake as follows:

\[
\frac{\text{Glu}_{10} - \text{Glu}_{15}}{\text{Glu}_{10} - \text{Glu}_{10}} \times 100
\]

where \(\text{Glu}_{10}\) and \(\text{Glu}_{10}\) are the amounts of \([^{3}H]\)glutamate accumulated in the presence of ATP at 37 and 0\(^{\circ}\)C, respectively, during the 10 min incubation, and \(\text{Glu}_{15}\) is the amount of \([^{3}H]\)glutamate retained at 37\(^{\circ}\)C (in the presence of ATP) at the end of the release period. The temperature-dependent glutamate uptake in the presence of ATP was considered here to be equivalent to the ATP-dependent uptake at 37\(^{\circ}\)C, since the degree of ATP-dependency was essentially the same as that of temperature-dependency in highly purified synaptic vesicles [18].

We adopted this method because the true ATP-dependent uptake activity could not be accurately determined in the permeabilized synaptosome preparation due to endogenous ATP contamination in the preparation.

The time courses of calcium-dependent and calcium-independent vesicular release are shown in Fig. 1. The vesicular pool of glutamate taken up in an energy-dependent manner was released significantly upon addition of Ca\(^{2+}\). The Ca\(^{2+}\)-dependent release was complete by 5 min. When the cytosolic factor was omitted from the incubation, calcium-dependent release was substantially reduced (data not shown).

Fig. 2 shows that the release is dependent on the calcium concentration; maximal release occurred at approximately 5 \(\mu\)M free Ca\(^{2+}\). This concentration lies in the range of free Ca\(^{2+}\) concentration (1–10 \(\mu\)M) which has been shown to give maximal release of other neurotransmitters and hormones, such as catecholamine from

Fig. 2. Effect of various concentrations of calcium on glutamate release from permeabilized synaptosomes. The experiment was carried out as shown in Fig. 1, except that the free Ca\(^{2+}\) concentration was varied as indicated (0.1, 0.2, 0.5, 1.5, 1.75, 2, 3.5, and 5 \(\mu\)M), and that release was allowed to occur for 5 min. Free calcium concentrations were determined using a calcium electrode calibrated against standard calcium solutions. The data represent mean \(\pm\) S.E.M. obtained from experiments using 3 separate synaptosome and cytosolic factor preparations.

Fig. 3. Effect of various cations on glutamate release from permeabilized synaptosomes. The experiment was carried out as described in Fig. 1, except that various divalent cations were added each at 2.8 mM in the presence of 2 mM EGTA, at the beginning of the release period, and that release was terminated after 5 min incubation. For calcium, free Ca\(^{2+}\) was 3.5 \(\mu\)M. The data represent mean \(\pm\) S.E.M. obtained from experiments using 3 separate synaptosome and cytosolic factor preparations.

Fig. 3. Effect of various cations on glutamate release from permeabilized synaptosomes. The experiment was carried out as described in Fig. 1, except that various divalent cations were added each at 2.8 mM in the presence of 2 mM EGTA, at the beginning of the release period, and that release was terminated after 5 min incubation. For calcium, free Ca\(^{2+}\) was 3.5 \(\mu\)M. The data represent mean \(\pm\) S.E.M. obtained from experiments using 3 separate synaptosome and cytosolic factor preparations.
permeabilized chromaffin cells [5] and histamine from mast cells [10].

The stimulatory effect of Ca\(^{2+}\) was mimicked by Ba\(^{2+}\) but not by the other divalent cations tested, which include Mg\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\) and Ni\(^{2+}\) (Fig. 3). The divalent metal specificity is similar to that observed on catecholamine release from chromaffin granules [24]. Moreover, the Ca\(^{2+}\)-dependent release was inhibited by the sulphydryl blocking agent N-ethylmaleimide (NEM) (data not shown), as in the case with exocytotic release of catecholamine from digitonin-permeabilized chromaffin cells [7, 24].

The cytosolic factor was further purified by chromatography on DEAE-Bio Gel A (150–200 mM NaCl eluate). In contrast to the permeabilized synaptosome preparation, isolated synaptic vesicles, which had been preloaded with \(^{3}H\)glutamate in the presence of ATP, exhibited no increase in net efflux of glutamate, in the presence of this purified factor (75 \(\mu\)g/0.125 \(\mu\)l) either in the presence or absence of 5 \(\mu\)M free calcium (data not shown). This purified factor was also separated from a proteinaceous substance [13] causing a decrease in net uptake into isolated synaptic vesicles (data not shown). In other experiments, the factor was shown to be a heat-labile macromolecule with a molecular weight of greater than 135,000 (data not shown).

In this study, we have provided evidence that glutamate is released from synaptic vesicles within the permeabilized synaptosome in response to an increase in calcium concentration. The glutamate release required a synaptosomal factor for maximal release. We suggest that this release represents a physiologically relevant calcium-dependent release of glutamate, based upon the characteristics observed here which are similar to those observed on exocytotic release of catecholamine from chromaffin cells, histamine from mast cells, and prolactin from GH\(_3\) cells; these include (a) sensitivity to calcium [1, 5, 10, 14], (b) cation specificity [11, 24], (c) inhibition by NEM [7, 24], and (d) marked stimulation by a synaptosomal soluble factor [14].

Calcium-dependent glutamate release using brain slices and intact synaptosomes has been well documented (for review, see ref. 19). Nicholls and colleagues have provided evidence that the calcium-dependent release is derived from a non-cytoplasmic pool [20], potentially from the synaptic vesicle pool. Our study reported here provides direct evidence that the calcium-dependent release originates from the synaptic vesicle, further supporting the vital role of synaptic vesicle in glutamate synaptic transmission. This conclusion was possible to draw since the calcium-dependent release was derived from that pool into which glutamate had previously been accumulated in an ATP-dependent, chloride-stimulated manner.

The successful demonstration of calcium-dependent release of glutamate from the permeabilized nerve terminal required two conditions. One is that release experiments were carried out under conditions which maintain active vesicular uptake. This is important since accumulated glutamate exits from the synaptic vesicle as soon as ATP and glutamate are removed from the extravesicular medium [2, 3]. The other condition was to fortify the release system with a cytosolic factor. It is interesting to note that a cytosolic protein is also required for the secretion of prolactin in a pituitary cell line [14].

The method described here or its modification provides a direct, simple biochemical assay for calcium-dependent vesicular release of glutamate, and may be useful for studying the molecular mechanism of exocytosis for glutamate and other neurotransmitters from the nerve terminal.

We are grateful to Dr. Joel Tabb for his comments on the manuscript. This study was supported by NIMH 5P01 MH 42652.

