
Computational Statistics & Data Analysis 11 (1991) 53-63 

North-Holland 
53 

Lawrence H. Moulton 
Deparmrent of Biostarisrics, Unicersi‘[v of Michigun, Ann Arbor, .Wl 48109, I/‘sA 

Scott L. Zeger 
Department of Biostatistics, The Johns Hopkins Unicersity, Bultinrore. MD ,?1NS, C.‘SA 

Received July 1989 
Revised February 1990 

Absmct: Several methods for bootstrapping generalized linear regression models are introduced. 
&e-step techniques, both conditio,lal and unconditional on the covariates. are examined with 
respect to robustness and coverage properties. 

Keywork: Bootstrap, Generalized linear models. Robustness, Logistic regression. Overdispersion. 

1. Introduction 

The popularity of the use of the class of generalized linear models (GLMs: 
McCullagh and Nelder [12]) has given rise to a variety of applications in which 
functions of the estimated parameters of GLMs need to be evaluated. This paper 
describes the use of two bootstrap methods for GLMs analogous to those used 
for ordinary linear models (OLMs). These methods may be used for assessing the 
variability of the estimated functions of interest, and are particularly useful in 
situations with small sample sizes or very complicated functions. The proposed 
methods are efficient with respect to computation time, since only one iteration is 
performed for each bootstrap replication, instead of carrying out the iteratively 
weighted least squares algorithm to convergence. By allowing nonparametric 
(within the context of the chosen GLM) evaluation of variability. bootstrap 
methods can achieve varying degrees of robustness to assumptions commonly 
made about data. In small-to-moderate sized samples, it nlay be difficult or 
impossible to verify distributional assumptions, making robust approaches desira- 
ble. 

Methods for bootstrapping OLMs are reviewed in section 2. Although most of 
the work in this field has been concerned with residual resampling. we put equal 
emphasis on complete observation vector resdmpiing. The a!Aogy between 
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ordinary and generalized linear models is exploited in section 3 to arrive at two 
one-step bootstrap techniques, some properties of which are explored in section 4. 
Section 5 illustrates the bootstrap techniques with a well-known data set (Fi 
[6]). and extensive simulation results are presented in section 6. 

t&rapping ordinary linear m 

In order to gain insight into the problem of bootstrapping GLMs, we first 
examine some aspects of what is already known about the bootstrapping of 
OLMs of the form: 

Y 
= ,v<,,t, + vc (2.1) 

s x 1 ‘%X1’ 

where c is a vector of independent and identically distributed random variables 
with mean 0 and variance 0% Suppose we are interested in obtaining a bootstrap 
distribution of some function $ = $( p^>, where /? is the least squares estimator 
/? = (X’X)-‘X’Y. We may proceed by calculating Monte Carlo approximations 
to either of two bootstrap distributions for 4. based on either the residuals of the 
least squares fit or the complete observation vectors. These two methods were 
first considered by Efron [4], and have been examined in greater depth by 
Freedman [7] and Wu [20], among others. 

2. I. Residual resampling 

The most common method of bootstrapping an OLM relies upon the assumed 
exchangeability of the error terms. This has been the focus of recent work by 
Hinkley [lo], Freedman and Peters [8], and Wu [20]. It is based on the empirical 
distribution function 

Qmass l/Nat ri, i=l,..., N, 

where the r, are the elements of the residual vector Y = [I - X( X’X)-‘X’] Y. The 
Monte Carlo approximation i,s calculated by randomly drawing B bootstrap 
samples of 1\r residuals from F,, yielding the vectors r *h, b = 1, . . . , B. For each 
r * ‘, we calculate Y *h = Xp^ + r *h, and then obtain 

P *h=( X'X)_'x'y*h 

=pI+ ( X’X)-‘X’rvh. 

from which we calculate t $( p *“) to approximate the distribution of 4. 
Now (dropping the replication superscript) E,r;* = IV-’ C rj = 0, and therefore 

E*P* = p. Here, E, denotes expectation taken with respect to & Also, 

Var,P” = (X/X)-‘X’diag[ Er(r*h)2] X(X’X)-’ 

T= s’( xyq-‘, 



where 5’ = N- ‘C I=,‘. Thi s is the usual maximu likelihood estimator, which is 
biased, since E,[VarJ*] = (N - p)N-‘cJ’( X’X)-‘. The bias results from the 
fact that Var,.( v,) = a’(1 - /I,). where /I, is the ith diagonal element of 
X( X’X)-‘X’. A bootstrap method which uses the standardized residuals t;( 1 - 

h,) - 1/2, each of which has mean 0 and variance cr2, will eliminate this bias. 

A conceptually simpler bootstrap distribution arises from employing the em- 
pirical distribution function of the observation vectors (y,: xL), where s, is the 
ith row vector of X. The bootstrap distributions of /? and $ may be approxi- 
mated by drawing B samples of size N from 

t. : ass l/N at (y,; x,), i = I N. . . . . . 

each time creating a pseudo-data set ( Y *h, X *h) from which the p *h = 
(X*hrX*h)-lx*hr Y *h and then the +!J*~ are calculated. 

This bootstrapping approach corresponds to a correlation model in whrci. X is 
random, not fixed as in a regression model (Freedman 171). As a consequence, WC= 
get a quite different variance result (Efron [S]; Moulton [13]): 

Var,.P* = (X’X)-‘X’diag( $) X( X’X)- ’ + 0( N-‘). 

Under the homoscedastic model where E( E: 1 x, ) = E( E,‘) = cr2, this variance is 
asymptotically equivalent to VarJ? * (Freedman [7]), but such will not be the case 
when there is heteroscedasticity. In the latter situation, N [Var,J * - Var& + 0, 
while Var,P * = e2( X/X)- * will no longer consistently estimate Var,P. Note 
that, apart from the 0( fVm2) term, Var P,r” is identical to the weighted jackknife 
estimator of Hinkley [9]. 

ootstrapping generalized linear models 

A generalized linear model is characterized by three components (McCullagh and 
Nelder [12]: an error distribution from the exponential family &( ~7; 0) = exp( [FS 

- 48) f MYi w4+ a systematic component q = X@, and a monotonic, dif- 

ferentiable link function g(p) = q, where p = E( Y ). The log-likelihood function 

cEY,q - 44) + MYi; 01 is maximized by finding the solution of the system of 
equations 

(I; - $$3,x;, = 0, j= I,..., p, 

where J, = g- ‘( x,p^,, A, = M,/ilq, { p”. ‘Chese estimating equations may be written 
in matrix form as X ‘As = 0, where A = diag( A, ), s = )’ - y. The maximum likeli- 

hood estimator fi may be found via iteratively weighted least squares ( ES). in 

which the (t + 1)st update is given by: 

P 
(l+r) = (X’AVAX)-‘X’AVAz, 
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\vhere 3. V. and : are evaluated at p(‘). z = Xj?” + ( LW )- ‘s. and V = 

diag( i&( 0, )/a$,’ 1 p”‘). This scheme is continued until convergence of the log- 
likelihood is attained. 

3. I. Standardized Pearson residual resanzpiing 

We may bootstrap a GLM in a manner analogous to the residual resampling 
method for OLMs in section 2.1, utilizing a one-step procedure to obtain 
bootstrap coefficients. Although there are several different types of residuals 
defined for GLMs, the Pearson residual is most amenable (both conceptually and 
computationally) to a process of bootstrapping to obtain the coefficients p*“. 
Ideally. we would want to resample i.i.0. quantities, but no such residuals are 
readily available for the class of GLMs. The Pearson residual is r, = ( y, - F, ) ~7,~ ‘*“. 

with vector r = I/‘-“’ s. We will use the more nearly exchangeable quantities 

4, = s,/[LY,(~ - h,)]’ “‘. i = l,.... N, where now h, is the i th diagonal element of 
G( G’G)-‘G’. with G = V”“AX. In our simulations, bootstrapping with these 
standardized residuals. e,. consistently outperformed use of the raw residuals, r,. 
and consequently are the only ones discussed in the remainder of this paper. The 
residual bootstrap thus is based on & mass 1,/N at e,, i = I,. . . , N, and 
bootstrap coefficients may be calculated by reattaching resampled residual vec- 
tors as was done for OLMs: 

/?*h=~+(G’G)-lGfe*h. b=l,.... B. (3.1 j 
Note that this is a one-step procedure; iteration to convergence cannot in general 
be expected. Such an effort would represent an attempt to solve the equations 
X’JI/l *‘Ze * = 0 using the expected Hessian, X’AVAX, that is used to solve 
X’JS = 0. 

Of particular interest is the variance of these bootstrap quantities. The follow- 
ing proposition tells us the variance using the standardized residual bootstrap is 
the inverse of the information matrix multiplied by an estimate of scale. 

sition 3.1. The variance of the bootstrap coefficient given in (3.1) for a GLM 
is: 

Var,P * = &(G’G)-‘, 

where &, = N-‘Z e” - N2[z e,]“. 

This proposition follows 
Var,(e*)G(G’G)-‘G’, and 
N-‘[Xe,]‘. The standardized 
be calculated by multiplying 
the sea? e+7ate &,. 

directly from the fact that VarJ* = (G’G)-‘G’ 
that Var,e* = E,( e,* )’ - Ei(e,*) = N-‘Ze,’ - 

residual bootstrap estimate of Var p may therefore 
the inverse of the estimated information matrix by 

3. .?. C 81-5erva::(.I*l vector resarnpling 

roceeding as in 2ection 2.2., we can create pseudo-data sets ( Y *! X*h) by 
pling from 4.. We could t en carry out the IWLS scheme until convergence 
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is attained, and then calculate the desired $*” from the resulting fi *“. 
there are two drawbacks to this approach. The first is that if N ;md/or 
computational costs may be quite high, as several iterations nay be needed for 
each bootstrap replication. even when the MLE j? is used as the starting value. 

The second and more serious problem is that we would risk obtaining cbex- 
treme” data replications for which either the likelihood fails to converge (rare) or 
the parameter estimates fail to converge (much more likely). We have encoun- 
tered the latter situation in several instances when usin? a logit link with binomial 
error. both with simulated data ami with the bioassay data analyzed by Finney 
[6]. as published in Pregibon [16]. In the latter instance. 21 of 100 replications 
resulted in the p(‘) vector diverging, although the likelihood converged. This 
phenomenon is discussed more thoroughly in McCullagh and Nelder [12]. A 
bootstrap procedure which attempts to iterate to convergence will face this 
difficulty. Ignoring the divergent bootstrap replicates can introduce bias. How- 
ever, if all we require is a bootstrap percentile interval. only a high proportion (at 
least as great as the level of the interval) of the bootstrap replications must 
converge, since the diverg-nt ones result in coefficients with known values of plus 
cc minus infinity. 

In response to the foregoing difficulties, we propose employing a one-step 
approximation to the bootstrap distribution of /?. We start with K d. and z 
evaluated at 6 and take one Newton-Raphson step in the direction of what 
would be the MLE for ( Y *h. X*‘). This scheme is best represented through use 
of a resampling matrix D = diag( d, ), where d = ( d,, . . . . d, ) is distributed as a 
Multinolnial( N: l/N, . . . , l/N) random vector. The bootstrap coefficients can 
then be obtained from 

P *h =- ( X’d~‘/‘D,v’/‘d X) -’ X’;11/‘/‘D,I/1/2;1 [ X’ + (Al/) -Is] 

=p1+ (G’D,G)-‘G’D,r, b= i ,.... B. (3.2) 

A Taylor series expansion of p *’ about D, = I.V permi1.s calculation of the 
variance of the p *h (see the Appendix of Moulton and Zeger [14]). as given in the 
following proposition. 

ropsition 3.2. The variance of the one-step bootstrap coefficient given in ( 3.2) for 
a GLM is 

Var,.P* = (G/G)-‘G’diag( $)G(G’G)-r + G( Nw2). 

Thus Var,.P * cannot be calculated in closed form as can Var,p *. but it has a 
closed form approximation that results from dropping the Q( N-’ ) term. which 
we shall denote by V%r,.. 

ess s 

We use the term “robust” in the classical sense indicating that an estimator 
remains consistent in the face of failure of assumptions unc!lerlying the method of 
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analysis (Box [ 11). In this section we briefly describe robustness properties we can 
expect of the one-step bootstrap techniques of section 3. 

The residual (or conditional) bootstrap coefficients of (3.1) have variance 
&<,( G’G)-*. automatically incorporating an estimate of scale. For Gaussian re- 
sponse models, the scale is always estimated; for binomial or Poisson response 
models. + = I under the assumption of independence of observations and no 
estimate is required. However, when there is extra-binomial or extra-Poisson 
variation, one possible remedy is to use such an estimate of scale. For binomial 
response. this corresponds to a situation where Var( Y, ) = +np,( 1 - pi ). where 

YIP,- Binomial( tt. p, ). It is also equivalent to a quasilikelihood estimate of 
variance ( McCullagl Id ‘E\Jelder [12]). Thus, using these residual-based bootstrap 
coefficients in situations close to these will reflect the appropriate amount of 
variability. 

Robustness to a broader range of departures from the posited model can be 
gained through use of the vector-based <or unconditional) bootstrap coefficient 
(3.2). A consistent estimator of the variance of these coefficients, V&r,., is the 
same as that employed by Cox [2], Huber [ll], White [18], Pregibon [15], and 
Royal1 ]17] for handling quite general model m&specification. Virtually all that is 
required for consistency of this variance estimator is that our estimator of p be 
consistent. Its main drawback is that it is not a resistant estimator of variance, as 
extreme residuals may have undue influence. 

plication to logistic regression analysis of 

For purposes of illustration we apply the different bootstrap methods to the 
bioassay data of D.J. Finney [6], as reported in Pregibon [16]. The dichotomous 
response “dilation of the blood vessels” is expressed as a function of the rate and 
volume of inspired air. Table 1 gives the following variance estimates of the 
estimated coefficients, using: Var,, Var,., and the closed form approximation 
V%rl., as well as the standard information-based estimate for comparison. Because 
of the small sample size ( N = 39) and tLe presence of two observations with large 
Pearson residuals, B = 10,000 bootstrap replications were necessary to achieve 
stability of the Var,, estimates. 

Table 1 

Estimated coefficient variances for the Finney dzta. 

Variable Coefficient 
estimate 

Variance estimates 

Information Var, Var,. Vh,. 
based 

log Rate 5.2 3.5 3.3 5.9 5.6 

log Volume 4.6 3.4 3.2 5.4 5.0 
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We see t!iat the residual-based variance estimator yields slightly lower values 
than the standard information-b- a_;:d estimate, since the estimate 4 = 0.96 is less 
than one. The difference is negligible; npte that multiplying by the less biased 
(although non-bootstrap) scale factor +N/( N -p) = 1.04 results in standard 
errors slightly greater than the standard ones. The vector-based estimators are 
much larger because of two “outliers” in the data, which have large earson 
residuals; without these observations the data are completely separable, produc- 
ing infinite MLEs, thus precluding fully iterative bootstrap variance estimates. 

Which is the correct variance estimate in this case is debatable. The simula- 
tions in the following section are designed to give us a basis for comparison. 

6. Comparison of tstrap approaches t 

6.1. Design of the sindations 

The simulations evaluate the different variance assessment techniques for coeffi- 
cients of logistic regression models. Three factors were used: 

(1) Sample sizes of N = 20, 40, and SC!!; 
(2) Response probabilities of about 0.12 and 0.50; 
(3) Extra-binomial variation (EBV) absent or present. 

Each simulated data set was composed of N binomial responses Y, = C’,!! ,W,,. 
where the II& are generated from the relation: logit( Pr[ w, = 11) = &, + &xl for 
the trials in which there is no EBV. and from 

logit( Pr[ I&, = 1] } = ui”;, where L’, = exp( &, + pix, ) 

for the trials with EBV, where the U,, are drawn from a Uniform (0. 1, 
distribution. This latter method yields beta-binomial responses Y, with means 
100,/(1 + Oi) and variances lOv,(12 + u,)/[(l + 0,)‘(2 + L’,)]. 

All simulations were performed conditional on a set of 20 values x, drawn 
from a Uniform (0, 2) distribution, copied once and three times, respectively, for 
the sample sizes 40 and 80. For all trials the intercept was & = - 1; for half the 
trials, the value of the slope parameter was & = - 1, with & = 1 for the other 
half. 

The simulations consisted of generating 1600 data sets for each combination of 
the above three factors. For each data set. B = 200 boo&trap replications were 
performed using the Pearson residual, standardized Pearson residual, and one-step 
vector techniques. In ordinary data analysis situations, a larger number, say 
B = 1000, would be recommended for the construction of the percentile intervals. 
In our simulation a much smaller number suffices, since by far the largest 
component of variances is between data set variation. All of the pseudo-random 
numbers were produced by the generator of Wichmann and Hill [19], and all 
calculations were done using double-precision F N-77 routines. 
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The focus of the simulation was the coverage of confidence intervals for the 
functions 4: &. p,. &&. and &/&. For a general, thorough discussion of 
bootstrap confidence intervals. see DiCiccio and Roman0 [3]. The following are 
abbreviations for and descriptions of the 95% nominal level confidence intervals 
we calculated: 

II: $ + 1.96 e+, where &$ is the estimate of standard error derived from the 
inverse of the Fisher information matrix: for the product and quotient 
functions, delta-methk>d variance estimates are used. 

RB: [ $+‘i( 0.025), $<?I( 0.975)], where fGyT’ is the empirical distribution function 
of the #( &* ): the bootstrap percentile interval based on the standardized 
Pearson residuals. 

RC: 4 -I_ 1.96 &j+; the closed form interval based on the variance of the stan- 
dardized residual bootstrap. 

VB: [ fjjl (0.025) &+‘( 0.975)], where &ji is the empirical distribution function 
of the #( &.* ); the bootstrap percentile interval based on the one-step vector 
bootstrap method. 

VC: & + 1.96 Wr,.( 4); the interval based on the closed form appreciation to the 
one-step vector bootstrap variance estimator. 

In summary, RB and VB intervals are bootstrap percentile intervals calculated 
from the sets of 200 bootstrap quantities; II, RC and VC are calculated in closed 
form, using delta-method variance approximations for the product and quotient 
of the coefficients. 

6.2. Simulation re.wlts 

Table 2 shows deviations from the nominal level of the coverages of the various 
confidence intervals for each of the simulation trial configurations. The most 
striking departures from nominal levels are seen when the usual inverse informa- 
tion variance estimator is used on data with extra-binomial variation, as was to be 
expected. Simple sums of absolute deviations (or of deviations from coverages 
transformed to achieve symmetry) may be used to compare the methods. Note 
also that when the observed coverage based on 1600 observations is 95%, a 95% 
confidence interval for the true coverage will have a half-width of 1.96 (0.95 - 

0.05)‘/2/40 = 0.01. Thus, rough general comparisons may be made by counting 
the number of times the absolute value of the deviation is two or more percentage 
points. Applying this criterion to all the entries of Table 2, the RB bootstrap 
percentile interval using the standardized residuals edged out the closed form 
version RC, 18 to 21. The worst performance (not counting the standard II 
approach) was given by VC, the closed form approximation to the vector-based 
bootstrap variance, with 31 large deviations. RC fared better than VB for the 
trials without extra-binomial variation, while VB did a bit better than RC in the 
face of extra-binomial variation. 

For the 80 observation sample size, there was relatively little difference 
between the methods (except for II in the presence of EBV). This is not surprising 
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in view of the fact that the methods are asymptotical?% ~q~~~v&;rl~ for the 
situations studied, where we have introduced at most a scale parameter that 
reflects overdispersion. In situations of different or grezr;r kre:ogeneity of 
variance, we may expect the vector-based methods to ouPcpirfozq7 she r-esidual- 
based ones. For all sample sizes, we see uniformly better Ferformanze -when the 
mean response probabililfy is 0.5 (& = 1) than when it is 0.12 ( & = -. 1), due to 
the lower variability of & in the former case. 

Because of their greater variability, the product and quotient of the coefficients 
proved more difficult to estimate than the coefficients themselves. The percentile 
intervals had more difficulty with the product, while the closed-form methods, 
relying on the accuracy of the delta-method approximation, were further off in 
coverages of the quotient. The delta-method approximation used for the closed- 
form methods was less accurate for the more highly nonlinear quotient. 

7. Final comments 

The simulations of the preceding section compared the performances of the 
bootstrap techniques with respect to confidence interval construction. Numerous 
robust closed-form competitors exist for this purpose. However, the bootstrap can 
provide much more than interval estimation, and the results of section 6 encour- 
age the use of these one-step methods in other situations. For example, they could 
be useful in such computationally intensive applications as bootstrapping step- 

200 

1 
180. 

160. 

140. 
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Fig. 1. Estimated bootstrap dictribution of - BO/Bl for a simulated data set. 
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wise variable selection procedures for a logistic regression prcblem with many 

variables. Even simple examination or an estimated bootstrap distribution of a 
quantity of interest can be more informative than a mere confidence interval. 
Figure 1 shows the distribution of 1000 bootstrap estimates of -&/& obtained 
from the one-step standardized residual method. We see that for this data set, 
although the distribution may be close enough to Gaussian to calculate an 
adequate delta-method interval, the distribution is slightly skewed left, with a 
mean value of 0.872 as compared to the median 0.945 and the MLE 0.959. 
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