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Spark Ignition of Propane-Air Mixtures Near the Minimum 
Ignition Energy: Part II. A Model Development 
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and 

R. W. A N D E R S O N  
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A model is developed to simulate the kernel growth observed in the exprimental study of Part I. Kernel growth, 
described as a two-step process, initially involves a blast wave over a negligible short time followed by a diffusive 
growth with an electrical input power. The diffusive growth is formulated by an integral approach involving 
temperature dependent overall reaction kinetics and electrode heat loss. The model predicts the kernel growth 
m b l y  well with the measured spark power input. It predicts both ignition and nonignition kernel growth. The 
existence of  a critical radius is also demonstrated. In addition, dimensional analyses are given to clarify the physical 
aspects of the critical radius and the characteristic radius of the blast wave. 

NOMENCLATURE 

A 
a 

C 

Cd 

C, 

D 
d 

E, 

fuel or limiting reactant 
dimensionless mass fraction of A (=  Ev, Ep 
r /r u) 
frequency factor E ° 
speed of sound 
constant for discharge induced entrain- Fo 
ment flow h 
nonlinear coefficients (i = 1 . . . . .  l l ,  I s 
A, e) k 
constant pressure (volume) specific heat L 
electrode diameter ! 
gap size ! a 
binary diffusion coefficient of A into 
mixture I..~ A 
measured spark discharge energy M 
electrical discharge input power m 
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discharge energy into the fall region 
spark energy and power remaining in 
the gas 
discharge energy and power into the 
positive column 
instantaneous energy release per unit 
length 
Fourier number (=  ~t/L z) 
enthalpy of mixture 
measured secondary current 
thermal conductivity 
characteristic length 
length of cylindrical blast 
planar adiabatic flame thickness (=  
k/p.CpV,) 
Lewis number (= k/pCpDA) 
gas flow Mach number (u/c) 
mass in the kernel 
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fn 
the 

P 

q~f 

QA 
R 

r 

Rc  
r~ 

r o 

R 
T 
t 

td 
U 
U 

U e 

V 
X 

mass flow rate of mixture per unit area X 
entrainment mass flow rate due to elec- p 
trical discharge 
pressure ~, 
rate of heat conduction per unit area at 00 A 
r = r f  
heat of combustion per unit mass of .4 
dimensionless radius or spatial coordi- 
nate 
radius or spatial coordinate 
dimensionless critical radius 
critical radius 
characteristic radius of cylindrical blast 
wave 
dimensionless radius (=  r / l  a) 
temperature 
time or time coordinate a 
discharge duration b 
laminar burning velocity c 
gas flow velocity f 
representative discharge induced en- u 
trainment velocity o 
volume of the kernel 
space 
mass fraction of A 

Greek Symbols 

¢x thermal diffusivity 
reduced activation energy (= ~ ( T a - 
Tu)/(9~ Tb2)) 

7 specific heat ratio 
8 a fuel penetration depth 
S T heating zone thickness (thermal pene- 

tration depth) 
e reduced heat of combustion (=  (T  a - 

ru ) / rb ) )  
~" dimensionless spatial coordinate in re- 

action zone 
~d(t) instantaneous discharge efficiency 
~d(td) average discl~arge efficiency over dis- 

charge duration t d 
~1~ E o / E  p in Table 4 
~ls discharge efficiency due to quenching 
0 dimensionless temperature (=  ( T -  

Tu) / (T  a - T~)) 
01 dimensionless temperature in Eq. 10 
A eigenvalue of planar premixed flame 

dimensionless radiv (=  r/ro) 
density 
dimensionless iw (Cot/r  o) 
equivalence ra c 
chemical react a rate of A per unit 
volume 

Special Symbols 

activation energy 
molecular weight of the gas 
universal gas constant 
gas constant (=  ~ / J  ) 

Subscripts 

adiabatic flame 
burned gas of steady spherical flame 
critical value 
flame kernel 
unburned fresh mixture 
ambient gas 

Superscripts 

A fuel or limiting reaction A 

1. INTRODUCTION 

Spark ignition by a time-dependent electrical dis- 
charge through electrodes is an unsteady heat and 
mass transfer process involving chemical reac- 
tions. Modeling this process requires an under- 
standing of the breakdown process, the electrical 
discharge and the effect of electrodes, in addition 
to gas dynamics and chemical kinetics. The main 
objective of the present study is to develop an 
intuitive ignition model and improve understand- 
ing of spark induced flame initiation. The model 
is validated by the experimental data obtained in 
Part I [1]. 

There is an extensive literature on modeling of 
spark ignition [2-27]. Only a few models for 
spark kernel growth, however, are validated with 
experimental data [7-9, 11, 13, 23]. Also, the 
shock wave associated with breakdown and the 
effect of electrodes do not appear to be taken into 
account in most of the present models, though 
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considering a momentum equation enables to 
characterize the shock wave in a very complex 
manner [14, 17, 24-27]. Only, Lim et al. [7, 8], 
Ko [9], and Adelman [11] use the blast wave 
concept to characterize the shock wave associated 
with breakdown. Lim et al. [7, 8] and Ko [9] also 
account for fall energy losses. 

Flame initiation in a premixed mixture by an 
electric spark may be modeled as a two-step 
process; (1) flame formation and (2) flame kernel 
development [16]. Flame formation is always en- 
sured with a successful breakdown because a 
high-temperature kernel is generated after break- 
down [28, 29]. After this formation, thermal 
diffusion dominates flame kernel development 
[7-9, 16, 30-32]. The development is successful 
when the power input from the spark is sufficient 
to drive the flame kernel beyond the critical size 
[I, 9, 13, 15, 31-35]. The above two-step pro- 
cess can be identified by a short period of blast 
wave followed by a relatively long diffusive 
growth [7, 8]. The blast wave is evidenced by a 
shock front that rapidly decays to an acoustic 
wave in a few microseconds, which in turn is 
followed by a growing diffusion boundary layer. 
In the present study, the diffusive growth coupled 
with the blast wave model of Lim et al. [7, 8] is 
formulated by an integral approach involving 
simple overall Arrhenius reaction kinetics. A 
time-dependent electrical discharge is considered 
in addition to the effects of electrodes and dis- 
charge characteristics on the ignition process. 

The study consists of seven sections: following 
this introduction, Section 2 presents dimensional 
arguments of a critical spherical flame, Sec. 3 
outline kernel growth, See. 4 presents the diffu- 
sion model, Sec. 5 compares model predictions 
with experimental data and discusses the predic- 
tions, and Sec. 6 summarizes and concludes the 
study. 

2. CRITICAL SPHERICAL FLAME- 
D I M E N S I O N A L  A R G U M E N T S  

Consider an unsupported, convection-free, spher- 
ical, lean premixed flame in infinite space. Diffu- 
sional processes feed the reactant into the reaction 
zone at such a rate that the heat generation bal- 

ances the conduction loss to the unburned mixture 
and a steady flame is maintained. The usual con- 
servation equations for energy and a limiting 
reactant A of the steady flame are 

r 2 dr r2k-'~r + QAO:A = O, (1) 

( dye) 
1 d r2oD A - o0 A = O, (2) 

r 2 dr 

where the chemical reaction rate of A per unit 
volume is 

O)A = p2BA YA exp - 

Here T, YA, and r denote temperature, mass 
fraction of fuel A,  and radius, respectively, O, 
k,  and D A are density, thermal conductivity, and 
binary diffusion coefficient of A into the mix- 
ture, respectively, QA, ~ ,  and g denote heat of 
combustion per unit mass of A (lower heating 
value), universal gas constant, and activation en- 
ergy, respectively, and B A is a frequency factor. 
The boundary conditions are 

r - "  co:  T =  T=, YA = YAu' 

aT dYA 
r--*0: ~ = 0 ,  dr - 0 "  (3) 

The subscript u corresponds to the unburned 
fresh mixture. 

Combining Eqs. 1 and 2, and integrating the 
resulting equation subject to Eq. 3 readily gives 
the steady solution [15, 31, 32] 

T -  T~ 1 YA 1 
+ - -  - - -  ( 4 )  

Ta- Tu LeA YA u LeA' 

where Le A = k /pCpDA is the Lewis number, 
with Cp being the specific heat at a constant 
pressure, and T a = T, + QA Y A J C p  is the adia- 
batic flame temperature. Because IrA = 0 in the 
burned gas, the burned gas temperature T b ob- 
tained from Eq. 4 is 

1 
rb = r .  + T.).  (5) 
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For LeA > 1, the burned gas temperature of the 
steady flame is lower than the adiabatic flame 
temperature, i.e., T o < T~, while T o > T a for 
LeA < 1. 

Nondimensionalization of Eqs. 1 and 4 yields 

R 2 d R  -d-R] 

3(0- oo) ) 
=32Aaexp 1 +e(0-0o) ' (6) 

a 1 
0 + LeA - LeA'  (7) 

where 0 = ( T -  T u ) I ( T  a - Tu), a = YAIYAu ,  
R = r l l  a, la = k l o u C v U a b e i n g  the adiabatic 
planar flame thickness, where U~ is the adiabatic 
burning velocity, e = ( T  a - T u ) / T  b, [J = g ( T  a 
- T u ) / ~ T b  2, 0 b = 1~LeA,  and A is the eigen- 
value of the planar premixed flame, 

1 I ,  2 Cpo2BA exp -- . 
A - 3 2  k 

With the assumption of large activation energy 
(3 ~" 1), the reaction rate becomes strongly de- 
pendent upon temperature and the reaction is 
frozen except in a zone that is much thinner than 
either that of the heating zone or the dimension- 
less radius R e of the steady flame. Then, the 
solutions of Eqs 6 and 7 satisfying Eq. 3, for 
R < R~, 

1 
0 = 0 o =  LeA a = 0 ,  

(T = T o, IrA = 0), (S) 

and, for R > R e, 

R c 
0 = k 

LeA R ' 

R e  
a = l - - m  

R 

m m  

Ta Tu LeA r 

(9) 

However, in the thin reaction zone, the effect 
of reaction needs to be taken into account. As 

B ~ 00, the dimensionless temperature within the 
zone becomes 

0 = Le---~ + -~- + O , 0, = 0 ( 1 ) ,  

(10) 

and the dimensionless radius of the zone as 

R = R c + -~ ,  t = O(1),  (11) 

where 01 /3  and ~'/B are, respectively, the dimen- 
sionless temperature and space variation within 
the reaction zone. Because the curvature is negli- 
gible in the thin reaction zone, Eq. 6 reduces to 

d20 
d R  2 =/32Aaexp 01, 

or, in terms of dO = dOt~f3 and d R  = d ~ / 3 ,  

d 2 0 1  

- d~.-- T = 3Aaexp 0 I. (12) 

Following dimensional arguments clarify the 
physical aspects of the dimensionless radius R~. 
From Eqs. 7 and 10, a - l . ,eA01/3,  andEq. 12 
gives 

01 
~---2 - A Le A 01, or ~ "2A LeA - 1. (13) 

Separately, from Eqs. 9 and 10, 

R e 1 
0 =  

LeA R Lea(1 + ~ / 3 R ~ ) '  

which, in view of ~ I 3 R  e ~ 1, 

= _ _  1 (  ~" ) 1 ~" 
1 - -  = 

LeA flRc LeA LeA 3 R c "  

(14) 

A comparison between Eqs. 10 and 14 implies 

01 - -  O(1) Lea R e ,  or ~ - Le  A R c. 

(15) 
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Finally, combination of the Eqs. 13 and 15 re- 
suits in a dimensionless radius of the steady 
spherical flame, 

1 
R c . 3.1/2, (16) 

(ALeA) 

which, within a constant, is the result obtained by 
Champion et al. [15] following a considerably 
involved asymptotic matching, 

1 
R e (2A LeA3)I/2 . (17) 

Now, in terms of A from [36] and assuming k 
- v ~  and B a - v ~  [37], the dimensional 
radius of the steady flame r c becomes [15] 

(k)To ro 
r c = (Cv)r~(O)TuU a Tb Lea 

1))  18, xexpi-  Ta " 

The radius is very sensitive m the diffusivity of 
the limiting reactant of the chemical process. 
Because of the effect of the Lewis number on the 
burned gas temperature T o of the steady flame 
(Eq. 5), the radius increases with a larger Lewis 
number. 

Small perturbation stability analysis of the 
steady spherical flame for steady radius [15, 31, 
32] leads to r j  = r e for the marginal state, r e 
implying the critical radius. Successful flame ini- 
tiation requires that the flame grow beyond r e 
[15, 31, 32]. Experimental observations on spark 
ignition in a propane-air mixture support this 
point of view [1, 9, 15, 34]. As expected from 
the nature of the critical flame, the flame speed 
with a slightly supercritical power input decreases 
as the radius of the flame kernel approaches r e 
while soon after as the kernel grows larger than 
r c the flame speed increases and approaches the 
adiabatic flame speed [15]. A similar trend of 
flame kernel growth is also observed in an engine 
for low-speed operation [38]. 

3. KERNEL GROWTH 

Experimental observations indicate that kernel 
growth can be described as a two-step process. 
The early part of growth is thermomechanical 
(waves) and the later part is a thermal (diffusion) 
penetration. The thermomechanical wave is a blast 
wave that starts as a shock wave ( M  > 1) but 
rapidly decays to an acoustic wave (0 < M < 1), 
M being the Mach number. 

The fundamental difference between a blast 
wave and a diffusive penetration is that the for- 
mer is momentum-controlled while the latter is 
thermal energy-controlled. A dimensionless num- 
ber that characterizes the importance of a blast 
wave relative to diffusive penetration can be de-  
rived from the ratio of kinetic energy and thermal 
conduction: 

o(ou ) / I 
Ot / O x  ~ Ox ] '  

where u, x,  and t, respectively, denote velocity, 
space, and time. On dimensional grounds, 

p u 2 / k T  pu2L 2 

t - ~  t kT  ' 

which can be rearranged in terms of 

P ~R 3 1 - 1  k 
c 2 = 3 ' -  =3'~RT, - -  = - - ,  - -  = a ' ,  

p 

as 

u2 ) L2 M 2 

( ~ -  1) - ~  ct-~- ( ~ -  1) Fo 

where or, % c, arid L,  respectively, denote ther- 
mal diffusivity, specific heat ratio, isentropic 
speed of sound, and a characteristic length, and 
Fo = a t / L  2 is the Fourier number. At the transi- 
tion, kinetic energy and diffusion are equally 
important and 

( 3 , -  1 )M 2 
1, 

Fo 
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which leads, in view of u = L / t ,  to 

t _  [ ( 'Y--  1)L4]1/3 

For a typical spark discharge in automotive en- 
gine use, for example, the initial energy input is 
about 1 mJ and the kernel size is on the order of 1 
mm. For a kernel temperature of 2000 K, 

[ (1"4 -- 1)(10-3)4 ] 1 / 3 ( 2  x 
t -  1 0 ~  - 10 -5 s, 

which implies that the transition from a blast 
wave to thermal diffusion occurs on the order of 
microseconds after spark initiation. 

In a manner similar to the foregoing dimen- 
sional consideration for t, a radius r o character- 
izing the cylindrical blast wave due to an instanta- 
neous energy release per unit length, E o can be 
found as follows. Assuming that the original en- 
ergy release is transformed into kinetic energy, 

Eol  - laoCo2 ro21, 

which, for an isentropic flow, can be rearranged 
in terms of Co 2 = ~ / ~ T  o = ~/Po/Po as 

2 7 P  o , or r o - 
ro 

which, within a constant, is the characteristic 
length normally used for nondimensionalization 
in the literature [39, 40]. Following a computa- 
tional study, Jones [41] finds 

r o =  ( E° I 1/2 

a Po I ' 

where B = 3.94 for 7 = 1.4. Here Po, Po, and 
c o are the pressure, density, and isentropic speed 
of sound of the ambient gas, respectively, and 1 
is a length of the cylindrical blast. This wave can 
be described with a dimensionless radius k and 
time r: 

r Cot 
k = - -  and f -  

ro ro 

From the numerical solution for a cylindrical 
blast wave at the weak shock from, the size and 
average temperature of the hot (low-density) re- 
gion near the origin, which may be identified as 
the initial kernel in spark ignition, are found at 
the appropriate transition time that thermal diffu- 
sion begins to dominate the mechanism of the 
kernel growth. The transition is expected to occur 
towards the end of an acoustic wave period. The 
relation between the Mach number and the di- 
mensionless time is 

ro/t  1 
M -  

C O T" 

For an order-of-magnitude approximation, as- 
1 sume ~ < M < 1 as a bound of an acoustic wave, 

which implies 1 < • < 2. Then, r = 1.5 may be 
a reasonable estimation for the transition time. 
The same value has already been used by Lira 
et al. [7, 8], however, without any dimensional 
justification. Plooster's numerical solution for the 
cylindrical blast wave [42] also shows that the 
blast wave diminishes to an approximate acoustic 
wave by this dimensionless time r = 1.5, leaving 
behind a hot core near the center that expands no 
further in size. Considering 1 mJ of input energy 
over a 2-ram gap and normal temperature and 
pressure of air, from the above definition of r o 
and r,  

r o = ~ 

= [ ( 1 ×  1 0 - 3 / 2 ×  10-3) ] 1/2 

(3.94)(1.4)(1.013 X 105) 

= 9.5 × 10-4m 

and 

rro (1.5)(9.5 × 10 -4) 
t . . . .  4 # s .  

c o 350 

Therefore, r = 1.5 corresponds to 4 #s, which is 
of the same order as the result from dimensional 
arguments above. The kernel radius at this time is 
on the order of 1 nun, which is supported by 
schlieren photography. 
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A kernel boundary in the blast wave is fixed at 
a radius rf, where the density assumes 90% of 
the undisturbed value Po and the density gradient 
becomes small. This would approximate the 
boundary detected by schlieren photography. The 
total mass inside the kernel is found from an 
integration of the density profile in Ref. 42, 

Jo ~Po/ 

where d denotes a spark gap size. The average 
temperature of this ideal gas kernel is 

T= me°) = m'~' 

where ~ is a gas constant. Because of the high 
temperature near the center of the blast up to this 
point in time, all the fuel in the kernel is assumed 
to be burned, increasing the size and temperature 
accordingly. The contribution of this chemical 
energy release is significant [7, 8, 13, 43]. The 
initial kernel having the above properties is a 
result of the blast wave generated by the high- 
power input during the electrical breakdown of 
the gap. 

4. DIFFUSION MODEL 

Kernel growth after the blast wave is modeled as 
a spherical diffusion penetration (boundary layer) 
with an initial condition taken from the blast 
wave. A lean fuel-air mixture of the heavy gaseous 
fuel A is considered (Le A = const > 1) and the 
corresponding schematic of the flame structure is 
shown in Fig. 1. The assumptions are the burned 
gas temperature in zone I is uniform, the heating 
zone II is frozen in chemical reaction with the 
large activation energy assumption, which is true 
for most gaseous fuels, the fuel burns immedi- 
ately after it enters the reaction zone, and the 
concentration of the fuel in the burned gas zone I 
is negligible as a result. 

The integral formulations of the conservation 
of mass and the balance of thermal energy are, 
for the burned gas zone I, 

-~d forf ( th,f47rr~ p41r r 2 d r -  + the) = O, 

(19) 

( 
J '-" I 

T! , 

T, 
0 r rl • 6T 

, I 
Fig. 1. Schematic of flame structure: profile of temperature 
and mass fraction of A. 

"/or: -~ ph41rr 2 dr + qrf41rr/ 

- ( m r :  . r? + ) 

- YEe - QA( thr/4~rr/ + th:) 

and for the heating zone II, 

d /rf+,Tp4~.r2 dt + thrf47rr/ 
"~ -rf 

= 0 ,  

(20) 

d ~rff+tT d t  ph4~rr 2 dr - q~f4~rrf 

+ 

--(lnrf+5:~(r f -I- ~T)2 + l:ne) hrf+ST: 0 
(22) 

where h is the enthalpy of the mixture, r /  the 
flame kernel radius, 8 r the heating zone thickness 
(thermal penetration depth), 8 A the fuel penetra 
tion depth, th the mass flow rate of the mixture 
per unit area, the the entrainment mass flow rate 
due to the electrical discharge, qrf the rate of 
heat conduction per unit area at r = rf ,  and /~ 
the electrical input power. The discharge induced 
entrainment th e is discussed in detail later. 

- thrf+~r41r(r/+ ~Sr) 2 -- O, (21) 
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An ideal gas relation at constant pressure 

p T = const 

is assumed. Also, the usual diffusion laws give 

+ and m~? = oDA ~ r=rf 

qrf = - k ~ l r = r f  +" 

The temperature and fuel concentration profiles 
in the heating zone H are assumed to be parabolic. 
The assumed profiles are 

T= 

Tf O<_r<_ry 
r . + ( r f -  

× ( ( r f + ~ r ) - r )  2 d r  

rI<-r<r1+a r 
Tu rf + t r < r  

(23) 

and 

= 

0 O<_r<_rf rl ) 
rf <-- r < rf-1- ~4 

rf + aA <- r 

(24) 

The rate of fuel entering the burned gas zone I 
per unit area by molecular diffusion, ?r/r _A, de- 
pends on both the geometry of the kernel as well 
as strongly on the burned gas temperature Tf 
when the activation energy ¢ is large (e* ~, ~ T). 
From the experimental observations for kernel 
growth in Part I [1], the diffusive growth after the 
blast wave is conceived as having two different 
characteristics depending on the kernel radius. 
farf(Tr) accounts for this difference in the pre- 
sent study. For a planar flame propagating with 
constant velocity, the dependence of the fuel 
burning rate per unit area, rhx? ,  on the constant 

flame temperature, Tr, [44] is 

/ r / x ; -  otl/2 exp( 2~Tf)" (25) 

Introducing the fuel burning rate of the adiabatic 
flame to Eq. 25, 

I I fnx ;  = PuUaYA,, R ,  

×exp -~-~ Tf T~ " 

Equation 26 can be used for a planar flame 
propagating with varying velocity, i.e., for vary- 
ing flame temperature Tf, assuming quasi-stead- 
iness. 

For a spherical flame, there exists a steady 
critical flame [15, 31, 32]. This flame is unique to 
the spherical geometry and is expected to control 
the flame kernel growth. The spherical flame 
exhibits different characteristics than a planar 
flame. The dependence of the fuel burning rate 

unit area, rh r A , on the flame per temperature, 
Ty, is derived from expressions for the steady 
critical flame. Using the profiles of fuel concen- 
tration (Eq. 9) as well as the expression for the 
critical radius (Eq. 18), the fuel burning rate for 
the nonsteady spherical flame with the quasi- 
steady assumption becomes 

mr; = PuUaYAuI-~Ta ] 

x e x p  - T g  r I r .  " 

Equation 27 is valid when the kernel radius is 
small and of the order of the critical radius. This 
occurs when the kernel shows strong spherical 
flame characteristics with a smaller radius. On 
the other hand, Eq. 26 is valid when the kernel 
radius is much larger than the critical radius, or, 
when the kernel loses spherical flame characteris- 
tics and exhibits planar flame characteristics. 

The expressions containing aa for each case 
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found from the definition of tnr A and the are 
assumed profile YA (Eq. 24): 

. I  

l~ l r /  = P DA "~-I r=r f 

or,  

For a planar flame, assuming Ty is close to T~, 
from Eq. 26, 

1 
~ A = 2 L e  A ~ r p,,U a 

( , ( ,  1)) 
X exp ~-~ Tf T a 

and for a spherical flame, from Eqs. 27 and 28, 

From Eqs. 28 and 29, 

d~ A dTf  
dt = CA6A dt ' (30) 

where 

G = 

2~Tfl  

for the planar flame, 
1 

Tf 2 ~ T ~  

for the spherical flame. 

The term rh e is an additional inflow rate of 
unburned mixture entering the burned gas zone I 
around the electrodes while the spark is discharg- 
ing. It is evidenced from the sehlieren pictures of 
the experimental study and also in Refs. 7 and 

43. This entrainment helps to explain the rapid 
kernel growth in the early stage of the diffusion 
process. Lira et al. [7, 8] suggest that the rate of 
entrainment, rhe be expressed as 

rj'l e -- PuAeUe  = C e P u A e U  e = PuCdUe, 

where u e is a representative entrainment velocity 
generated by the electrical power input and C, is 
a proportional constant. The entrainment area, 
A e is assumed to be constant as an approximation 
and C a is a proportional constant that contains 
the entrainment area. u e is derived from an as- 
snmption that some unknown fraction of the elec- 
trical power input /~e is largely converted to a 
kinetic energy flow of unburned gas into the 
kernel at a quasi-steady condition 

U3 

Ee~ . (4 . x r : )PuUe  3 °rUe~" (41r"-'r~PuJEe) 

Equations 19-22 are rearranged and inte- 
grated. Eliminating rnrf in Eqs. 19 and 20, and 
using Eqs. 23 and 24, the resulting differential 
equation for the burned gas zone I is 

(c , )  ~f + 
7:: aT: at 

QAYA.  1 ( k )  2 the ) 
- 

Ee (k)rf 2(rf-  7;,,) 4 
4~rTPbTb PbTb ~r 

(31) 

Eliminating fnrf+6 r in Eqs. 21 and 22 and sub- 
stituting Eq. 19-into the resulting equation gives 

fr 
r:+ 6r o__ 

at (PG'T)4~rr2 dr 

f r f + ~ T  0 
- Jr/  h , - ~  (p )4x r  2 dr 

_ qrf41rr? _ ( p ) r f l  rf  aT:  
r fa t  

X 4 x r / ( h r f -  h . )  = O. (32) 
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Substituting 23 and 24, and a polynomial fit of 
Cp in terms of temperature into Eq. 32 results in 
the differential equation for the heating zone II, 

d~r  dTf dry + C3 = C 4 , (33) 
C, ~ + C 2 at - - ~  

where C1, C 2, C a, and C a are nonlinear coeffi- 
cients. The derivation of Eq. 33 and the expres- 
sions for the coefficients C ! through C 4 are given 
in the Appendix. 

One additional equation is needed and obtained 
from the conservation of fuel and energy at r = 
r/+. In this way, an algebraic relation rather than 
a nonlinear differential equation is obtained, while 
retaining the physics of the problem at the most 
important point (r  = r f+). At r = rf +, there is 
no electrical discharge and chemical reactions are 
frozen with the large activation energy assump- 
tion. The conservation equations to be solved at 
r = r: + for a convection-free thermoditfusion 
flame model with spherical coordinates, after sub- 
stitution of the assumed profles in Eqs. 23 and 
24, are 

aT: 2(T:- r.) dr: 
+ 

dt 87, dt 

2 ( k ) r y ( T f -  T,) ( 1 2 )  (34) 

d r f -  (PDA)r/(  1 ~y) (35) 

at (O)r I 8 a " 

Eqs. 34 and 35 are solved simultaneously with 
Eq. 31 to eliminate dTf/dt and drf/dt. The 
resulting algebraic relation is 

C5~ ~ + C6& r + C 7 = 0, (36) 

where C5, (?6, and C 7 are nonlinear coefficients. 
Differentiating Eq. 36 with respect to time t 
results in 

d8 r dTf drf C dSA 
at = Cs--~-+ c9--~-+ 10 - ' - ~ -  "Jl- C l i  , 

(37) 

where C a, C 9, C~o, and C u are nonlinear coef- 

ficients. The derivation of Eqs. 36 and 37 and the 
expressions for the coefficients C~ through C n 
are given in the Appendix. Substituting Eqs. 30 
and 37 into Eq. 33 results in 

(C l -1- C3C 8 Or C3CloCAI~A) tiT: 
dt 

dr: 
+ ( c 2  + c 3 c , ) - g /  = c4 - cac , , .  (38) 

There are two ordinary differential Eqs. 31 and 
38 to be solved for the unknowns (T:, ry) with 
the algebraic relations (Eqs. 28 or 29, and 36). 
These equations are numerically solved with the 
initial conditions specified from the blast wave 
solution in order to simulate the spark kernel 
development. The time-dependent spark power 
/~e can either be assumed or taken from measure- 
merits. 

The numerical integration starts with the fuel 
burning rate relation (Eq. 27) for the spherical 
flame. When either the kernel temperature starts 
increasing with the radius larger than the critical 
radius or when the kernel radius reaches 1.5 x r c, 
the fuel burning rate relation (Eq. 26) for the 
planar flame is used in the integration. Because 
the temperature of a steady spherical flame T b is 
lower than the planar adiabatic flame temperature 
T, when Le a > 1 (see Eq. 5), the increasing 
kernel temperature when the radius is larger than 
the critical value implies that the effect of the 
steady spherical flame on the kernel growth is 
diminishing. The criterion for the transition ra- 
dius, 1.5 x r c, is assumed from the experimental 
observations in Ref. 9 and Part I [1]: the flame 
speed starts increasing around the radius 1.5 x r c. 
This implies that the kernel radius of 1.5 x r c is 
large enough to neglect the effect of the steady 
spherical flame on the kernel growth. 

The properties of air are used for both the 
unburned mixture and burned gas. The enthalpy 
and the constant pressure specific heat, Cp, are 
computed from those of N 2 and O z in the JANAF 
tables, and the temperature dependence of Ct, as 
a fourth-order polynomial fit is used for integra- 
tion of the conservation equations. The thermal 
conductivity of air is taken from Yos [45]. 

For propane-air mixtures, the activation en- 
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Fig. 2. Comparison of predicted and measured kernel radii in a propane-air mixture 
(~ = 0.7, d = 2 mm, and t a = 557 #s). 

ergy # = 37,700 cal/mole [46] is used and the 
adiabatic laminar burning velocity U o is taken 
from the correlation of Lavoie [47]. The adiabatic 
laminar burning velocity at ~ = 0.6 is estimated 
from the polynomial fit of the data at ¢~ = 0.9, 
0.8, 0.7, and 0.53. q~ ~--0.53 is the lean limit 
[48] where the flame speed is assumed to be zero. 

5. DISCUSSION OF MODEL PREDICTIONS 

The model developed in Sec. 4 is run to simulate 
the experimentally observed kernel growth in Part 
I [1]. The actual available spark power for igni- 
tion is estimated from the measured total spark 
power using Eq. 4 in Sec.4 of Part I [1]. 

The model developed in See. 4 has a constant 
C a to be calibrated. The discharged induced in- 
flow term, which includes the constant C a ,  af- 
fects both the kernel temperature and the kernel 
growth. Larger values of C a result in higher 
kernel temperatures and faster kernel growth 
rates. The effect is pronounced during the early 
stage of the kernel development. A calibration is 
made with the measured kernel radius, break- 
down energy, and spark energy curve for the case 
of ~b = 0.7 and d = 2 mm presented in Fig. 2 of 
the experimental study of Part I [1]. The constant 

C a is adjusted until the predicted kernel radius 
matches the experimentally determined curve in 
the early stage of kernel development. As shown 
in Fig. 2, a reasonable fit in the early stage 
including the starting point from the blast wave 
solution is achieved with the constant C a = 4 x 

10 -8 m 2, which is used in the remainder of the 
study. Lim and colleagues [7, 8] use C a = 8 x 

10-s m 2 in their model. The difference between 
the two models is a result of the fact that the 
higher kernel temperature resulting from the dis- 
charge-induced inflow causes a higher fuel burn- 
ing rate per unit area by molecular diffusion in 
the present model (Eqs. 26 or 27); however, it 
does not have any effect on the fuel burning rate 
per unit area in the model of Lim et al. The 
previous study also utilizes a different electrode 
geometry. 

In addition to model calibration, Fig. 2 shows 
the prediction of the flame kernel growth up to 30 
ms. The quenching effect in this case is small due 
to a larger gap size (2 nun), as shown in Sec. 4 of 
Part I [1] and the discharge duration (557 #s) is 
small enough to make the effect of  time losses 
(i.e., 71a(t ) in Eq. 4 of Part I [1]) insignificant on 
the ignition process. The model predicts the ker- 
nel growth reasonably well, including the slower 
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Fig. 3. Predicted kernel temperature in a propane-air mixture (~) = 0.7, d = 2 nun, and 
t d = 557 #s (Fig. 2)). 

kernel growth around the critical radius and the 
transition from the slower flame speed to the 
planar adiabatic flame speed. 

In Fig. 2, the model also predicts nonignition 
kernel growth with a measured spark energy curve 
that has a near-zero ignition probability. The 
spark energy level in this prediction is substan- 
tiaUy lower than the minimum ignition energy at 
this condition. The model predicts a kernel growth 
in the early stage that is similar to that for the 
ignition case with the minimum ignition energy. 
The insufficient spark energy, however, fails to 
drive the kernel to a radius larger than the critical 
radius and the kernel is eventually extinguished. 
This is similar to experimental observations for 
the nonignition case with the minimum ignition 
energy in Part I [1]. Because the present model is 
calibrated to predict the flame kernel growth of 
the ignition case at conditions near the minimum 
ignition energy, it cannot simultaneously predict 
both ignition and nonignition phenomena, as ob- 
served in the experimental study of Part I [1] with 
the near minimum ignition energy. The occur- 
rence of ignition or nonignition at conditions near 
the minimum ignition energy has a statistical 
variation resulting from complex nonlinear pro- 
cesses. The spark energy that results in ignition at 

conditions near the minimum ignition energy may 
give nonignition in the next trial in actual" cases. 
The prediction of this kind of statistical variation 
in spark ignition is beyond the ability of this 
simplified thermoditfusion ignition model. The 
present model, however, does predict nonignition 
phenomena when using the measured spark en- 
ergy, which experimentally has a zero ignition 
probability. 

Figure 3 shows typical temporal variations of 
the average kernel temperature from the model 
for the ignition and nonignition conditions of Fig. 
2. For the ignition case near the minimum igni- 
tion energy, the kernel temperature decreases im- 
mediately after the blast wave, falls below the 
adiabatic flame temperature, and later begins to 
increase towards the adiabatic flame temperature. 
The temperature is much lower than the adiabatic 
temperature when the kernel radius is close to the 
critical radius, which appears to result in a slower 
kernel growth rate. When the kernel radius is 
small, the temperature decreases from the initial 
high temperature caused by the breakdown event 
because the rate of conduction heat loss to the 
unburned fresh mixture is larger than the rate of 
combustion energy release plus the input of elec- 
trical discharge energy. The kernel temperature 
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starts to increase when the kernel grows large 
enough to cause the rate of combustion energy 
release to exceed the rate of conduction heat loss. 
For this ignition case, the trends of the kernel 
temperature variations agree with those presented 
in Ref. 15. For the nonignition case, the kernel 
temperature decreases monotonically toward the 
ambient temperature. This is because the kernel 
never reaches the critical radius as a result of 
insufficient spark energy. The above predictions 
of kernel temperature confirm that for ignition to 
occur, the electric discharge must be sufficient to 
drive the kernel beyond the critical radius where 
the rate of combustion energy release starts ex- 
ceeding the rate of conduction loss. 

The model is run to test the predictions at other 
conditions. Figure 4 presents model predictions 
corresponding to the experimental case of 4) = 
0.8, d = 1 ram, and t a = 550 #s (Fig. 4 of Part 
I [1]) with ~/g = 0.8. Figure 5 presents similar 
predictions for the experimental case of ~ = 0.6, 
d = 2 m m ,  and t a = 3.4 ms (Fig. 5 of Part I [1]) 
with ~/g = 0.78. The spark energy curves used 
for prediction of nonignition are the measured 
ones with near 0% ignition probability for each 
case. The discharge duration is very long for the 

= 0.6 case and the spark energy contributing to 

ignition is about 10.1 rnJ, or 27.2% from a 
positive column energy Ep of 37.1 mJ. This 
represents an overall efficiency of only 16.6% 
from the measured energy level of 61.0 mJ and 
compares favorably with the efficiency data of 
Teets and Sell [49]. From these results, it appears 
that the model predicts the kernel growth for both 
ignition and nonignition cases reasonably well for 
various conditions. Furthermore, the model pre- 
dicts the kernel growth during the discharge pe- 
riod very well, as in other case (see Ko [9] for 
more results) and supports the adequacy of the 
constant C a calibrated in Fig. 2. 

The burning rate of mixtures in the model is 
based on simple overall temperature-dependent 
Arrhenius reaction kinetics. It is derived from 
characteristics of either the critical spherical flame 
or the steady planar flame, depending on the 
kernel radius. The good predictions of the model 
for kernel growth, despite many simplifications, 
confirm that the kernel growth is controlled by 
the physics of the critical spherical flame when 
the kernel radius is less than or close to the 
critical radius [15]. The existence of the critical 
spherical flame, therefore, characterizes the flame 
kernel growth during the discharge period in 
spark ignition, as evidenced in both the experi- 
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(q~ = 0.6, d = 2 ram, and t a = 3.57 ms). 

mental study of Part I [1] and the present model- 
ing study. 

6. SUMMARY AND CONCLUSIONS 

Based on experimental observations and the char- 
acteristics of both spherical and planar flames, a 
model is developed to simulate the flame kernel 
growth. The model predicts ignition and nonigni- 
tion growth of the flame kernel reasonably well 
with the measured spark power input, including 
the slower kernel growth around the critical ra- 
dius and the transition from the slower flame 
speed regime to the planar adiabatic flame speed 
with a single constant adjusted at one condition. 
Kernel growth in the present model is described 
as a two-step process. The model initially in- 
volves a blast wave over a negligible short time 
followed by diffusive growth with an electrical 
input power. The diffusive growth is formulated 
by an integral approach involving temperature 
dependent overall reaction kinetics and a ther- 
modiffusion model. Losses due to quenching, dis- 
charge duration, and the electrode fall energy are 
taken into consideration. 

The model uses the characteristics of both the 
critical spherical flame when the kernel radius is 

small and the steady planar flame when the kernel 
radius is large. The good predictions of kernel 
growth by the model, therefore, confirm that the 
early flame kernel growth in spark ignition is 
controlled by the physics of the critical spherical 
flame. 

The dimensionless critical radius R c found 
analytically by Champion et al. [15] is obtained 
from simple dimensional arguments. The charac- 
teristic radius r o of the blast wave due to an 
instantaneous energy release is also obtained by 
dimensional arguments. 
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A P P E N D I X  

1. Express ions  o f  C 1 to C 4 

Equat ion  32 in Sec.  4 is in tegrated as fol lows:  

f r f  rf+~r + ~ ( p C p T ) 4 r r  2 dr 

= 47rPbTb / r f + t T  a.~- (Cp)r2  dr 
J rf+ 8 t  

/ rf+Sr a 8 T  2 
= 4~rpbrb J r f  -t- 8 7  ( C p ) - ~  r dr (A1)  
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is first integrated with Cp as a fourth-order poly- 
nomial fit in terms of temperature and a tempera- 
ture distribution in the region (Eq. 23). Cp in 
terms of temperature T* = T -  T~ is 

Cp = B~ + B'T* + B*T *z 

+ B*T .3 + B*T .4, 

and aCp/aT is expressed as 

U~ = 

= 

03 G B6 = 

O'---T" = B, + B2T* + O3T *~ + B,T .3, ( m )  B7 = 

where B 1 = B*, B 2 = 2B*, B 3 = 3B~' and B 4 ml = 

= 4B*, and T r is the reference temperature for 
the polynomial fit. The temperature distribution 
in the region (Eq. 23) is m2 = 

T= T . + ( T : -  T = ) ( r f + f r - r )  2 
f r  (A3) m3 = 

and gives 

 7=t 
x ( r Y + f r - r )  E r r  

2(Tf - Tu) d ] 
"6-f dt (rf + fir) 

.1 

rf+ f T -  r l .  
I fr  

(A4) 

+ 

X 

Equation A1 becomes, after substituting Eqs. A2 
and A4 into Eq. A1 and integrating, 

[N dTf 2(T f -  Tu) dry 
4~rPbTb [ '--~- + N2 fr  at 

dt J (A5) 

where 

N 1 = Bsm28 r + B6(T f - Tu)m48 r 

+ B 7 ( T f _  2 Tu) mrfr 
3 

+ Bs(T f- r.) msfr,  

m 4 = 

m 5 = 

Bsmlfr + B6(Ty - T=)m3f r 

+ B 7 ( T  f - T=)2mffr 

+ B s ( T f -  T u ) 3 m 7 f T ,  

B 1 --[- B 2 ( T  u - -  Tr) JI- B 3 ( T  u - -  Tr) 2 

"l- B 4 ( T  u - -  Tr) 3, B8= B4, 

Bz + 2B3(T~ - Tr) + 3B4(T~ - Tr) 2, 

9 3 + 3Bg(T ~ - T~), 

1 1 1 
"~ r /  + -~ ryfr + --~ rr 2, 

1 1 1 2 
-~ r:  + g r:~. + T6 fT , 

1 1 1 
7 r /  + -~ rfrT + -~ Sr2, 

1 1 1 
~ r /  + -~ rfrr + 6 2 , 

105 

1 1 1 62, 

1 
m 6 = ~  

1 
m 7 = ~  

I I 

rfi + --~ rf8 r + "252 6 z '  

1 1 

1 1 1 6r2, 
m 8 = -~ rfi + --~ rff r + '495 

rf+i~T O 
+ ~7(0)4.r2 dr 

= 4"xpbTb Jrf + 0-~ 

[rf+~T ( 1 ) OT r= 
= 41robTb J r f  + -- - -~  - -~  d r  

(A6) 
is also integrated with the temperature distribu- 
tion. Inserting Eqs. A3 and A4 into Eq. A6 and 
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integrating Eq. A6  results in 

Eq. A6 = 4~robTb A l dt 

d r f  d~T] 
+A2 --~- + A3 --~- ], 

where 

(A7) 

= "-- 2 - 3 +  1 -  
2(  Tf - ru) ~ ~T ] --~f 

x tan -I - 1  , 

'[ 
1 In rf 

results in 

dTf  drf d~ T 
c, - j r  + c~ -j-[ + c~ - ~  = c , ,  

where 

(33) 

C, = N 1 - A,Cp=T. 

l q  
3 c.r=),  

2(k) T/(Tf -- 7"=) 2 
C 4 - ~  PbTb~T rf , 

2 ( r f -  r . )  
C 2 = N 2 i} T A2CpuTu' 

2 ( r f -  Tu) 
C3 - - - -  (N2 - N1) ~T CpuruA3" 

2. Express ions  o f  C s to C n 

Solving Eqs. 34, 35, and 31 simultaneously to 
eliminate dTf/dt  and dr//dt  results in 

C5~ ? 4" C6~ r Jr" C 7 = O, (36) 

where 

x tan -~ - 1  
c~ = c~, + c~ + c~, 

- 1 + - ~ -  - l - g  ( ~  , c,~-- 

2(rf -  ru) 
A 3 = A 1 + A 2 . 

6r C7= 
From the definition of qr/+ and the tempera- 

ture distribution (F-xl. A3), 

2 ( k ) T f ( T / -  Tu) 

(A8)  

#T 
%+= -(k)~f~ . = . f =  - 

Inserting Eqs. A5, A7, and A8 into Eq. 32 

QAYAu 2 ( k )  

Pbrb LeA ~A E T I 

E~ OA YA= rh~ 
41rPbTbr ] ' C53 = 4~rPbTb r~ '  

+ - -  

23f I ( cA~frf 

T/ 

4 ~ r~p,, 
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c~ = 
(1,(2):) 

1 C7 LeA 6A + 1 Le A rf 

2 ( k ) T f ( T f -  Tu) 

PbT~ 

Prom Eq. 36, 

- C  6 -I- #C62 -- 4C5C 7 
and t~ T ---- 2c~ 

d6 r - ~ 2 dC5 dC6 dC7 
= d---'~ - 6 r  dt dt (A9) 

dt 2C58r + (?6 

From C 5, C 6, and C 7, 

dC 5 dTy d5 A dry 
-d7 = c ~ - d ?  + c ~  ~i + c~, + c~, -J7 

1 
OST = 051 ( k ) y f -  

(A10) 

d(k ) r f  1 d(d~f)rf] 
dr f  (Cp)Tf ' 

C~A = C~, - 

'3)7f Csr= _ (C52 .t_ 4 C 2 , 

( 1C ) l d~e 
C5c = C5: + ' ~  53 E'.e at ' 

dC 6 C6r dTf drf 
- - =  - -  + C~r + C ~ - -  
dt dt 

dC 7 dTf dry 
d""~ = c7r  ~ + c7r d-~' 

(,1( 
C6r = -- LeA 8A + 1 

x 

2(k)~f(r:- T.) 
PbTb 

1 d (k ) r f  + - -  
(k)Tf dry 

d~ A 

d r '  

(All)  

1A)r )C7" 

Tf _ Tu ' 

(1, 
C6r = -- C7r LeA ~A Jr 1 LeA 

( 1)2 
+ C 7  1 Le A r : '  

1 1 1 
C6A :- C 7 C7r-~- C 7 - -  ~A 2 ' A r: 

1 d(k)T: 
c7 -- + dr: 

1 d(Cp)rf 1 + - -  
(Cp)Tf 

"1" (Cp)Tf 

dry r: 

1 

d(C,)~f - - +  
rf dry 

in 

1 d(Cp)Tf (Cp)rf 
x 

r f  dTf Tfi 

:<c,),:l] 
+ dr/ ]]" 

Substituting Eqs. A10 and A11 into A9 results 

d6 r dTf dry d8 A 
at = Cs-d-i- + c 9 - ~  + C,o ~ + C11, 

(A12) 

where 

C s - 
- 1  

2C58 r + C 6 
( C5T¢~/ "~- C6T~ T "~" C7T), 

- 1  
C l  1 - -  ~/C5c, 

2 c ~  + c~ 

c 9  = 
- 1  

2C58 r + C6 

Clo = 
- 1  

2 G 6 r  + (?6 


