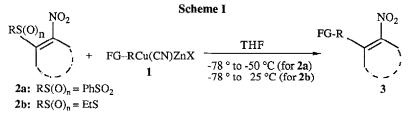
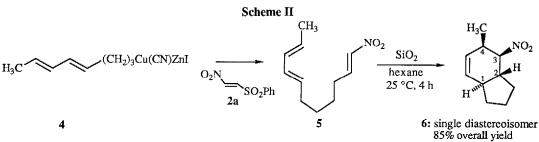
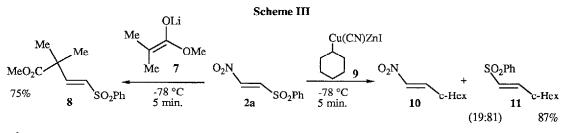
Highly Stereoselective Preparation of Nitro Olefins and Nitro Dienes by the Addition-Elimination of Copper-Zinc Organometallics to β-Alkylthio and β-Phenylsulfonyl Nitro Olefins


Carole Retherford and Paul Knochel*

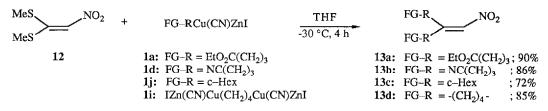
The Willard H. Dow Laboratories, Department of Chemistry, University of Michigan


Ann Arbor, Michigan 48109

Summary: The addition-elimination of copper-zinc organometallics RCu(CN)ZnX to (E)-1-nitro-2-phenylsulfonyl ethylene 2a gave highly functionalized pure (E) nitro olefins and stereoselectively (1E, 3E) and (1E, 3Z)-1-nitrodienes in excellent yields. β -Alkylthio nitro olefins such as 2-ethylthio-1-nitro-1-cyclohexene 2b and 2,2-dimethylthio-1-nitroethylene 12 were found to have a similar behavior. This methodology allowed an expeditive preparation of the triene 5 which underwent an extremely mild silica gel-catalyzed, stereospecific Diels-Alder cyclization.


We have recently reported¹ that highly functionalized nitroalkanes can be prepared by the addition of a wide range of zinc-copper reagents² (RCu(CN)ZnX) 1 to nitro olefins in high yields. Nitro olefins having a leaving group in β -position such as a dialkylamino-³, an alkylthio-⁴ or a phenylsulfonyl⁵-group have been known to undergo addition-elimination⁶ reactions with nucleophiles. Although β -nitroenamines are able to react with strong nucleophiles (RMgX, RLi), only the reaction of β -sulfur-substituted nitro olefins with weak nucleophiles (amines, enolates) has been reported. We have now found that β -sulfur substituted nitro olefins of type 2 react under very mild conditions with the copper organometallics 1 affording polyfunctional nitro olefins of type 3 in excellent yields⁷ (Scheme I and Table I). Thus the addition of (*E*)-1-nitro-2-phenylsulfonylethylene 2a (1 eq.) to a THF solution of RCu(CN)ZnX (1 eq.) at -78 °C furnishes, after

warming the reaction mixture to -50 °C for 5 min., the stereoisomerically pure (*E*)-nitro olefins **3a-3d** in 79-87% yields (entries 1-4 of Table I). The α -acetoxy copper-zinc reagent **1e**, readily prepared from isobutyraldehyde, acetyl bromide and zinc⁸, allows a unique approach to the interesting γ -nitro allylic acetates of type **3e** (entry 5). The cyclic reagent 2-ethylthio-1-nitro-1-cyclohexene **2b** displays the same type of reactivity, although the addition of RCu(CN)ZnI proceeds only at higher temperatures (-20 ° to 25 °C) allowing the preparation of polyfunctional nitrocyclohexenes bearing functional groups such as an ester-, a cyano-, or a phosphonate⁹ group in 79-89% yields (entries 8, 9, 10). A highly stereoselective preparation of conjugated 1-nitro-1,3-dienes is also possible. The reaction of the (*Z*)-alkenylcopper reagent **1f** prepared from (*Z*)-1-iodo-1-hexene¹⁰ with **2a** gives (1*E*, 3*Z*)-1-nitro-1,3-octadiene **3f** in 98% stereoisomeric purity. This nitro diene¹¹ rapidly isomerizes during a flash chromatography purification; however, its distillation (42 °C; 0.03 mmHg) affords a 96% isomerically pure material in 82% yield (entry 6). Similarly, the reaction of **2a** with the (*E*)-alkenylcopper compound **1g** provides (1*E*, 3*E*)-1-nitro-1,3-decadiene **3g** in 97% stereoisomeric purity (before chromatography) and 81% yield (entry 7). The cyclic nitro diene 3k is obtained in 90% yield by the addition of the (*E*)-alkenylcopper 1g to 2-ethylthio-1-nitro-1-cyclohexene 2b (entry 11). The Michael addition of the 1,3-dienylcopper reagent¹² 4 to 2a gives the intermediate nitrotriene 5 which after a short path filtration over silica gel was stirred in hexane over silica gel for 4 hours affording the intramolecular cycloadduct 6 as a single diastereoisomer in 85% yield. This remarkably mild Diels-Alder reaction proceeds exclusively via an anti transition state (Scheme II).¹³ The *silica gel catalysis is essential* since the thermic cycloaddition has been shown to be non-stereospecific.^{13d}



The reaction of 2a with more sterically hindered secondary reagents did not take the expected course. Thus, the reaction of 2a (1 eq.) with the lithium ester enolate 7 (1.05 eq.) afforded as sole product the vinylic sulfone 8 in 75% yield (THF, - 78 °C, 5 min.; Scheme III). Also, the addition of the copper reagent 9 derived from cyclohexylzinc iodide gave a mixture of the phenylsulfonyl substitution product 10 and the nitro substitution product 11 in 87% yield (10/11, 19:81).¹⁴

 β -Disubstituted nitro olefins of type 13, which can usually not be prepared via a nitro aldol reaction (due to the reversibility of this reaction when ketones are used as substrates), are readily obtained by the reaction of commercially available 2,2-dimethylthio-1-nitroethylene 12 (1 eq.) with the copper reagents FG–RCu(CN)ZnI ((3 eq.), -78 °C to -30 °C, 4 h) in good yields (72-90%; Scheme IV). By using the dicopper reagent IZn(CN)Cu(CH₂)₄Cu(CN)ZnI 1i which is

Scheme IV

available in high yield from 1,4-diiodobutane (zinc dust (2.5 eq.), 40 °C, 2 h), (nitromethylidene)cyclopentane¹⁵ 13d is obtained in 85% yield.

In conclusion, we have shown that a variety of highly functionalized nitro olefins are available by the additionelimination of RCu(CN)ZnI to β -alkylthio and β -phenylsulfonyl nitro olefins in good to excellent yields. Extensions of these reactions are currently underway.

Entry	organocopper reagent		β -substituted nitro olefin	Products of Type 3	Yield (%)
1	EtO ₂ C(CH ₂) ₃ Cu(CN)ZnI O	1a	PhSO ₂ NO ₂ 2a	EtO ₂ C NO ₂ 3a	. 79
2	N(CH ₂) ₃ Cu(CN)ZnI	1b	2a	NO ₂ 3b	87
3 _{Pł}	O(CH ₂) ₄ Cu(CN)ZnI	1c	2a Ph		82
4	NC(CH ₂) ₃ Cu(CN)ZnI	1d	2a	ONC NO2 3d	85
5	Mc Mc Me Cu(CN)ZnBr	1 e	2a	Me Me Me	74b
6	Bu Cu(CN)ZnI	1f	2a	Bu NO ₂ 3f	82 ^c (92) ^d
7	Cu(CN)ZnI Hex	1g	2a NO ₂ SEt	Hex NO ₂ 3g	81 e
8	la		2b	3h: $R = (CH_2)_3 CO_2 Et$	89
9	1d		2b	3i: $R = (CH_2)_3 CN$	85
10	(EtO) ₂ (O)P(CH ₂) ₂ Cu(CN)ZnBr	1h	2b	3j: $R = (CH_2)_2 P(O)(OEt)_2$	2 79
11	1g		2b	3k: $R = (E)$ -CH=CH-Hex	90f

Table I. Preparation of Polyfunctional Nitro Olefins and Nitro Dienes 3a-3k by the Reaction of (E)-1-nitro -2-phenyl sulfonylethylene 2a or 2-ethylthio-1-nitro-1-cyclohexene 2b with RCu(CN)ZnX.ª

a All yields refer to isolated yields of analytically pure products. Satisfactory spectral data (IR, ¹H and ¹³C NMR, mass spectra, high resolution mass spectra) have been obtained for all compounds.

b The crude reaction mixture also contained ca. 10% of (E)-3-acetoxy-4-methyl-1-(phenylsulfonyl)-1-pentene.

С A (1E, 3Z)/(1E, 3E) mixture of 96:4 was obtained after distillation.

d The crude reaction mixture indicates a (1E, 3Z)/(1E, 3E) ratio of 98:2 which becomes 14:86 after flash chromatography

e A (1E, 3Z)/(1E, 3E) mixture of 12:88 was obtained after flash chromatography. f

Obtained after flash chromatography as the pure (E)-isomer.

Acknowledgment: We thank the National Institutes of Health (GM-41908) for their generous support of this work and Dr. Peter Knoess for the preparation of some starting materials.

References and Notes:

- Retherford, C.; Yeh, M.C.P.; Schipor, I.; Chen, H.G.; Knochel, P. J. Org. Chem. 1989, 54, 5200.
 (a) Knochel, P.; Yeh, M.C.P.; Berk, S.C.; Talbert, J. J. Org. Chem. 1988, 53, 2390; (b) Berk, S.C.; Knochel, P.; Yeh, M.C.P. J. Org. Chem. 1988, 53, 5789; (c) Majid, T.N.; Knochel, P. Tetrahedron Lett. 1990, 31, 4413.
- 3. (a) Severin, T.; Scheel, D.; Adhikary, P. Chem. Ber. 1969, 102, 2966; (b) Severin, T.; Pehr, H. Chem. Ber. 1979, 112, 3559 and references cited therein; (c) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Taga, T.; Machida, K.; Snatzke, G. J. Am. Chem. Soc. 1989, 111, 7921; (d) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855; (c) Fuji, K.; Node, M.; Abe, H.; Itoh, A.; Masaki, Y.; Shiro, M. Tetrahedron Lett. 1990, 31, 2419; (f) Dell'Erba, C.; Mele, A.; Novi, M.; Petrillo, G.; Stagnaro, P. Tetrahedron Lett. 1990, 31, 4933.

- (a) Ono, N.; Kamimura, A.; Kaji, A. J. Org. Chem. 1986, 51, 2139; (b) Fuji, K.; Khanapure, S.P.; Node, M.; Kawabata, T.; Ito, A. Tetrahedron Lett. 1985, 26, 779; (c) Tominaga, Y.; Ichihara, Y.; Hosomi, A. Heterocycles 1988, 27, 2345; (d) Kamimura, A.; Ono, N. Synthesis 1988, 921; (e) Jung, M.E.; Grove, D.D. J. Chem. Soc. Chem. Commun. 1987, 753; (f) Jung, M.E.; Grove, D.D.; Khan, S.I. J. Org. Chem. 1987, 52, 4570; (g) Hanessian, S.; Desilets, D.; Bennani, Y.L. J. Org. Chem. 1990, 55, 3098; (h) Node, M.; Kawabata, T.; Fujimoto, M.; Fuji, K. Synthesis 1984, 234.
- 5. (a) Ono, N., Kamimura, A.; Kaji, A. Tetrahedron Lett. 1986, 27, 1595; (b) see also ref. 4a.
- Besides nitro olefins, several other classes of Michael acceptors having a β-alkylthio or a β-phenylsulfonyl group are known to undergo addition-elimination reactions with nucleophiles, see for example: (a) Dieter, R.K.; Silks, L.A. J. Org. Chem. 1983, 48, 2786; (b) Dieter, R.K.; Silks, L.A. J. Org. Chem. 1986, 51, 4687; (c) Dieter, R.K.; Lin, Y.J.; Dieter, J.W. J. Org. Chem. 1984, 49, 3183; (d) Dieter, R.K.; Fishpaugh, J.R.; Silks, L.A. Tetrahedron Lett. 1982, 23, 3751; (e) Najera, C.; Yus, M. Tetrahedron Lett. 1989, 30, 173; (f) Azzena, U.; Cossu, S.; De Lucchi, O.; Melloni, G. Tetrahedron Lett. 1989, 30, 1845; (g) Riera, A.; Marti, M.; Moyano, A.; Pericas, M.A.; Santamaria, J. Tetrahedron Lett. 1990, 31, 2173; (h) Schaumann, E.; Fittkau, S. Synthesis 1983, 449; (i) Back, T.G.; Collins, S.; Law, K.-W. Tetrahedron Lett. 1984, 25, 1689.
- Typical procedure. (a) Improved preparation of (E)-1-nitro-2-phenylsulfonylethylene 2a. A mixture of (E)-1-nitro-2-phenylthioethylene^{4a} (9g, 50 mmol) and 50-60% m-chloroperbenzoic acid (36 g, 104 mmol; dried as a solution in CH₂Cl₂ with MgSO₄) in 600 mL of dry CH₂Cl₂ was stirred at 25 °C for 12 h. The reaction mixture was washed successively with water, aq. NaOAc solution and brine, then dried over MgSO₄. After evaporation of the solvent, the crude yellow solid was recrystallized from THF/hexane to give 7.77 g (73%) of analytically pure 2a.
 (b) Addition of RCu(CN)ZnI to β-sulfonyl nitro olefins. Preparation of 6-nitro-5-hexenenitrile 3d (entry 4 of Table I). A solution of 2a (1.28 g, 6 mmol) in 10 mL of THF was added dropwise at -78 °C to a THF solution of the (3-cyanopropyl)copper derivative 1d prepared as reported previously.^{1,2} The reaction mixture was warmed to -50 °C, quenched after 5 min. with a sat. NH₄Cl solution and worked up as usual. Flash chromatography purification of the resulting crude oil (10:10:1 hexane:dichloromethane:ethyl acetate) gave 710 mg of pure 3d (85%). In the case of 2b, the reaction mixture was warmed to 25 °C and stirred 12 h at this temperature.
- 8. (a) Knochel, P.; Chou, T.-S. J. Org. Chem. 1990, 55, 4791; (b) Knochel, P.; Chou, T.-S.; Chen, H.G.; Yeh, M.C.P.; Rozema, M.J. J. Org. Chem. 1989, 54, 5202.
- 9. Retherford, C.; Chou, T.-S.; Schelkun, R.M.; Knochel, P. Tetrahedron Lett. 1990, 31, 1833.
- 10. (Z)-1-Iodo-1-hexene (prepared according to Alexakis, A.; Cahiez, G.; Normant, J.F. Org. Synth. 1984, 62, 1) was converted to (Z)-1-lithio-1-hexene (Cahiez, G.; Bernard, D.; Normant, J.F. Synthesis 1976, 245) and treated successively with zinc iodide (1 eq.) in THF/Et₂S (1:1) at -78 °C; after warming to 25 °C, the mixture is added to a solution of a CuCN•2 LiCl (1 equiv.) in THF/Et₂S (1:1) at -78 °C. The use of these conditions is crucial for the formation of a stable vinylic copper reagent. The two following reaction conditions, A: CuCN•2 LiCl (1 eq.) in Et₂S, -78 °C to -30 °C, or B: (i) ZnI₂ (1 eq.), THF; (ii) CuCN•2 LiCl (1 eq.), THF, are not satisfactory and lead to an extensive dimerization of the alkenylcopper.
- 11. For an alternative preparation of nitro dienes see: Bloom, A.J.; Mellor, J.M. Tetrahedron Lett. 1986, 27, 873.
- The copper reagent 4 was prepared from 1-iodo-4,6-octadiene (zinc dust (3.0 eq.), THF, 40 °C, 4 h, > 85% yield); for the preparation of 4,6-octadienol from sorbic acid see: (a) Jacobson, M. J. Am. Chem. Soc. 1955, 77, 2461; (b) Hudlicky, T.; Koszyk, F.J.; Kutchan, T.M.; Sheth, J.P. J. Org. Chem. 1980, 45, 5020; (c) for the conversion of 4,6-octadienol to 1-iodo-4,6-octadiene: Scheffold, R.; Saladin, E. Angew. Chem. Int. Ed. Engl. 1972, 11, 229.
- 4.6-octadienol to 1-iodo-4.6-octadiene: Scheffold, R.; Saladin, E. Angew. Chem. Int. Ed. Engl. 1972, 11, 229.
 13. (a) Ciganek, E. Org. React. 1984, 32, 1-374, John Wiley, New York. The attribution of the relative stereochemistry in compound 6 is based on the ¹H NMR experiments: ³J_{H1}, H2 = 11.5 Hz, ³J_{H2}, H3 = 11.7 Hz, ³J_{H3}, H4 = 7 Hz. To confirm the assignment of the relative stereochemistry between H₃ and H₄, 6 was hydrogenated giving ³J_{H3}, H4 = 5 Hz (Scheme II); see: (b) Roush, W.R. J. Am. Chem. Soc. 1980, 102, 1390; (c) Parlar, H.; Baumann, R. Angew. Chem. Int. Ed. Engl. 1981, 20, 1014; (d) Kurth, M.J.; O'Brien, M.J.; Hope, H.; Yanuck, M. J. Org. Chem. 1985, 50, 2626.
- 14. In order to prove a possible radical mechanism for the addition-elimination reaction of nucleophiles to (E)-1-nitro-2-phenylsulfonylethylene 2a, the two following reactions were performed: (a) lithium ethanethiolate was added at -78 °C to 2a. The solution was stirred for 5 min. and worked up as usual. (E)-2-ethylthio-1-nitro ethylene and (E)-2-ethylthio-1-phenylsulfonylethylene were obtained in a 1:4 ratio (75% yield); (b) the same reaction was performed in the presence of 5 mol % of di-*tert*-butylnitroxide (see: Kornblum, N. Angew. Chem. Int. Ed. Engl. 1975, 14, 734) leading to the same product distribution and ruling out a radical mechanism.
- 15. Cunino, R.F. J. Org. Chem. 1990, 55, 4474 and references cited therein.

(Received in USA 31 October 1990)