
JOURNAL OF MAGNETIC RESONANCE 94,82- 100 ( 199 1) 

2D Heteronuclear NMR Measurements of Spin-Lattice Relaxation 
Times in the Rotating Frame of X Nuclei in Heteronuclear 

HX Spin Systems 

JEFFREY W. PENG,* +t V. THANABAL, * AND GERHARD WAGNER*,+ 

*Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 
240 Longwood Avenue, Boston, Massachusetts 021 IS; and TBiophysics Research Division, 

University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 

Received November 30, 1990 

Theoretical and experimental aspects of T,, are discussed for a heteronuclear HX two- 
spin system (T$) where only the X nucleus is spin-locked. An expression for TE in terms 
of spectral density functions and the effective magnetic field parameters is developed. It 
shows that T:, offers potentially dierent information about the spectral densities than 
either r:, TF, or the steady-state NOEX. We present a 2D heteronuclear NMR pulse 
sequence for measuring site-specific T$‘s in biomolecules. The sequence is based on a 
double-INEPT transfer and applies a spin lock to the heteronuclei for variable delays. If 
a weak on-resonance spin lock is used, and if the spectral density functions are assumed 
to be Lorentzians, then rc is theoretically indistinguishable from r:. We conclude with 
an application of the pulse sequence to the uniformly ‘5N-enriched protein eglin c. The 
rc, data reflect the differential mobility in the molecule. o 199 t Academic PESS, h. 

NMR relaxation studies of X nuclei in heteronuclear HX spin systems can provide 
information about the global and internal motions of biomolecules (1-3). Hence, 
they are powerful tools for the experimentalist interested in biomolecular dynamics. 
Recently developed techniques for measuring such relaxation times use various het- 
eronuclear multidimensional NMR pulse sequences to provide the necessary frequency 
resolution, as well as to lend sensitivity enhancement (I, 3). Additionally, the increasing 
availability of isotopic enrichment alleviates the problem of poor sensitivity due to 
low natural abundance of such biological heteronuclei as “N and r3C. Making use of 
these assets, dynamical information for a large number of different sites in the molecule 
can simultaneously be obtained. 

Thus far the most commonly measured relaxation parameters of heteronuclei HX 
spin systems include TF, TF, and the steady-state NOEX that develops due to satu- 
ration of the H spin (I-3). In this paper, we discuss the measurement of the spin- 
lattice relaxation time in the rotating frame, Tj$. Tfp is the decay constant of mag- 
netization locked along the effective field, Beff. Previous studies of T,, include work 
by Abragam ( 4) ) Jones (5), James (6-9), and Blicharski ( I&z, lob). The derivation 
of the homonuclear T,, has been given by Jones (5) and Blicharski (1&z, lob). James 
et al. (6, 9) have used 1 D 13C off-resonance TTp measurements to get information 
about protein rotational correlation times and internal dynamics. 

$ To whom correspondence should be addressed. 

0022-2364/91 $3.00 
Copyright 0 1991 by Academic Pa-es, Inc. 
All right.5 of reproduction in any form rserved. 

82 



HETERONUCLEAR RELAXATION-TIME MEASUREMENTS 83 

In this paper, we use the semiclassical relaxation formalism to arrive at an expression 
for TFp for an HX spin system. Our approach follows that of Jones ( 5). T$ is expressed 
in terms of the spectral density functions, J(w), and the radiofrequency Ilip angle, /?. 
An expression is also obtained for the heteronuclear cross-relaxation rate in the rotating 
frame, u,““. Blicharski (IOU) has gi ven a Typ expression in terms of the Wigner 3-j 
symbols, assuming isotropic rigid tumbling of the molecule. If we assume rigid body 
tumbling of the molecule as well, then our results are equivalent to that contained in 
the more general expression of Blicharski ( ZOa). We also present a 2D NMR pulse 
sequence to measure Typ for each heteronucleus in the molecule of interest. We then 
present TTp relaxation data from the proteinase inhibitor eglin c 100% isotopically 
enriched in “N. 

Relaxation parameters are related to overall and internal molecular motions through 
their dependence on the spectral density functions, J( 0). Specifically, the relaxation 
parameters sample the spectral density at particular frequencies with varying weights. 
It is seen that TFp samples different frequencies of J(o) than either Tr, TF, or the 
steady-state NOEX. In principle, this means that Typ can give new information con- 
cerning the spectral properties of J( w ) . The T$ data on eglin c support the information 
from other relaxation parameter measurements ( TT , NOE *) in revealing the more 
mobile regions of the molecule. Thus, TTp is sensitive to dynamical heterogeneity in 
biomolecules. 

THEORY 

TTp is the relaxation time for magnetization along the effective magnetic field in 
the rotating frame. The physical situation is illustrated for an arbitrary spin- 1 nucleus 
with Larmor frequency 00 in Fig. 1. The rotating frame is defined by the xyz axes, 
with the static, superconducting field & pointing along +z. B,, defines the laboratory 
Z axis, which is coincident with the rotating-frame z axis. The effective field is indicated 
by the vector B,@, which is tipped away from the z axis by an angle 0. The z component 

2. B, 

FIG. 1. Magnetic field vectors in the rotating frame for a nucleus of Larmor frequency q,. 
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of Berr is (w - wO)/y and is proportional to the detuning of the applied RF field 
frequency w, from the resonance frequency wo. The x component is the applied RF 
spin-lock field, B1, where w, = - yBr . Thus, the magnitude and tip angle B of B,g are 
parameterized in terms of w, wI in the usual way as 

-YBl 
WP) = (w - wo) = (wo” w) 

Befl = !- VW; + (w - wo)2 = - 5 , ill Y 

where o, is the effective field described in angular frequency units. When ,!I = (x/2), 
B,,r becomes identical to Br ; this corresponds to the resonance condition w = wo. In 
the absence of any RF fields, all applied fields vanish in the rotating frame. Only local 
perturbing fields remain, and therefore this constitutes an interaction frame in which 
the relaxation analysis for T, and T2 can be done (4, II ). 

Extraction of an expression for T% in a heteronuclear HX spin system requires the 
following steps. We first define the Hamiltonian operator for two unlike spins in the 
laboratory frame. We must then perform a rotation transformation of the Hamiltonian, 
so that we can work in an interaction frame where the applied fields have vanished. 
Note that we have two applied fields: the static B. and the radiofrequency spin-lock 
field Bi . Therefore, we need to transform to a doubly rotating frame. After this, only 
terms concerning the local perturbing fields remain. We can then use semiclassical 
relaxation theory to get a rate equation for the decay of magnetization along B,s. The 
resulting rate constant is 1 / Typ. The use of operator methods as discussed by Abragam 
obviates the need to solve explicitly for the spin density matrix, u(t), as a function of 
time. This is discussed thoroughly by Abragam (4) and Ernst et al. ( ZZ ) . 

Laboratory Hamiltonian. We consider an ensemble of HX spin systems subject to 
three magnetic fields: the static field Bo, the applied RF spin-lock field on the X nuclei 
at radial frequency w, and the local perturbing fields from the non-spin-lattice processes. 
Examples of such spin systems are the backbone amide nitrogens and their directly 
bonded protons in proteins. Since our analysis is applied to such real spin systems, 
we hereafter refer to the HX spins as the amide protons and their 15N nuclei. 

The spin-Hamiltonian operator # gives the magnetic energy of the ‘H- 15N system 
in terms of both spin product operators and magnetic field parameters. Generally, the 
latter may be functions of time. The three fields allow x to be partitioned conveniently 
as 

se = x; + J&F + V(t). 

tiz is the Zeeman energy contribution from B. and is given by 

121 

sfz = wpzz + wnivz, [31 

where W, and wP are the Larrnor frequencies for the “N nucleus and the amide proton, 
respectively. Note that we have expressed the Hamiltonian in units of h/2?r. Z, and 
N, are the associated proton and 15N z-magnetization spin operators and are part of 
a 16dimensional product-operator basis (12). 
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&& is the spin-lock-RF-field ( B1 ) contribution and is written as 

SRF = 0, [ cos( ot)Nx + sin(wt)l\r,] . t41 
This expression indicates that the RF field oscillates at a radial frequency of w and 
operates only on the 15N nuclei (for an 11.74 T magnet oJ27r = 50.68 MHz). In 
the rotating frame, the RF field is simply a static field along the x axis. 

V(t) is the perturbing operator in the Hamiltonian and contains the effects of the 
local fluctuating magnetic fields. In general, V(t) can be expressed as a sum. of products 
of spin operators Acq) and temporal functions associated with the lattice (nonspin) 
degrees of freedom, F(@( t) . It is written as 

V(t) = ; F(q’(t)A(q). t51 
q=-M 

Thus, V(t) couples the spin and lattice degrees of freedom of the nuclei. For a given 
integer M, there are 2M + 1 terms. However, since V(t) must be a Hermitian operator 
we need to specify only A4 + 1 terms. The other A4 are fixed by the Hermitian con- 
jugation relations 

At&t = A(h) 

J’(4)* = F(-d. [61 
The dagger indicates Hermitian conjugation while the asterisk indicates complex con- 
jugation. Equation [ 51 shows that the temporal behavior of V(t) is dictated by the 
Fcq)( t) functions. The Fcq)( t) are assumed to have stochastic behavior with an average 
value of 0. Their explicit form is 

F’q’(W, 4(t)) = Ccq’Y,,-,W), 4(t)). t71 

The Yz,-,( 19( t), I$( t)) are the second-order spherical harmonics, and the Ccq) are real 
constants that depend on the index q. 

In general, a variety of sources can give rise to fluctuating fields. An example is the 
local dipolar field of a closely neighboring spin that is in relative motion with respect 
to the spin of interest. Another example is the reorientation of a given spin’s own 
anisotropic chemical-shift tensor. Each source will contribute a perturbation, V(t), 
of the form given in Eq. [ 5 1. Here, we focus on perturbations due to the local dipole- 
dipole interactions between a pair of unlike spins. The interaction is a primary relax- 
ation mechanism in typical HX relaxation studies of biomolecules. For this interaction, 
M=2inEq.[5].Thespinopcratorsforq=O, 1,2are 

A(‘) = Z,N, - ~(Z+N- + Z-N+) 

A(‘) = Z,N+ + Z+N, 

A’*’ = Z+N+, t81 
where Z-C = Z, + iZ, and N, = N, + iN,,. Spin operators for q = - 1, -2 are found by 
using the Hermiticity relations in Eq. [ 61. The operators connect spin states that differ 
by q in the total magnetic quantum number. The corresponding lattice functions 
Fcq)(8(t), 4(t)) are given as 
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F(O) = (y 
:,i’ F Y2,0(@(0, 4(t)) 

[91 

where (Y = -y,,yJ Y&. 
The variables 8(t) and r$( t) describe the orientation of the “N-H bond vector r& t), 

with respect to the static field Bo. The vector undergoes rotational diffusion due to 
the overall tumbling of the molecule and any internal dynamics, while the spin degrees 
of freedom stay parallel or antiparallel with B. . In this way, the F(q) become stochastic 
functions of time. In summary the net perturbation operator of the laboratory Ham- 
iltonian due to dipole-dipole interactions is 

V(t) = -a(3 cos28 - 1) IzNz - $ (I+N- + I-N,) 
( 1 

cos 19(e-‘@)](ZzN+ + Z+N,) + HC 

- $ [sin20(e-“6)](Z,N,.) + HC, [lo] 

where HC indicates the Hermitian conjugate of the preceding term. 
Transformation to the doubly rotating coordinate frame. We are now in a position 

to change to an interaction frame wherein the applied field terms in the Hamihonian 
vanish. Note that the traditional rotating frame will not suffice since it retains the 
effective field, B,e. A convenient approach is given by Abragam (4). In this approach 
we transform the Hamiltonian to a doubly rotating I?ame. This frame is the result of 
three successive rotation transformations on the laboratory coordinate frame. There- 
fore, these rotations are best described by the Euler angles cy, ,L3, and y. The first 
rotation is through an angle a(t) = wt about the laboratory Z axis. We show this in 
Fig. 2a. Uppercase labels X, Y, and Z mark the laboratory axes and lowercase labels 
x, y, and z mark the rotated axes. The result is the usual rotating frame, as in Fig. 1. 
We continue with a second rotation through the angle @ about the new y axis (line of 
nodes), as shown in Fig. 2b. This results in the axes x*, y*, and z*. The angle /? is 
the same tip angle for the effective field Bes as that shown in Fig. 1. Therefore, the z* 
axis is parallel to B,g. From the perspective of a spectroscopist in the x*y *z* frame, 
Betr serves the same purpose as B,, did in the laboratory frame. Thus, it can be “trans- 
formed away” in the same manner that & was. Namely, we do a third rotation through 
an angle y(t) = wet about the tipped z* axis (figure axis). This brings us to the final 
coordinate frame x’y’z’, where z’ and z* are the same. This last rotation is shown in 
Fig. 2c. All applied magnetic fields have vanished; thus, we have transformed to the 
interaction frame appropriate for the study of relaxation phenomena of the simpler 
rotating frame. 
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FIG. 2. The three successive rotations of the doubly rotating frame. (a) Rotation about laboratory Z axis 
through 01 = wt. (b) Rotation about y (line of nodes) through tip angle @ Effective field Bdf. is parallel to 
z*. (c) Final rotation about z* (figure axis) through y = OJ. Below, the laboratory axes are denoted by the 
X YZ axes, and the doubly rotating frame axes are denoted by the x’y’z’ axes. 

Since the proton spin operators commute with the nitrogen spin operators the 
proton rotation transformations can be considered independently. In particular, 
whereas three rotations were necessary for the 15N nuclei (X nuclei), only one is 
necessary for the protons (‘H nuclei) since the latter suffer no spin lock. Thus the 
required proton rotation transformation is about the laboratory 2 axis through an 
angle a = o,t . The total rotation transformation is then given by the unitary operator 
U, which consists of the three 15N rotations and the single proton rotation. It is written 
as 

where 

u = UJJ,, 

Up = exp( iw,tZ,) 

illal 

[llbl 
and 

U, = exp(io,tN,)exp(@lN,)exp(iwtN,). [1 ICI 
Of course, since the nitrogen and proton spin operators commute, the order of trans- 
formation in Eq. [ 1 la] is irrelevant. 

To summarize, the effective Hamiltonian in the doubly rotating frame is obtained 
by applying the net rotation operator U to the laboratory expression given in Eq. [ 21. 
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The end result is simply the rotated version of V(t). We designate this transformed 
operator as V’(t). In terms of the spin operators and lattice functions, we have 

V’(t) = UV(t)U+ 

= -(y 
d 

F Y&O(t), 4(t)) cIz,N: - (s/2)e’“JZ,N: + HC 
I 

- $ ((c - 1)/2)e”“p-“n+“e”I+N: + HC 

1 
- - Sel(Wp-Wn)‘I+N: + HC 

4 

- ; ((c + 1)/2)e i(wp-wn-4t~+q + HC 
I 

3a -- 
2 d 

E Y,,-,(d(t), $(t)){(c + 1)/2)ei(Yn+We)flzN; 

+ se’“n’I,N: + ((c - 1)/2)e’(“+e)‘I,NL - (s/2)e’(“p+“e)‘I+N; 

+ Ce'"p'l+N; - (s/2)ei(“'p-"~)fI+~- > + HC 

3ff -- 
4 1/’ 

$ Y&(f?(t), f$(t)){ei(wP+wn+ue)‘((c + 1)/2)Z+N; 

+ se ‘(w@“n)fI+N: + ((c - 1)/2)e i(“~+wn--oe)t~+~P > + HC. [ 121 

Again, HC indicates the Hermitian conjugate of the previous term. For the Y,,-, and 
Y,,-, terms, the Hermitian conjugation is to be taken for the entire previous bracketed 
term, As expected, the laboratory spin operators are rotated into linear combinations 
of operators native to the doubly rotating frame. The latter operators are indicated by 
primes. To reduce the complexity of the above Eq. [ 121, we have used s and c in place 
of sin /.3 and cos ,f3, respectively. 

Macroscopic rate equations and T z. The form of the Hamiltonian in the doubly 
rotating frame given by Eq. [ 121 along with the spin density operator u(t) allows us 
to write a rate equation for the decay of magnetization along Beg. All information 
concerning the ensemble of ‘H- “N spins can be obtained from a( t ) . The macroscopic 
value for any observable, M, is given by the ensemble-averaged expectation value of 
its associated quantum operator. This average is given by the well-known trace relation 

(M)(t) = Tr(a(t)M}. 1131 

We use (M) to indicate the macroscopic variable and M to indicate the quantum 
mechanical operator. 

The equation of motion for u(t) in the doubly rotating frame (interaction frame) 
is governed by V’(t) and is written as 

do 
s 

a, 

z=-0 ((VW), [v’(t - 71, a(t) - ~“lll)W. 1141 
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The angled brackets (( )) indicate that an ensemble average is to be taken over the 
time-dependent parts of V( t’)‘; iW is the density operator at thermodynamic equilib- 
rium. If we insert the expression for V’(t) into the equation of motion given in Eq. 
[ 141, we then obtain 

da 1 (Mm) 
-= -- 
dt 2 c (P(Wp))[Aj-q), [A?), a(t) - a”]]) [I51 

(q=-M,p=-m) 

The JCq)( wg)) terms are spectral density functions sampled at the transition frequencies 
w$); they arise from the aforementioned ensemble average over V’(t) (vide infra) . It 
is understood that in arriving at Eq. [ 151, we consider only those times t that are 
significantly longer than the correlation times characterizing the stochastic processes 
associated with V’(t) . This is a fundamental restriction of the semiclassical relaxation 
theory (4, II ). If we take the overall molecular tumbling as the stochastic process, 
then Eq. [ 15 ] is valid for times t % T,, where 7, is the molecular tumbling correla- 
tion time. 

Eq. [ 131 gives the time behavior for (M), where (M) is the observed value for 
operator M. It seems to require prior integration of density operator Eq. [ 15 1. For- 
tunately, this is not necessary since the operator methods of Abragam (4) allow us to 
derive the rate equation for M directly. One multiplies the density operator Eq. [ 15 ] 
by the desired observable M and then takes the trace. Using the fact that the trace of 
any product of operators is unchanged by a cyclic shuffle of the operators, one im- 
mediately obtains the macroscopic rate equation 

do = -k ‘y’ (J(q)(ti(q))Tr([A$-q) [API, M]](a(t) - P)>). 
dt P 3 [16] 

(P,4) 

Here, we need to define only the spectral densities JCq)(wf)) and the double com- 
mutator, [AiWq), [A& M] 1, which involves the observable of interest and the spin 
operators of V’(t) . The summation is over all terms in the transformed Hamiltonian 
V’(t) given in Eq. [12]. Index q runs from -Mto Mas in Eq. [4]. Recall that in 
going from the laboratory frame to the doubly rotating frame, the operators A (q) are 
mapped into linear combinations of operators A, (q). The index p runs over the operators 
in these linear combinations. 

The spectral densities JCq’(op)) are the Fourier transforms of the autocorrelation 
function for the various angular functions FCq)( 8( t), d(t) ) , evaluated at the frequencies 
wg). Thus, for arbitrary frequency w, we have 

s 

+W 
.P(w) = ( kiw”( F@)( &,)F* (q)( a( t)))dt), -a, 1171 

where Q stands for the angles (19, 4). ( Ftq’( Qo)F * (q)( Q( t))) is the autocorrelation 
function for a given liCq)( 19( t), 9(t)) and is the direct result of the ensemble average 
in Eq. [ 141. JCq)(w) is a real, even function of w. An analytical form for JCq’( w) 
requires a motional model for the “N- ‘H bond vector rnp. Only then can the auto- 
correlation for the FCq) be described and the Fourier transform given by Eq. [ 171 
evaluated. For example, the traditional model of the molecule as an isotropically 
tumbling rigid body yields 
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pqw) = I T, 
27r (1 + (W&)2) ’ WI 

where T, is the molecular rotational correlation time. Note that the only q dependence 
is via the real constant C(q). The functional dependence on w is independent of q. 
We hereafter refer to this functional dependence simply as J( 0). Equation [ 18a] can 
then be rewritten as 

J’qw) = !c$ qw)* [18bl 

Physically, J( w ) represents the frequency distribution of the reorientational motions 
of the bond vector rnp. The goal of the molecular dynamicist, then, is to character- 
ize J(w). 

For an analysis of 7’Tp, the relevant observable is the spin operator N’. Therefore, 
we set M = N: in Eq. [ 161. After using the explicit V’(t) terms shown in Eq. [ 121 to 
evaluate the double commutators and take their traces, we find that 

d(N) 
dt 

- - & (N: - N’,O) - CI;‘(Z~ - Z:), 

where 

-=- sin2(p).Z(w,) + f [(sin4(/3/2)J(w, - % + we) 

+ cos4(p/2).@, - u, - w,)] 

+ cos4(/3/2)J(o, + 0,) + sin4(P/2)J(w, - w,) 

+ i sin2(/3)(.Z(w, + w,) + J(w, - 0,)) 

+ 2[cos4(~/2)J(w, + 0, + w,) + sin4(@/2).Z(w, + w, - w,)] 
I 

and 

OP HX = F [$ [(sin4(@/2)J(+, - w, + 0,) - cos4(/3/2).Z(w, - 0, - w,)] 

+ + sin2(P)(.Z(o, + w,) - J(w, - %I) 

+ 2[cos4(p/2)J(w, + 0, + w,) - sin4(@/2)J(w, + w, - o,)] . 
1 

[19] 

Rigorously, w, should be replaced by the actual “N carrier frequency, w ( see Eq. [ 4 ] ) . 
However, w differs from w, by less than a percent (of w,) as Z3 varies from 1 o to 90”. 
Thus, little error is introduced by using w, for arbitrary tip angle 8. (N’,‘) and (It) 
are the equilibrium magnetizations for nitrogens in the doubly rotating frame and 
protons in the lab frame, respectively; g:” represents the nitrogen-proton cross re- 
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laxation and is not to be confused with the spin density matrix u(t) discussed previously. 
Since Rq. [ 19 ] involves both (N: - N$‘) and (1, - 1:)) (N:) can generally change 
due to energy transfer to the lattice via T$, or due to cross relaxation to the protons 
via uHX . We note some distinctive features of the time constants TTp and u,“” . First, 
their dependence on the spectral density functions, J( w ), is weighted by various trig- 
onometric functions of the tip angle ,!?. Additionally, the frequencies sampled by the 
spectral densities are w,, wP * w,, w, f w,, and or f w, f. w,. These are sidebands of 
the usual sampling frequencies 0, wP , w, , and wp -t w, seen in the well-known expressions 
for T? and Tf . The fact that TE samples different frequencies means that we can 
monitor different spectral regions of J(w). This is shown schematically in Fig. 3. In 
principle, spin-lock sequences can be engineered to monitor J( w ) at a desired set of 
frequencies. 

If the molecule suffers no motion other than rigid isotropic tumbling, the autocor- 
relation function for the reorientation of the internuclear vector r,p can be described 
by a single exponential with a decay constant 7,. This results in a Lorentzian form 
for J(w) shown in Eq. [ lSa]. Then for certain values of the flip angle B, Tj$ reduces 
to the familiar heteronuclear TT and T;. Consider the limit where p approaches 0. 
This corresponds to a totally off-resonance RF field. Then all sine terms in Eq. [ 191 
vanish. Typically, (w,/~P) is in the kilohertz range, as opposed to the megahertz 
values of Larmor frequencies ( w, / 2a) and ( w,,/ 27r). In such cases, we can neglect the 
RF contribution to the Larmor frequencies and make the approximations J( wP f w, 
+ w,) = J( w,, + wn), J( wP + w,) = J( wP), and J( w, f w,) = J( w,). We then arrive 
at the familiar TT expression 

1 ;~r:,=$g,,,wp- W”) + 3J(w,) + ww, + %>>, VW 

lim g,“” = q {Ww, + wn) - J(q, - ~“11. [20bl PO 
Note that u,“” reduces to the familiar cross-relaxation rate first derived by Solomon 
( 13), and the rate equation [ 191 simply becomes one of the Solomon equations. 

Now consider the limit where p approaches ( 7r/ 2) and therefore cos( ,8/ 2) = sin( P/ 
2) = 1/2/2. This corresponds to the on-resonance limit. If we keep the approximations 
of J(w, f W, f w,) = J(w, + w,), J(w, + w,) = J(w,), and J(w, +- w,) = J(w,) we 
get 

1 

/3-w/2 TI, 
lim x = 2. azh4 {4J(w,) + J(w, - W”) 

+ 3J(w,) + 6J(w,) + 6J(w, + w,)}, [21a] 

lim u,“” = 0. [21bl 
P--/2 

This is identical to the expression for TF except for the lowest-frequency term, which 
is J( w,) instead of J( 0). In principle, it should be possible to map the spectral density 
function near the zero frequency by measuring on-resonance TE values for varying 
w, values. Note also that the cross-relaxation term vanishes. Therefore, the use of 
polarization-transfer methods from protons to nitrogens (X nuclei), which equalizes 
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FIG. 3. Sampling of a hypothetical spectral density function J(w) by T$. The arrowed spikes are the 
sampling frequencies. They are sidebands symmetrically offset by fo, to the usual sampling frequencies 
indicated by the dashed lines. The samplings are weighted by trigonometric functions of the Bti tip 
angle, P. 

the proton populations, is justified in the relaxation experiment discussed (see Fig. 
5 ) . For w,/ 2a in the kilohertz range, J( we) will be sensitive to processes with correlation 
times much longer than those germane to the spectral density functions evaluated at 
the various Larmor frequencies wP f w, , wP, and w,. For protein molecules with 7, 
in the range of nanoseconds, WJ, 4 1. As a result, J( w,) is well approximated by 
J( 0). Therefore, in the limit of a weak on-resonance spin lock and the assumption 
of a Lorentzian spectral density function, T$ contains the same spectral information 
as Tf. 

It is also informative to compare the behavior of these relaxation times as a function 
of T, with the assumption that J(w) is Lorentzian. Figure 4 plots log,,( Ti) against 
logiO(~,), where Ti is either Typ at various tip angles P, T?, or Tf. We note that 
Typ for /3 = 90” shows the same kind of behavior as T?. Specifically, both relaxation 
times ultimately increase with correlation time aRer reaching a minimum. This increase 
occurs for 7, > ( 1 /urnin), where W,in represents the lowest-frequency spin transition 
for a particular relaxation time. Essentially, slower molecular tumbling results in longer 
T, values, which weight the spectral density function toward lower frequencies. This 
is easily visualized if J(w) is a simple Lorentzian distribution; a longer 7, produces 
a sharper, narrower “peak” about zero frequency. As a result, the overlap between 
the high-intensity portion of J(o) and the nonzero spin transition frequencies pro- 
gressively decreases. The associated relaxation process is therefore retarded and the 
relaxation time lengthens. Since the lowest transition frequency sampled by Typ is 
typically several orders of magnitude lower than that in T?, the increasing edge of 
TE occurs at much longer correlation times. Clearly, 7, can never exceed 1 /W,in for 
TF. Therefore, TF continues to decrease monotonically with 7, until plateauing at a 
particular rigid lattice value (not shown). Note again that for T, on the order of 
nanoseconds, Tf and T$ for ,f3 = 90” are equal. However, it must be stressed that 
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FIG. 4. Log,,,-log,, plot of r:, T:, and T:, versus molecular correlation time T,. Tj$ is shown for flip 
angles /3 = 90”, 30”, lo”, and lo. The Ty, plots are indicated by the solid curves with flip angle labels. The 
r: and T: plots are shown by the broken curves above and below, respectively. 

this equality holds only if the spectral density function J(o) is given by a Lorentzian 
(and only then is r, defined). Figure 4 also shows the behavior of TTo as a function 
of T, at flip angle values of /3 = I”, lo”, and 30”. As 6 progresses from 0” to 90”, we 
see the transition from TF to Tf behavior. Note that since Fig. 4 is plotted on a 
logarithmic scale, the T? and TE values for T, in the range of 3-4 ns may appear 
deceptively close. In fact, for T, = 3.5 ns, T?/ TTp is approximately 2. 

EXPERIMENTS AND RESULTS 

The 2D NMR pulse sequence for measuring TE values is shown in Fig. 5. The 
sequence allows the measurement of TT(, times for each X nucleus in a molecule. In 
our experiments, the X nuclei are protein backbone amide “N nuclei. The sequence 
begins with equilibrium proton magnetization which is transferred via an INEPT 
sequence to the nitrogens. After the INEPT transfer, we have antiphase 21,N, mag- 
netization. We follow with a tuned refocusing period to get N, magnetization. A “N 
spin lock keeps the N, magnetization locked along x for a relaxation delay T. The 
remnant magnetization is then frequency labeled during the t, evolution period. A 
reversed, refocused INEPT converts the magnetization back to the protons for sen- 
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X A C 

AJ2 Al2Al2 Al2 
H 

X 

FIG. 5. Two-dimensional pulse sequence for measuring r$ times in heteronuclear HX systems. Proton 
( ‘H) pulses are shown on the upper trace and X nuclei pulses are given on the lower trace. Solvent suppression 
is achieved by initial presaturation of the solvent protons; 90” and 180” pulses are indicated by the thin 
and thick vertical bars, respectively. Delays include the X-nucleus spin lock, which is indicated by the shaded 
region of length ‘T, the tuned delay A/2 = 1 /( 4Jnx), the X nucleus evolution period t, , and the proton 
detection period t2. The pulse phases are as follows: (A) y, -y . . . , (B) x, x, -x, -x, . . . , + TPPI, (C) 
x,x,x,x,-x,-x,-x,-x ,.... The receiver phases are --x, x, x, -x, x, -x, -x, x, . . . . Broadband 
decoupling is used during the proton detection period as indicated by the MLEV-64 period on the X nuclei. 

sitivity-enhanced, broadband-decoupled acquisition. Sign discrimination in F, is 
achieved by the TPPI method of Marion and Wiithrich ( 14). The minimum phase 
cycle involves eight scans, typically with 256 t, blocks acquired. The final result is a 
heteronuclear COSY spectrum with the cross-peak intensities attenuated by the extent 
of relaxation allowed. A typical spectrum is shown in Fig. 6. Each cross peak corre- 
sponds to the backbone amide I5 N of a specific residue. In our experiments, the “N 
spin lock was composed of contiguous 15N 180,” pulses. Use of other pulse trains 
such as WALTZ- 16 was avoided since the magnetization is not necessarily fixed along 
B,K during these sequences. The 180” pulse lengths were 168 ps, corresponding to 
0,/27r = 2976 Hz. The tip angles (6) for the amides ranged between 75” and 90”. 
Thus we can approximate the spin lock as being on resonance for all backbone amide 
cross peaks. 

We have implemented this experiment on a General Electric Q500 spectrometer 
and applied it to the 100% 15N-enriched protein eglin c. Eglin c functions as an inhibitor 
for proteinases such as elastase, subtilisin, and chymotrypsin. It consists of 70 residues 
resulting in a molecular weight of 8 111 Da. The proton assignments have been given 
by Hyberts et al. (15). The sample concentration was ~4.5 mM and the pH was set 
to 3.0. For a series of nine 2D spectra, the total acquisition time was approximately 
two days. Relative peak intensities were obtained by integrating slices along the F2 
dimension through the cross-peak maxima for each 2D spectrum. For each cross peak, 
the intensities were fitted .to a monoexponential decay by a nonlinear least-squares fit 
routine using the software package PLOT (New Unit Inc., Ithaca, New York). The 
fitted decay constant gives Trp. An example is shown in Fig. 7. 

The distribution of TE versus residue number is shown in Fig. 8. Blank columns 
indicate either prolines or residues that could not be quantitated due to-resonance 
overlap. Data at the positions 7 l-74 indicate the 4 arginine side-chain E-nitrogens for 
the residues Arg 22,48,5 1, and 53, which also constitute HX spin systems. The values 
are uniform for the backbone nitrogens of the protein core. The average TFD value is 
2 15 ms with an uncertainty of t 11 ms. This is approximately half of the average 
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FIG. 6. Typical spectrum from the pulse sequence shown in Fig. 5 as applied to the protein eglin c. The 
data matrix consists of 256 t, blocks of 2048 complex points each. The data were processed by FTNMR 
(Hare Research Inc.) on a Sun 3/260. The proton (Fr) dimension was strip transformed and zero-filled 
twice, whereas the lsN (F, ) dimension was zero-hlled once. The “N axis was referenced arbitrarily by setting 
Val 63 to 114 ppm. Window functions included 45” shifted sine bells in both dimensions. The spin lock 
consisted of contiguous 180” “N pulses with or = 3 kHz. 

Ty for the protein core. A 2 to 1 ratio of TT to Typ is consistent with a T, = 3.5 ns 
in Fig. 4, where a factor of 2 translates into a log,, value ~0.3. The values for TTp are 
significantly longer for the residues of the N-terminus (residues l-8 ) and those of the 
protease binding loop (residues 42-47 ) . For example, Gly 4 and Glu 6 have TE values 
of 526 and 413 ms while binding loop residues Leu 45 and Asp 46 have T$ values 
of 3 13 and 346 ms. The arginine side chains show significantly longer T$ values as 
well. Arg 22 and Arg 48, which are located on the surface of the protein, have longer 
TFp values than Arg 5 1 and Arg 53, which lie in the protein interior and are involved 
in many intramolecular hydrogen bonds (16-18). The data corroborate results from 
both the “N TF and NOEX measurements, which showed significant deviations for 
these regions of the molecule. Together, they provide strong evidence that the N- 
terminus and binding loop experience greater conformational mobility than the rest 
of the protein. Motional analyses which use a Lorentzian form for J(w) produce a 
molecular correlation time of 3.5 f 0.2 ns. Since our approximately on-resonance 
spin lock had -yB,/2?r m 3 kHz, we are in the limit that W,T, Q 1. Then, TTo should 
be indistinguishable from Tf provided J(w) is a Lorentzian distribution. 

We have performed 15N TF measurements on eglin c and compared them to the 
corresponding Typ values. Interestingly, the Tr values are uniformly lower than the 
TE values for all residues. The TF values were determined by two methods. The ftrst 
replaces the spin lock in the Tyn experiment by a single 15N 180” pulse at the center 
of relaxation delay, 7. The second method uses a Can--Purcell-Meiboom-Gill (CPMG) 
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FIG. 7. Example of 15N TE fit for the His 65 residue in eglin c. The TE value is 237 ms with an rmsd of 
2.2%. 

train of refocusing “N 180” pulses. CPMG duty cycles of 1 and 2% were used, with 
the “N 180” pulse width being 110 ps. These approaches are shown in Fig. 9. The 
resultant T? values are a50 and 25% reduced from the T% values for the single 
refocusing pulse and CPMG train ( 1% duty cycle), respectively. A comparison of 
relaxation curves for the three methods for residue His 65 of eglin c is shown in Fig. 
10. The discrepancies from the Tz values are well outside the range of uncertainty 
for both the Tc and the TF experiments. It should be stressed that the relaxation 
times for all residues in eglin c increase without exception. In addition, the relative 
profile of relaxation times seen in Fig. 8 is essentially preserved; those l5 N spins that 
have relatively longer TF times also have longer T$ times. 

A rigorous explanation of why the TE values are significantly longer than the cor- 
responding Tf values remains elusive.’ Chemical exchange due to conformational 
isomerizations of the protein can cause apparently shorter T? values, especially in the 
single 180” experiment. However, such exchange processes should be localized in the 
protein and therefore cannot explain the global increase of T?, over T?. 

‘Note added in proof: We have subsequently found that the short Tf values are caused by the evolution 
of in-phase NX,,y magnetization into antiphase 21&,J magnetization. Antiphase magnetization relaxes much 
faster than in-phase magnetization due to dipole-dipole interactions between the amide proton and other 
spatially close protons. Therefore, the short rf values are caused by proton-proton dip&u relaxation and 
not scalar relaxation of the second kind. 
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FIG. 8. Distribution of Tc for the 15N nuclei in eglin c. Blank columns are due to either prolines or 
overlapped cross peaks. The average uncertainty in the TF, values is + 11 ms. Significantly larger ryp values 
are observed for the more mobile parts of the protein. ry, values for the first residues (e.g., 2-4,6) exceed 
500 ms and are off scale. Positions 7 1 to 74 are the N’ of the a&nines in positions 22,48,5 1, and 53. The 
N’ at positions 22 and 48 are solvent exposed and have off-scale 7’7, values of 542 and 781 ms, respectively. 
In contrast, the N’ at positions 5 1 and 53 are involved in intramolecular hydrogen bonding and have much 
shorter rt values of 234 and 300 ms, respectively. 

Scalar relaxation of the second kind (4) has been suggested by Kay et al. (3) as the 
culprit mechanism causing the short TF values. This mechanism would involve fluc- 
tuations of the scalar interaction between the “N and ‘H caused by zero-quantum 
transitions between the amide protons and neighboring protons. The TTp experiment 
would be immune to the effects of scalar relaxation, since it decouples the “N nuclei 
from their amide protons during the spin lock. In contrast, the JNH coupling remains 
intact in the single 180” experiment (and to a lesser extent in the CPMG experiment ) 
and thus the scalar relaxation would result in apparently shorter TF times. However, 
this explanation seems unlikely for reasons discussed by Abragam (4). In particular, 
scalar relaxation of the second kind demands that the amide protons have relaxation 
times much shorter than ( 27rJNH)-l. (JNH is approximately 90 Hz, and therefore l/ 
27r JNH is approximately 1.77 ms/rad). If this were the case, heteronuclear decoupling 
for the “N evolution would be unnecessary since the 15N doublet corresponding to 
populations with the amide proton spin up and spin down would automatically col- 
lapse. Furthermore, the theory of the proposed scalar relaxation treats the amide protons 
as lattice variables instead of spin operators. This means that the amide proton relax- 
ation must occur faster than any time interval relevant to the “N relaxation experi- 
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FIG. 9. Alternative methods of measuring transverse relaxation times, TF. (a) Single 180” refocusing 
pulse; (b) CPMG 180” pulse train. (c) Spin lock. These sequences can all be inserted just prior to the t, 
evolution period in Fig. 5. The transverse relaxation times are the shortest for the single 180” pulse. They 
are progressively longer for CPMG trains of a larger duty cycle. In the limit that the duty cycle reaches lOO?& 
we get an on-resonance spin lock in case (c) . 

ments. In effect, the amide proton spin fhps act as another stochastic perturbation 
from the lattice on the 15N spins, and the amide proton T1 and T2 become additional 
correlation times describing the “random field” seen by the 15N spins. However, the 
proton relaxation times are at least in the 100 ms time scale. Clearly then, the amide 
protons cannot be considered part of the lattice and an explanation using the theory 
for scalar relaxation of the second kind (4) is inappropriate. 

An alternative explanation does not involve scalar relaxation at all, but rather the 
spectral density function, J( 0). Recall that the equivalence between TT and T% is 

9 I 
0 
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FIG. 10. Comparison of T: via single 1 SO”, rg via CPMG, and TE for the same 15N nucleus (His 65 ) . 
The triangular plot is from the single 180” experiment, the open circle plot is from the CPMG experiment, 
and the solid circle plot is from the Ty, experiment of Fig, 5. The relaxation times are 136 f 4, 177 + 9, 
and 237 + 4 ms, respectively. 
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based on the approximation that J( w,) = J( 0). This approximation assumes that 
J(w) is a Lorentzian described by a single correlation time, r,,,, which is on the order 
of nanoseconds. In this case, J(w) does not vary significantly over the low (kilohertz) 
frequencies characteristic of typical (w,/2~) values, and therefore the approximation 
is justified. However, there is no a priori reason to expect such flat behavior of J(w) 
at low frequencies. There may be internal protein motions at such frequencies that 
lead to much more complex spectral densities. It is therefore possible that J(w,) is 
significantly different from J( 0)) and that this alone accounts for the different results 
from the Tyo experiment and the other transverse relaxation experiments. 

CONCLUDING REMARKS 

We have shown theoretically that heteronuclear Tg measurements can offer spectral 
information not available in either Tr, TF, or NOEX. Specifically, TFp samples side- 
band frequencies offset by fw, from the zero-, single-, and double-quantum frequencies 
usually sampled in an HX spin system. When a Lorentzian form for J(w) is assumed, 
Typ reduces to Ty and Tf for the following cases. In the limit of a vanishing spin- 
lock field, T?( becomes Tr , and the rate equations for relaxation become Solomon’s 
equations ( 13). In the limit of an on-resonance spin lock, Typ resembles T$ except 
that the lowest frequency sampled is the effective field frequency, w,. If w, is much 
smaller than 1 /T,, then TE contains the same spectral information as Tf . 

We have also presented a 2D heteronuclear pulse sequence to measure site-specific 
Typ values in biomolecules. We have applied the Typ experiment to the 70-residue 
protein, eglin c. The TE values are significantly longer than the corresponding Tc 
values obtained by using a single 180” pulse in the center of the relaxation delay, or 
by using a CPMG pulse train. Furthermore, we have observed that the TE values are 
longer for all “N nuclei in the protein. Therefore, the lengthening cannot be attributed 
to chemical exchange due to conformational isomerizations. Additionally, the length- 
ening cannot be attributed to scalar relaxation of the second kind (4)) which demands 
proton relaxation times well below the millisecond time scale. Those interested in a 
quantitative analysis of their data should consider carefully how the transverse relax- 
ation times are to be measured. The variation of Tz values along the backbone of 
eglin c shows that it is sensitive to dynamical heterogeneity. TE is therefore another 
useful parameter in the experimental characterization of biomolecular motions. 
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