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Abstract-The electron distribution functions measured in the neighborhood of Mars by means of the 
Hyperbolic Retarding Potential Analvzer (HARP) carried aboard the Phobos 2 spacecraft are nresented. 
The measurements v&e carried out -over‘an energy/charge (E/q) from - 0.3 et to - 800 e? in eight 
independent angular sectors -20 x 10’~ covering the FOV - 180’ in the X-Z plane in the antisolar 
directions. 

The total intensity and energy distribution function of electrons downstream of the bow shock clearly 
differ from those in the undisturbed solar wind. The electron fluxes are signiticantly increased and the 
energy distribution of electrons in the magnetosheath was found to be characterized by the double-peaked 
structure. The high energy fluxes often exceed the flux values for the low energy peak. 

INTRODUCTION ments made from the Helios and Plzobos 2 suacecraft. 

This presentation considers some features of energy 
The resemblance of the presented distributions is quite 

distributions for the electron fluxes recorded in the 
obvious. This gives evidence that the instrument was 

Martian magnetosphere with the HARP instrument 
reliably operated. 

(a differential hyperbolic electrostatic analyzer) (Shyn 
et al.. 1976; Kiraly et ul., 1989; Szucs et al., 1990) 
installed aboard the Phobos 2 spacecraft. 

The previous studies made in the vicinity of Mars 
with the retarding potential analyzers on board the 
Mars-series spacecraft showed that downstream of 
the bow shock, in the magnetosheath, the energy spec- 
tra are significantly widened. and more energetic elec- 
trons and fluctuations of the flux intensity appear 
(Gringauz, 1975). 

In contrast to the Mars 2, 3 and 5 orbits, those of 
Phobos 2 made it possible to penetrate deeply into 
the Martian magnetospheric tail ; and on the circular 
orbits, i.e. at a distance of about 6000 km from the 
planet surface, the plasmasheet was regularly crossed 
by the spacecraft. 

It is worthwhile comparing the most typical dis- 
tributions of electrons measured in the solar wind with 
the Helios spacecraft data (Rosenbauer et al., 1977). 
Figure 1 presents the results of solar wind measure- 

RESULTS OF MEASUREMENTS 

The HARP instrument crossing the bow shock was 
determined via the increase in the intensity of the 
electron and ion fluxes, and was accompanied by the 
appearance of high-energy electron fluxes with 
E > 500 eV (Shutte et al.. 1989). Figure 2 shows the 
energy distributions of electron fluxes recorded in one 
of the angular sectors as the spacecraft approached 
the planet on 5 February 1989 (the second elliptical 
orbit). It is seen that in the magnetosheath the energy 
distributions were essentially non-Maxwellian in their 
character. they had two distinct maxima in all dis- 
tributions of the measurements. Note that the second 
maximum, being initially of very low intensity, 
appeared several minutes before crossing the bow- 
shock front. 

In the inner magnetosphere the electron fluxes are 
more isotropic than those in the magnetosheath ; the 
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maximum energy does not exceed hundreds of elec- 
tron-volts. The energy distributions have a com- 
paratively broad maximum from 20 to 150 eV within 
which one can see the binary structure being not so 
explicit. 

In the planet tail, energetic electron fluxes appear 
again in the optical shadow ; their energy distribution 
shape is somewhat similar to those observed in the 
magnetosheath. This region of the tail, by analogy 
with the magnetospheres of other planets (Gringauz, 
1981) can be considered as a plasmasheet. 

The double-peaked electron distributions are a typi- 
cal feature of energy distributions of the mag- 
netosheath and are always observed during its cross- 
ing by Phobos 2 as well as on the elliptical orbits 
when the spacecraft was in the dayside region of the 
magnetosheath, and on the circular orbits in the tail. 
The energy distribution recorded in one angular sector 
of the HARP instrument in the tail part of the mag- 
netosheath is demonstrated in Fig. 3. The comparison 
of energy distributions presented in Figs 2 and 3 shows 
that in the tailside of the magnetosheath the flux 
values corresponded to the second maximum in the 
distribution function and the mean energies of this 
maximum are somewhat lower than those of the mag- 
netosheath subsolar part. 

Figure 4 illustrates the characteristic features of 
electron distributions in the magnetosheath and the 
plasmasheet at various distances from the planetary 
surface. The intensity and energy of electrons increase 
in the plasmasheet with an increase in the distance 

from the planet. The position of a maximum in the 
energy distributions of electron fluxes of the plas- 
masheet varied from about 100 to 300 eV. 

DISCUSSION 

The results of measurements of the near-planetary 
Martian plasma allow us to suggest that such specific 
regions as the magnetosheath, inner magnetosphere 
and plasmasheet are characterized by various energy 
distributions of electrons. Their unique features per- 
mit reliable identification of these regions. 

It was shown that immediately prior to the bow 
shock front and downstream of it in the mag- 
netosheath the energy distributions always have two 
maxima. This fact indicates that there are two different 

mechanisms of heating and cooling in the turbulent 
plasma of the magnetosheath. It is known that an 
electron component of the solar wind plasma usually 
consists of the cold quasi-isotropic electron gas 
(“core”) and hot electrons accelerated along the mag- 
netic field (“halo”). It can be assumed that the electron 
gas, two components in the solar wind with the differ- 
ent energies, and the isotropization level, are subject 
to different types of interactions with the electrostatic 
turbulence waves. Namely, there exists the resonance 
acceleration of hot “halo” and heating of the more 
isotropic “core”. 

The difference between the electron flux energy 
values in the subsolar and antisolar parts of the mag- 
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netosheath possibly means that the particle accel- 
eration effect in the Martian magnetosheath is more 
sufficient on its dayside, the more compressed part. 

As mentioned above the energy distributions with 
two maxima possibly due to the different effects of 
local electromagnetic fields are always observed in the 
magnetosheath. The character of energy distributions 
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of the electron fluxes is the same over the whole mag- 
netosheath. 

A comparison between the measured electron spec- 
tra and the TAUS ion spectrometer data, showed that 
the electron energy distributions in the magnetosheath 
with the double-peaks correlate with the widened 
spectra of protons recorded in this region (see Fig. 5). 
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Jn the inner magnetosphere where the proton flux 
intensity turned out to be lower than the TAUS sen- 
sitivity threshold, the heavy ion fluxes with energies 
E < 1000 eV were observed. 
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