
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 12,249-268 (199 1)

Designing Fault-Tolerant Systems Using Automorphisms *

SHANTANU DUTT
Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455

AND

JOHN P. HAYES

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2110

This paper presents a general theory for modeling and de-
signing fault-tolerant multiprocessor systems in a systematic and
efficient manner. We are concerned here with structural fault
tolerance, defined as the ability to reconfigure around faults in
order to preserve the interconnection structure of a multipro-
cessor. We represent multiprocessor systems by graphs whose
node sets denote processors and whose edge sets denote dedicated
interprocessor links. The fault-tolerant design and reconfigur-
ation process of a multiprocessor is modeled by graph auto-
morphisms. This automorphism-based methodology also models
some important practical design features not previously ad-
dressed, including applicability to any multiprocessor structure
and any number of faults. Low redundancy and efficient recon-
figurability are also addressed. We apply our approach directly
to a class of regular multiprocessor graphs termed circulant. For
noncirculant graphs we give an algorithm to construct their cir-
culant edge supergraphs efficiently. An application of the theory
to the design of fault-tolerant hypercube multiprocessors is de-
scribed. The resulting designs are shown to he far superior to
those proposed in previous work. o 1991 Academic press, IIIC.

1. INTRODUCTION

Numerous computer architectures that use multiple pro-
cessors to solve complex problems in parallel have been in-
troduced recently. This particular architectural thrust has
received impetus from developments in IC technology that
make it possible to fabricate complex single processors or a
few simple ones, along with their local memory and input/
output (I/O) ports, on a single chip (very large scale inte-
gration or VLSI). Several commercial multiprocessors like
the NCUBE/ten [131 and INTEL iPSC series of hypercube
computers and the Connection Machine [14], which can
accommodate hundreds or thousands of processors are cur-

* This research was supported in part by the Office of Naval Research
under Contract NO0014 85 K 053 1 and in part by a University of Michigan
Rackham predoctoral fellowship.

rently available. With the introduction of large numbers of
processors, the probability of failure increases significantly.
Many critical applications that use multiprocessors need a
very low failure rate. For example, airborne systems typically
require a failure rate of the order of 10 -lo failures per hour
[15 1. Hence, the design of fault-tolerant multiprocessor sys-
tems is an important issue.

This paper addresses the design of structurally fault-tol-
erant realizations of large-scale distributed-memory multi-
processors. Structural fault tolerance is defined as the ability
to reconfigure around faults so that the reconfigured system
is isomorphic to the original one. Such fault tolerance is
necessary mainly to reduce the performance degradation of
parallel algorithms that execute on specific classes of mul-
tiprocessor interconnection structures, such as trees or hy-
percubes. Since the interconnection structure changes when
system components (processors and links) fail, it is necessary
to reconfigure around faults in order to preserve the basic
interconnection structure.

Fundamental to the reconfiguration process is the one-to-
one mapping of faulty processors onto fault-free ones. This
mapping process and the interconnection structure to which
it applies are most often modeled mathematically by means
of a graph G whose nodes and edges correspond to processors
and interprocessor communication links, respectively. Faults
in processors are then modeled by the removal of the cor-
responding nodes and the edges incident on them from G.

A number of fault-tolerant designs for specific multipro-
cessor architectures have been proposed on the basis of graph
theoretic models. For example, Hayes [121 and Kwan and
Toida [17] present designs for tolerating one and two faults,
respectively, in systems whose interconnection structures
form nonhomogeneous symmetric trees. Fault-tolerant de-
signs for symmetric tree architectures appear in [22, 11,201;
Banejee et al. [2] give a fault-tolerant design scheme that
tolerates one faulty cycle in the cube-connected-cycles ar-
chitecture, while Lombardi et al. [191 present a scheme to
reconfigure a faulty two-dimensional mesh-structured mul-
tiprocessor array by providing an extra row and column of

249 0743-7315/91 $3.00
Copyright 0 1991 by Academic Press, Inc.

All rights of reproduction in any form reserved.

250 DUTT AND HAYES

spare processors. Rosenberg et al. [24,7] discuss the Diogenes
method of obtaining a k-FI (k-fault-tolerant) realization of
any graph G that can be decomposed into m outerplanar
graphs by m bundles or stacks of wires. However, this method
is very expensive in terms of total wire and layout area, es-
pecially when m > 1. In a related paper [8 1, we developed
a design methodology based on a technique called node cov-
ering, for constructing optimal or near-optimal k-ICI super-
graphs of symmetric trees. The node-covering technique can
implement an arbitrary degree of fault tolerance and is also
generalizable to any graph G [91. It also meets all the above
criteria that are important in the design of fault-tolerant
multiprocessors.

None of the preceding fault-tolerance schemes, except the
Diogenes and node-covering methods, are generalizable to
other architectures, and few can implement an arbitrary de-
gree of fault tolerance. Most of the above design methods,
except node covering, also fail to address several important
practical aspects of fault-tolerant multiprocessors. These in-
clude:

1. Low redundancy. The system cost measured by the
number of spare nodes and links should be minimized, for
example, by using links that can be shared by appropriate
switching mechanisms.

2. Fast, distributed, and incremental reconfiguration on
the occurrence of faults. Incremental reconfiguration is the
ability to reconfigure around any new set of faults without
undoing any earlier reconfiguration done around previous
faults. This reduces the down time of a system when faults
occur. Distributed reconfiguration allows different parts of
the system to reconfigure concurrently, which not only makes
reconfiguration faster, but also avoids relying on a central
controller for reconfiguration.

3. Zncremental design, which is the ability to construct a
system of high fault tolerance from one of lower fault tol-
erance, with little or no waste of hardware.

4. Amenability to local sparing, which we shortly define.
In this paper, we present a completely new and general design
theory based on graph automorphisms that is capable of ad-
dressing all the above issues. The automorphic method is
very suitable for multiprocessors that have a certain regularity
in their structure (graphs), for example, hypercubes and
meshes. Another salient feature of the automorphic meth-
odology is that it is very versatile and allows for a number
of variations in the design of fault-tolerant systems [91.

We first introduce the graph model used to represent mul-
tiprocessor systems and their faults and then review some
graph automorphism concepts required in the sequel. A gen-
eral discussion on incorporating fault tolerance in graphs
using their automorphism group follows. Some properties
of the subgraphs induced by cycles in an automorphism of
G are derived; these properties lead to a simple fault-tolerant
design scheme for an important class of graphs termed cir-
culant. We then discuss an efficient implementation of the

proposed KFT supergraphs using switched links. We also
present an algorithm for converting noncirculant graphs into
circulant ones. This conversion enables the design method
and the switch implementation for circulant graphs to be
applied to noncirculant graphs. We apply the automorphic
design method to a particular class of graphs that is widely
used as multiprocessor interconnection topologies, viz., hy-
percubes, and compare the resulting fault-tolerant designs
to previously proposed fault-tolerant hypercube designs [7,
231. The paper concludes with a brief discussion on how the
automorphic method can be used to implement local sparing.

2. PRELIMINARIES

The graph model used here to represent the interconnec-
tion structures of interest is an extension of the models pro-
posed in [12, 281. A graph G(V, E) represents the structure
of a multiprocessor system, where the node set V(G) of G
represents the processors in the system, and the edge set E(G)
of G represents unshared or dedicated interprocessor com-
munication links. By link we mean the physical wires and
interface circuits that connect two processors directly. G(S)
denotes the subgraph induced in G by the nodes in a subset
S of V(G). Unless otherwise specified, N and e denote the
number of nodes and edges, respectively, of G; d denotes
the node degree of G when it is regular (all nodes have the
same degree) and the average node degree T2e/M when G
is not.

Two types of failures in a multiprocessor system are of
interest, processor failures and link failures. In our model, a
link failure corresponds to the deletion of an edge from G,
while a processor failure corresponds to the removal of a
node and all edges incident on it from G. If F is the set of
faults (faulty nodes or edges) in G, then G - F denotes the
graph obtained by deleting the faults from G as explained
above. We consider only processor failures in this research,
since processors are more complex than links, and so have
much higher failure probabilities; this is also the fault model
used in most prior work. Link failure probability does not
significantly affect the overall reliability of the system-links
are generally passive components, while a typical processor
consists of hundreds of thousands of active components.
Figure 1 a shows a graph G representing a three-dimensional
hypercube, while Fig. 1 b is the graph G - F, where F is the
set of two faulty nodes shown darkened, and the edges in-
cident on the faulty nodes are deleted.

G’ is a supergraph of G if G is a subgraph of G’ and V(G’)
1 V(G). G” is an edge supergraph of G if G is a subgraph
of G’ and V(G”) = V(G). A supergraph G’[k, G] of G is
a k-fault-tolerant realization of G if for any set F of k nodes
of G’, G’ - F contains a subgraph isomorphic to G. We use
G’ to denote either a generic fault-tolerant supergraph of G
or a specific type of fault-tolerant super-graph as should be
clear from the context. A k-fault pattern is any set of k faulty
nodes. Thus G’[k, G] can tolerate any f-fault pattern as long

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 251

(4 Cd)

FIG. 1. (a) Graph G representing a three-dimensional hyperculx. (b)
G - F for the set F of two faulty nodes. (c) A 2-FI supergraph G’[2, G] of
G. (d) Reconfiguration of G’ around F.

as f < k. Instead of associating the set of spare nodes “glob-
ally” with the whole system, as in G’[k, G], we can partition
G into t subgraphs and associate t sets of spare nodes, each
“locally” with one of the subgraphs. We term the design
methods for the former systems global sparing, while those
for the latter systems are termed local sparing. Local sparing
can make the design and reconfiguration process simpler.
This paper deals with the k-IT case only; an extension of
the automorphic method for constructing local sparing de-
signs is given in [93.

The goal of a fault-tolerant design is to preserve a certain
structure G called the basic graph; the nodes and edges of
G are primary nodes and edges. The fault-free subgraph of
G’ serving as the currently active graph isomorphic to G is

called the current graph. The nodes and edges of the current
graph G are active nodes and edges, respectively, while the
rest of the nodes and edges of G’ are spare or redundant. The
following convention is used in all the figures. Spare nodes
are shown as open circles with a light outline, spare edges as
light lines, active nodes as open circles with thick outlines,
active edges as thick lines, and faulty nodes as dark circles.
Figure lc shows a 2-Ff supergraph of a three-dimensional
hypercube, while Fig. Id shows its reconfiguration around
the two faulty nodes.

Next, we review some basic terminology pertaining to
graph automorphisms [4,291. Two graphs G and Hare said
to be isomorphic if there is a bijection 4: V(G) + V(H)
such that {x, y} E E(G) if and only if {6(x), 4(y)}
E E(H); 4 is an isomorphism from G to H. An isomor-
phism from G to itself is called an automorphism of G. Ba-
sically an automorphism of G is a permutation of V(G) that
preserves adjacency. The set of ail automorphisms of G forms
a group under composition and is denoted by aut (G) ; aut (G)
is said to act on V(G) . Two nodes x and y of G are said to
be similar if there is an automorphism mapping x to y. Sim-
ilarity is an equivalence relation (reflexive, symmetric, and
transitive); the subsets (or equivalence classes) of nodes in
the partition of V(G) based on this equivalence relation are
called orbits. Thus all nodes in an orbit Oj are similar, while
any two nodes in different orbits are dissimilar. G is said to
be node-symmetric if it has only one orbit, i.e., all its nodes
are similar to one another. The graph of Fig. 2a is an example
of a node-symmetric graph, and its only orbit 0, contains
all 20 nodes. At the other end of the spectrum, if the only
automorphism of a graph G is the identity mapping, then G
is said to be an asymmetric graph; it has N = I V(G)] orbits,
each containing a single node.

An action of aut(G) on V(G) is said to be k-transitive,
or transitive on ordered k-tuples of V(G), if for any two
ordered k-tuples (x1, x2, . . . , xk) and (y, , y2, . . . , yk) of

FIG. 2. (a) A circulant graph J with 20 nodes. (b) A l-FI circulant supergraph J, of J with spare node s,,.

252 DUTT AND HAYES

nodes of G, there is an automorphism mapping one k-tuple
to the other. Thus aut (G) acts l-transitively on a node-sym-
metric graph G. We now introduce the new concept of k-
subtransitivity. An action of aut (G) on V(G) is said to be
k-subtransitive if for any two unordered subsets X and Y of
V(G) containing exactly k nodes, there is an automorphism
mapping X to Y.

S, is the set of all permutations of the generic set (0, 1,
2 ,*.., N - 1 } of N elements; S, is a group under compo-
sition. Any automorphism group of a graph with N nodes is
a subgroup of S,. Any automorphism (Y (or for that matter
any permutation in S,) can be expressed uniquely (up to
ordering) as the product of disjoint cycles (ao, a,, . . . ,
al-,)(bo, b,, . . . , b,-,)* * .(x0, x1, . . . , x,-,). This cyclic
representation means that a(ao) = a,, a(al) = a2, . . . ,
cy(ar-,) = ao, . . . , a(x0) = XI, a(x,) = x2, . . .) a(xp-,) =
x0. For example, /3 = (0, 4, 8, 12, 16)(1, 5, 9, 13, 17), (2,
6, 10, 14, 18)(3, 7, 11, 15, 19) is an automorphism of the
graph J of Fig. 2a, and the mapping it specifies is p(0) = 4,
p(4) = 8, /3(S) = 12, ,f3(12) = 16, /3(16) = 0, which completes
the first cycle, ,0(1) = 5, . . . , /I(17) = 1, completing the
second cycle, etc. The reader might want to verify that fl is
in fact an automorphism-for example, it maps the two ad-
jacent node pairs (0,7) to the adjacent node pair (4, 11). If
(Y is an automorphism of G, then so is each element of the
set subgrp(a) = {e, (Y, (Ye, . . . , &(a)-‘}, where o(a) is the
least integer i such that (Y~ = e, the identity permutation, and
is called the order of (Y. Here, Cup is recursively defined as cup
= (Y 0 ap-l, where D denotes function composition. For in-
stance, (Y = (0, 1,2, . . . , 18, 19) is a single-cycle (containing
only one cycle) automorphism of the graph J of Fig. 2a,
while a4 is the automorphism p specified above. subgrp(a!)
is a subgroup of aut(G) and is said to be generated by (Y.

Finally, if A is a set of integers, and r is an integer, then
A+risdefinedastheset(a+r:aEA}.A+risdefined
asA U (A + r).

3. AUTOMORPHISMS AND FAULT TOLERANCE

In this section, we relate graph automorphisms to the con-
struction and reconfiguration of G’[k, G] . The basic principle
that comes into play here is illustrated by Fig. 3. The fault-
tolerant supergraph G’ of G should be constructed so that
each node of G has a number of other nodes, including some

Replacement
node -d& G’

v2

FIG. 3. Illustration of the basic principle.

spare nodes, that are similar to it in G’. When a node u
becomes faulty it can be mapped to, i.e., replaced by, a similar
node o. At the same time, neighbors u, , u2, and u3 of u in
G are replaced by similar neighbors ol, ~2, and ~3, respec-
tively, of v in G’. Furthermore, v has to be replaced by some
node w that is similar to it, etc., until a spare node s is used
to replace a similar node x in this replacement sequence.
The spare s is then mapped to the faulty node u. This se-
quence of replacements in a reconfiguration process like this
can be represented as a mapping between the nodes by an
automorphism (Y of G’. The faulty node is labeled as a spare
node by (Y, while the remaining nonfaulty nodes are labeled
as nodes of G and hence determine a fault-free subgraph
isomorphic to G.

More formally, we wish to map a spare node in G’ to a
faulty node using an automorphism of G’. This mapping
relabels the faulty nodes as spares, and thus the rest of the
nodes determine a fault-free copy of G. The problem now
is to construct G’ so that it has the requisite automorphisms.
A direct way to do this is to add k spare nodes and edges to
G so that the automorphism group of the resulting supergraph
G’ has the property that for every subset F of k nodes of
I’(G’), there is an automorphism cy of G’ that maps the set
S of k spare nodes to F. Then, if F is a set of faulty nodes,
(Y maps all the nodes of G to nonfaulty nodes of G’. This
means that the graph induced by the nonfaulty nodes of G’
contains a subgraph isomorphic to G. Reconfiguration can
then be accomplished by identifying those nodes to which
the nodes of G have been mapped by (Y and activating only
those edges that correspond to the edges of G under this new
mapping.

It can be easily shown that aut(G’) can map a specified
subset S of k spare nodes of G’ to any other subset F of k
nodes if and only if aut (G’) is k-subtransitive. We have not
found any characterization of k-subtransitive automorphism
groups of graphs in the literature on graph automorphisms
[4, 5, 1, 291. The closest characterization is that of a k-
transitive automorphism group. However, k-transitivity is a
much stricter requirement than what we need, leading im-
mediately to the following theorem.

THEOREM 1. Let G’ be a supergraph of G with spare
nodes {so, sl, . , Sk-1 > Zf aut(G’) is k-transitive, then G’
is a k-FT supergraph of G and can be reconfigured around
any k faulty nodes by an automorphism of G’.

Thus one way of constructing G’ is to require that aut(G’)
be k-transitive. It is easily shown that in this case, for k 3 2,
aut (G’) quickly becomes S, V(G ‘) I , i.e., G’ becomes the com-
plete graph. This is obviously an excessively costly k-FT su-
pergraph. Though requiring aut(G’) to be k-subtransitive is
a significantly weaker restriction than requiring aut(G’) to
be k-transitive, it means that every set of k nodes of G’ has
to induce isomorphic subgraphs in G’, which ohhand also
seems to be a severe requirement. In fact, as stated in the

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 253

next theorem, a 2-FT supergraph G’ of a nonempty graph
constructed to meet this requirement must be complete.

THEOREM 2. If G’ is a 2-FT supergraph of a nonempty
graph G on N nodes, such that aut(G’) is 2-subtransitive,
then G’ = KN+z, the complete graph on N + 2 nodes.

Proof Since G is not the empty graph on N nodes, it
has at least one pair { ol, u2 > of adjacent nodes. Let { s1 , s2 }
be the pair of spare nodes of G’. Then there is an a! E aut (G’)
such that (Y{s,, s2} = {v,, v2}. This implies that s, and s2
are adjacent nodes. For every pair of nodes {xl, x2 } of G’
there is some automorphism mapping the pair of adjacent
nodes { s, , s2 } to them. Hence every pair of nodes of G’ are
adjacent, implying that G’ = KN+2. W
Surprisingly, it is much more difficult to generalize this re-
sult-we have not been able to do so-to the k-IT case, i.e.,
to prove that G’[k, G] = KN+k, if G is not the empty graph
on N nodes and if aut(G’) is k-subtransitive. This is because
for any graph H, the fact that aut (H) is k-subtransitive does
not necessarily imply that aut (H) is i-subtransitive for any
i, 2 < i < k - 1. However, it is easy to see that if aut (H) is
transitive on k-ordered subsets of V(H), then it is also tran-
sitive on i-ordered subsets of V(H) , for all i, 1 < i < k - 1.
This could be the reason why group theorists, as far as we
know, have dealt only with the k-transitivity of a permutation
group P, and not with what seems to be the more natural
phenomenon of the k-subtransitivity of P.

The above sufficient conditions of k-transitivity and k-
subtransitivity to ensure k-fault tolerance assume that exactly
k spare nodes are present. If more than k spare nodes are
present in a k-FT supergraph, then it might be possible to
relax these conditions substantially. To give an extreme ex-
ample, if we have N spare nodes in a 143 supergraph, then
its automorphism group need not be 1 -transitive (or simply
transitive) at all. The use of more than k spare nodes to
achieve k-fault tolerance falls within the area of local-sparing
designs alluded to earlier and discussed in greater detail in
[91. In this paper, we restrict our attention to k-FT designs
using exactly k spare nodes. This is not an unreasonable
restriction and, in many cases, for example, when the pro-
cessors are complex and expensive, it is a desirable and prac-
tical one.

We apply the term automorphic reconfiguration to recon-
figuration schemes that use automorphisms of the fault-tol-
erant supergraph to map the spare nodes to the faulty nodes.
Hence, automorphic reconfiguration also maps the nodes of
the basic graph G to nonfaulty nodes of the supergraph G’
to obtain a nonfaulty copy of G. Similarly, fault-tolerant
design schemes that construct G’[k, G] with automorphic
reconfiguration of G’ as an objective are termed automorphic
designs.

THEOREM 3. If automorphic reconjiguration can be used
to reconfigure a k-FT supergraph G’[k, G] with k spare nodes
around any k faults in G, then G’ is node-symmetric.

Proof Suppose that G’ is not node-symmetric. Let 0,)
o,,..., 0, be the orbits of G’, where t > 1, and let ki be the
number of spare nodes in orbit Oi. There has to be some i
for which ki < k and] Oi] > ki. If t nodes in Oi fail, where
k, < t 6 k, then no automorphism of G’ maps all spare nodes
in Oi to all the faulty nodes in Oi. Hence, for any auto-
morphism CX, at least one of the active nodes of Oj is mapped
to a faulty node of Oj, making reconfiguration unsuc-
cessful. w

Node symmetry is, of course, not sufficient to guarantee
reconfiguration. With this in view, as well as the severity of
the requirement of k-subtransitivity of aut(G’), we present
an iterative automorphic design and reconfiguration scheme.

We first construct a node-symmetric supergraph G, of G,,
= G with one spare node so. Since this means that aut(G,)
is transitive on l-subsets of I’(G,), G, is a l-IT supergraph
of G. We then construct a node-symmetric supergraph of
G2 of G, , with one more spare node sl . By the same reasoning
as that used for G, , G2 = G’[1, G,] = G’[2, G], so we obtain
a 2-FT supergraph of G. Continuing this way, we eventually
obtain a node-symmetric supergraph Gk of Gk-, ; Gk = G’[1,
Gk-,] = G’[k, G] . Note that if H is an i-R supergraph of
G, and H’ is a j-IT supergraph of H, then H’ is also an (i
+ j) -FI supergraph of G .

An important point to make here is that aut(G,) is only
1 -transitive and not necessarily k-transitive or k-subtransitive.
Thus, the iterative design procedure provides us with a means
of constructing a k-R supergraph whose automorphism
group is only 1 -transitive! In general, the degree of transitivity
or subtransitivity of the automorphism groups of the k-FT
supergraphs that we construct is of only minor interest.

The iterative reconfiguration strategy for Gk = G’[k, G]
isasfollows.Let{sO,sl,.. . , sk-, } be the spare nodes in Gk
constructed as explained above, where si is the spare node
used to construct a i-FT node-symmetric supergraph Gi+,
of Gi. Suppose that t < k faults { fo, fi, . . . , A-1 } occur.
Consideringf;-, to be a fault in Gk, we use an automorphism
that maps Sk-, t0 A-1 t0 obtain a copy Of Gk-, with fault Set
{"ii, . . . , &2 } . We do the same with Sk-2 and f;-2 in this
copy Of Gk-, (using an automorphism Of Gk-1) t0 obtain a
copy of Gke2 with fault set { fo, . . . , f;-s } . By continuing in
this manner, we obtain a nonfaulty copy of Gk+ which con-
tains G . Note that this iterative automorphic reconfiguration
scheme is inherently incremental.

4. CIRCULANT GRAPHS AND FAULT TOLERANCE

In this section, we use automorphisms to construct a l-
FI node-symmetric supergraph G, for a useful class of graphs
termed circulant. We first characterize the structure of
subgraphs induced in any graph G by a cycle in an auto-
morphism of G. This characterization helps in defining the

structure of fault-tolerant supergraphs of circulant graphs in G on a circle, we simply denote the embedding by circ(G) .
a regular way. Moreover, by the distance sequence ds(G) of a circulant

LEMMAI. LetA=(ao,al,...,a,-l)beucycleinan graph G, we implicitly mean the distance sequence of the
automorphism (Y of a gruph G. For any ui E A, if ai+j cm& I) single-cycle automorphism (Y of G according to which it is
is adjacent to ui then SO is ui-j Cmd I)r where -t <j < t. More- embedded on a circle. The graph J in Fig. 2a can also be
over, for every a, E A, the nodes u,y Cmodt) are adjacent viewed as a circulant graph with 20 nodes embedded in a
to a,. circle according to the automorphism (0, 1,2, . . . , 19) , with

Proof: All subscript addition is taken mod t in this proof. ds(J) = (4, 5, 7).

Let a, # Ui be any other node in A. Then, (Y’-~ maps node
An edge { u, u } of G is said to cross a node w in circ(G)

ai to u,, as well as Ui+j, a neighbor of Ui to node Ui+j+r-i if w lies on the smaller arc of circ(G) subtended by chord
= U,+ja Hence node U,+j is a neighbor of a,, for every a, (u, v). Thus in Fig. 2a, edge { 2, 6 } crosses nodes 2, 3,4, 5,

E A. NOW by taking Ui-j to be u,, we see that Ui-r is adjacent 6. If { U, v } is a diameter of circ(G), then it is said to cross

to ai, as required. n
all nodes encountered in the clockwise direction on the circle
from u to V, if u < U, and in the counterclockwise direction

If uo, al, . . .) a,-r are represented by equidistant consec- otherwise. The circular distance of an edge { u , u } in circ (G)
utive points on a circle C, then by Lemma 1, the neighbors is the circular distance between u and v and is denoted by
of any node ai are placed symmetrically on C about the cd(u, V) . Hence in Fig. 2a, cd(2, 6) = 4. It should be clear
diameter through ui. We define the circular distance cd(u, from our discussion that the circular distance of any edge in
V) between any two nodes u and u on C as one plus the circ(G) is one of the integers in ds(G), and that for every
number of nodes lying on the smaller arc of C subtended by d, in ds(G) , there are two edges of circular distance 4 incident
chord (U, v) . Figure 2a shows such a representation of the on every node of G . The following lemma gives an obvious
subgraph J induced by the cycle (0, 1, . . . , 19) of an au- characterization of a circulant graph.
tomorphism of some graph G . The circular distance between LEMMA 2.
nodes 18 and 2, for example, is 4. The circular distances in

A graph G is circulunt ifund only ifit can be
embedded in a circle.

J of the neighbors of each node u from it are 4, 5, and 7 in
the clockwise, as well as the counterclockwise directions. We Proof: The necessity follows from the above discussion.
call such a representation of the subgraph induced by a cycle Suppose that G can be embedded in a circle, and let (uo, ul ,
A of an automorphism of G a (symmetric) embedding of A . . .) z)N-,) be the order in which the nodes of G are arranged
on a circle and denote it by circ (A). incirc(G).Thena=(vo,vl,. . . , I+,) is an automorphism

circ(A) can be characterized by its distance sequence G, since for every pair of nodes (vi, Vi+,) (a(Vi) = vi+,), if
ds(A), which is the ordered set, increasing from left to right, V,+j is a neighbor of Vi, by the definition of circle embedding,
of the circular distances between any node Ui in A and all its Vi+,+ 1 is a neighbor of Vi+ 1 (a(Vi+,) = Vi+j+,) . n

neighbors in one of the semicircles formed in circ(A) by the A necessary condition for G to be circulant is that it is
diameter through ai. The distance sequence is well defined, node-symmetric. A sufficient condition for G to be circulant,
since by Lemma 1, every node in circ (A) has neighbors at which is due to Turner [27], is that G is node-symmetric
the same circular distances from it, in both the clockwise and that 1 V(G)] is a prime. There are other node-symmetric
and the counterclockwise directions. Thus the distance se- graphs with a nonprime number of nodes that are also cir-
quence for the cycle of Fig. 2a is (4, 5, 7). If] ds(A) I = m, culant. The cycle CN with an arbitrary number N of nodes,
then the degree of each node in G(A) is either 2m - 1 or its power graph CY, for any 1 < t < N, and, of course, the
2m. A maximal subsequence of consecutive integers in ds(A) complete graph KN and the empty graph EN are examples.
is called a block of ds(A). Thus ifds(A) = (2, 3, 4, 7, 9, 10, If G is a circulant graph, then it is regular with node degree
14, 15), then its blocks are [2, 3, 41, [7], [9, lo], and d. Suppose G is embedded on a circle according to the single-
[14, 151. cycle automorphism CY = (vo, v, , . . . , vNPI) in aut(G). Let

In special cases, an automorphism a of G may consist of its distance sequence be (do, dI , . . . , d,,-,), where m = Id/
a single cycle. We then can talk of embedding CX, and hence 21. We now describe the construction of a node-symmetric
G, on a circle in the above sense. A graph G that has a cycle circulant supergraph G, of G with one spare node so. Insert
containing N = (V(G) 1 nodes as an automorphism is called so between any two nodes, say Vi and vv,+, on circ(G), and
a circulunt graph [6] and can be embedded on a circle in connect so to the nodes of G as explained shortly. The circular
the above manner. The order in which to place the nodes of distances of all edges of G that cross so in circ(G,) increase
G on the circle is provided by the single-cycle automorphism by one. This is shown in Fig. 2b for the graph of Fig. 2a,
CY of G, in which case G is said to be embedded in a circle where the circular distances of edges (0, 16)) (0, 15), and
according to a. Such an embedding of G is denoted by (0, 13) increase by one, while those of edges (0, 4)) (0, 5),
circ,(G). However, when there is no confusion regarding and (0, 7) remain the same as in circ(G). In general, for
which single-cycle automorphism of G is being used to embed every d, in ds(G), there is an edge {u, v} with cd(u, V)

254 DUTT AND HAYES

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 255

= d,, which crosses so. Hence cd(u, v) becomes d, + 1 in
circ(G,). Similarly, for every dj in the distance sequence of
G, there is an edge (x, y} such that cd(x, v) = di and {x,
y} does not cross s 0. Thus circ(G,) has edges of G with
circular distances dj and dj + 1 for each di in ds(G) . Hence,
to make G, a circulant, and thus node-symmetric, supergraph
of G, we insert edges with circular distances in ds(G,)
- ds(G) at each node of G, as well as edges with circular
distances in ds(G,) incident on the spare node so. Here
ds(G,) is given by {c;: either Ci or Ci - 1 is in ds(G)}
= ds(G) i { l} . In Fig. 2b, edges have been added in this
manner to construct J, for the graph J in Fig. 2a; for clarity,
only the edges incident on nodes so and 0 are shown. It can
be seen that ds(J,) = ds(J) 4 {l} = (4, 5, 6, 7, 8).

Iftherearebblocksinds(G),then Ids(= Ids(G)\
+ b, and hence the node degree of G, is d + 2b. To see this,
let D = [diy d,+, = di + 1, . . . , di+, = di +j] be a block in
ds(G) . In the corresponding block in ds(G,) , there are edges
with circular distances di, di + 1, . . . , di + j, d, + j + 1.
Hence exactly one integer is added to each block in ds(G)
to make up the blocks of ds(G,). Thus in the worst case,
when all blocks in ds(G) have a single element, the cardi-
nality of ds(G,) is double that of ds(G), and hence the node
degree of G, also doubles. In the best case, there is a single
block in ds(G), and Ids(= Ids(G)] + 1. As shown
later in Theorem 6, this means that the node degree of G,
is either d + 1 or d + 2.

If so is inserted between Vi and Vi+] in circ(G), then p
= (UO, 211, . . _ , Vi, SO, &+I, Di+2) . . . , z)+r) is an automor-
phism of G, containing a single cycle. This is the only auto-
morphism that we need for reconfiguration purposes, since
for any fault fin G, , there is an automorphism fi’ in the
subgroup subgrp(p) of aut (G,) generated by & which maps
so to f. As explained earlier, p’ can be used to relabel the

nodes of G, to reconfigure around faultf. Note that subgrp(p)
is the set of all mappings required to reconfigure G, around
any l-fault, and that it is sufficient to store only the auto-
morphism /3 to represent these mappings. Figure 4 shows
the reconfiguration of J, around fault 17, using the auto-
morphism (0, 1, 2, . . . , 10, so, 11, 12, . . . , 19)’ to relabel
the nodes of J, . The nonfaulty copy of J is shown with dark
edges, and the new labels of each node are shown near the
node; the old labels are shown in italics and further away
from the nodes.

We now describe the construction of the general k-IT
circulant supergraph Gk of a circulant graph G. As explained
in Section 3, we can construct Gk by iteratively construct-
ing l-FT supergraphs of G, G,, . . . , Gk-, in the manner
given in the preceding paragraph. However, we can also con-
struct Gk directly from G by “flattening” the iterative pro-
cess as shown in the algorithm SUPERCIRCULANT in
Fig. 5. The k-FT supergraph of G constructed by SU-
PERCIRCULANT is denoted by G&, [k, G] . Note that
SUPERCIRCULANT is an incremental design procedure,
since an m-FT supergraph G, of G can be constructed from
a k-FI supergraph Gk of G, where m > k, by invoking SU-
PERCIRCULANT with parameters m - k and Gk. The
supergraph G, obtained in this case is isomorphic to the
supergraph obtained by calling SUPERCIRCULANT with
parameters m and G.

Figure 6 shows part of a 3-FT graph H3 = Gg,,,[3, H] of
the basic graph H, which has 18 nodes and distance sequence
($6). For clarity, only edges incident on node 0 are shown.
Note that the edges to nodes 5 and 6 constitute edges of H
and are dark, while the edges to nodes 7, 8, and 9 are spare
edges of Hx and are light. Similarly, the edges to 13 and 12
constitute edges of H, since ignoring spare node s2, it can
be seen that cd(0, 13) = 5, and cd(0, 12) = 6 in circ(H).

16

13

18 5

19 6

FIG. 4. Reconfiguration of the I-FT supergraph J, of Fig. 2b around faulty node 17.

256 DUTT AND HAYES

Procedure SUPER-CIRCULANT(k, G);
/* G is a circulant graph with N nodes, whose k-FT supergraph

Gk = Gh,,*,[k, G] with k spare nodes is constructed by SUPERXIRCULANT */
begin

Find a single-cycle automorphism Q of G, and embed G in a circle according to cl;
ds(Gk) := d.(G);
for i = 1 to k do dS(Gk) := ds(G&{l};
Insert k spare nodes {SO, 81,. . . , Sk-l} anywhere in &c(G);
for each node z)i in G do

for each dj E ds(Gk) - ds(G) do
Add edges from vi to nodes at circular distance dj from it in
the clockwise and counterclockwise directions;

for each spare node Si in Gk do
for each dj E da(Gk) do

Add edges from si to nodes at circular distance dj from it in
the clockwise and counterclockwise directions;

retUrn(
end; /’ Procedure SUPER-CIRCULANT ‘/

FIG. 5. Procedure for constructing a k-FT supergraph of a circulant graph.

The edges to nodes 14, sI , and 11 are spare, as cd(0, 14)
= 4 and cd(0, 11) = 8 in circ(H).

Next we show how Gk = Gg,,, [k, H] can be automorphi-
tally reconfigured to Gkpl = Gg,,, [k - t, G] in the presence
of t < k faults. Without loss of generality, assume that the
spare nodes {so, sI, . . . , sk-, } are all inserted on circ(G)
between nodes Vi and oi+, of G. Then, as explained earlier,
a = tv07 VI> * *. > 21i, sO~ sI~ . . . 3 sk-l~ vi+l~ ui+2, . * * > uN-l)

is an automorphism of Gk. Let the fault set be F = { fo, f, ,
. . . , f;-, } , and let t&i be the circular distance between node
Sk-1 and J;-, in circ(Gk). Use automorphism ,@+ = c+ of
Gk t0 map Sk-i t0 f;-, and RCOnfigUre t0 obtain a copy Of

Gk-, = Gh,,, [k - 1, G] with t - 1 faults. This copy of Gk-,
can be identified by discarding the node labeled Sk-, under
mapping @k and by considering the other nodes in the circular
order thus obtained. Under the new labeling this circular
order is (Ug, . . . , Vi, SO, . . . , s&2, Vi+1 , . . . , v,+,), which
also defines the ordering of circ (Gk-,) . Discard the edges in
CirC (G,+ I) that are at circular distances di not in ds(Gk-,) .

6

& :’ i b6
6 b 11 0 0 9

SO 10

FIG. 6. Part of a 3-m supergraph H, = G:.,(3, H] of the
graph H with 18 nodes and distance sequence (5,6).

circulant

The rest of the edges and the nonfaulty nodes determine the
required copy of Gk-, , while czI = (vo, . . . , u,, so, . . . , s&2,
vi+l, * * * 3 u,+ 1) iS the required automorphism Of Gk-, . Again,
let tkm2 be the circular distance between newly labeled node
Sk-2 and faultfk-2. Use ,8,&l = a:k-* to map Sk-2 to fk-2, and
determine a copy of Gkp2 = GH,,,[k - 2, G] with t - 2 faults
as described above. By repeating this procedure t - 2 more
times, we obtain a fault-free copy of Gkmt. When 1 < k - t
more faults occur, we can reconfigure our fault-free copy of
Gkpt in the same manner to obtain a fault-free copy of Gkmt-,
and similarly determine a fault-free subgraph G in it. Hence
reconfiguration is incremental; as pointed out before, this is
an inherent and valuable characteristic of all iterative au-
tomorphic reconfiguration schemes.

Figure 7a shows three faults in the supergraph H3 of Fig.
6, while Figs. 7b, 7c, and 7d show the reconfiguration of H3,
H2, and H1 into a copy of H2 with two faults, a copy of H1
with one fault, and a fault-free copy of H, respectively. As
before, the new labels of nodes in the reconfigured graphs
are shown near the nodes, while the previous labels are shown
further away and in italics. The preceding discussion leads
to the following theorem.

THEOREM 4. The supergraph Gg,,, [k, G] of a circulant
graph G constructed by SUPER-CIRCULANT is a k-FT
supergraph of G.

The next two theorems give bounds on the node degree
of G&[k, G] in terms of the number of blocks of ds(G),
the node degree of G, and k.

THEOREM 5. Let G be a circulant graph with node degree
d and with b blocks in ds(G). Then the node degree of Gk
= G&,[k, G] is between d + 2(b + k - 1) andd + 2bk.

Proof Let ds(G) = (d,, . . . , d,), and consider the or-
dered set (g, , . . . , gt-,), where gi = d,+l - di - 1. Then, it
can be seen from SUPER-CIRCULANT that Ids(Gk) I

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 257

0

16 __
qi:

0 14
3

'/ !.'A\ r-t15

h -1
6 b b 8

11 5.: 0 9 5 0 0 2 SO 10
11 4 3 9

SO 10

(4 (b)

12 1

9 15 6 16

0
13

7 0
12 9 90 0 5

6

8 I?

0 I
12 0 0 9

: . . 10 0 0 6

5 SO 2 8 7 10
4

3 11 SO

(4 (d)

FIG. 7. (a) H3 of Fig. 6 with three faults. (b) Reconfiguration to a copy of Hz with two faults. (c) Reconfiguration to a copy of HI with one fault.
(d) Reconfiguration to a fault-free copy of H .

= Ids(G)] + Cf$ min(k, g;) + k; thus the node degree of
Gk increases by twice that amount. In the worst case, each
gi 2 k and bk integers are added to ds(G) to form ds(Gk).
In the best case, each gi = 1 and we have to add b + k - 1
integers to ds(G) in order to form ds(Gk). n

In the worst case, the number of blocks b = d/2, and
Gg,t, [k, G] has node degree (k + 1)d. Taking into account
the fact that the reliability gain will ultimately level off as k
increases, and that the value of k at which this happens is
small compared to N, as suggested by empirical evidence,
we only design k-FT supergraphs with k 4 N. (Local sparing
is one solution to alleviating this reliability saturation prob-
lem, but that again is another topic). Hence it is extremely
unlikely that the G&,[k, G J’s of interest will be complete
graphs. This is especially true when G is sparse, as are all

multiprocessor graphs. For example, if G is a hypercube with
N = 2” nodes, then d = II, and Gg,,,[k, G] will be complete
only if k z N/log N, which is a very large value for k. A
more reasonable range of values for k is in the neighborhood
of log N, and it is easy to see that G&[k, G] will never be
complete in such cases. We are not concerned any more
with whether G’ is complete, but only with whether it is
efficient and practical to realize, which of course means that
G’ has to be reasonably sparse. In a later section, we discuss
a hardware-efficient implementation of G’ using switches and
shared spare links that substantially reduces the link com-
plexity.

THEOREM 6. Let G be a circulant graph with a distance
sequence containing one block. Then the node degree of Gk

258 DUTT AND HAYES

= CL,,, [k, G] is between k and 2k more than the node degree
ofG.

Proof Outline. With b = 1, Theorem 5 requires 2k extra
edges per node in Gk. However, this assumes that the largest
integer d,-, in ds(G) is less than or equal to lN/21 - k/2,
where for simplicity, we assume that k is even. Suppose now
that d,-, = LN/ 2j- 1, where k > 21. Then, it can be shown
that the number of circular distances added to ds(G) to form
ds(Gk) is 2f+ (k - 21)/2. This represents an addition of 41
+ k - 21= k + 21 to the node degree of Gk over that of G.
By taking 1 = 0, we obtain the lower bound stated in the
theorem. n

In any k-FT supergraph G’[k, G] of a regular graph G
(not necessarily circulant) with exactly k spare nodes, the
node degree of each node should be at least d + k, where d
is the node degree of G. Hence Theorem 6 implies that for
the case where G is a circulant graph with one block and
LN/ 2 J is the largest circular distance in ds(G), Gg,,,[k, G]
is optimal with respect to the number of spare edges and the
maximum node degree.

5. APPLICATION TO CYCLES

In this section, we apply the automorphic method to the
simple case of cycle graphs. This application illustrates the
automorphic method’s ability to construct optimal k-FT’ su-
pergraphs and also gives us an example of Theorem 6.

We denote a cycle graph with N nodes by C,. Figure 8a
shows a cycle graph Cl5 with 15 nodes. It is easily seen that
CNisacirculantgraph,andifL=(O, l,...,N- 1)isthe
cycle in C,, then (Y = L is a single-cycle automorphism of
C,. The power graph Cfy of a cycle graph C, is defined as
an edge supergraph of C, in which each node u has edges
{(u + i) (mod N) : 1 < i < t } incident on it. The power-
graph construction method has been well known for con-
structing k-FT supergraphs of cycle graphs [121. In this
method, the power graph Cp+\ of the cycle CN+k is con-
structed to obtain a k-FT supergraph of C’,. Note that if the
automorphism (Y = L is used to construct a k-FT supergraph
of C, by invoking SUPER-CIRCULANT (k, C,), then the
resulting supergraph is also Cg+\. Note that the distance
sequence of C, when arranged on a circle according to (Y is
(l),whilethatofCF+iis(1,2,...,k+l).Figure8bshows
the power graph CT,, which is a 2-FT realization of the cycle
C15. The number of spare edges per node in C$$ is 2k,
which corresponds to the upper bound of Theorem 6-the
distance sequence of C, is a trivial single block.

Instead of embedding Cis according to cy = (0, 1, . . . ,
14), as has been done in Fig. 8a, let us embed its nodes
according to the automorphism p = (Y’ = (0, 2, 4, 6, 8, 10,
12, 14, 1, 3, 5, 7, 9, 11, 13); see Fig. 8c. In this case, the
distance sequence of CI 5 becomes (lN/ 2 J = 7) , and the two
neighbors of each node are consecutive to each other. This

8 7

(4
7- 6

(W

0

9

9
7 6

7
5 8

1 14

Cc)
14 12

(d)
FIG. 8. (a) The cycle graph CIS with 15 nodes. (b) A 2-F-I supergraph

C:, of CIs constructed by the power-graph construction method. (c) An
embedding of CIs on a circle according to the automorphism fi = (0, 2, 4,
6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13). (d) The 2-FT supergraph C’,, of CIS
constructed by SUPER-CIRCULANT (2, C,,) using automorphism 0.

also satisfies the condition given the proof of Theorem 6 for
a k-FT supergraph to have only k spare edges per node. On
applying SUPER-CIRCULANT(1, Cis) with p as the au-
tomorphism, we obtain a l-IT supergraph C’,, of Cl5 with
distance sequence (7,8). The circular distance 8 corresponds
to a diameter in circ(C’,,), and hence each node has only
one neighbor at circular distance 8. Thus only one spare
edge per node has been added to construct C’,, . If we further
apply SUPER-CIRCULANT(1, C’,,) to construct a 2-FT
supergraph of C, 5, then the distance sequence of the resulting
supergraph C’,, remains (7, 8). However, an edge with cir-
cular distance 8 is no longer a diameter in circ(C”,,), and
each node has two neighbors at circular distance 8. Thus we
add one more edge per node to C’,, to construct C’, , , which
is shown in Fig. 8d. Note that while there are four spare
edges per node in the 2-FT supergraph C:, of Cis (Fig. 8b),
there are only two spare edges per node in the optimal 2-m
supergraph C’,, . From the discussion in the previous section,
it follows that C;, is an optimal 2-F-T supergraph of Cis.
Further, SUPERCIRCULANT (k, Cls) also constructs an
optimal k-FT supergraph of Cls when automorphism B is
used.

In general, to construct such optimal k-m supergraphs
of a cycle graph, we should use that single-cycle automor-
phism in subgrp((v) in which the two neighbors of a node
are placed at circular distance lN/2 J from it. Here cx is the

automorphism whose cycle corresponds to the cycle L in SO,Sl,. * * > Sk_ I . Unless otherwise stated, all addition is mod-
C,. Suppose the automorphism that accomplishes this is c?; ulo N. We have seen that for every edge (u, u + d;) with
then x satisfies the following conditions: (1) x is relatively circular distance di in G, we effectively introduce spare edges
prime to N, and (2) either lN/2lx = 1 (mod N) or lN/2lx incident on u with circular distances d, + 1, di + 2, . . . , di
= - 1 (mod N). Such an x may not exist for a given N. For + k in Gg,,,[k, G]. When edge (u, u + dj) crosses h 6 k
example, x does not exist when N is even. However, in this faulty nodes, and u is nonfaulty, then the spare edge (u, u
case, it might be possible to use an automorphism ~8 in + d, + h) is used to replace (u, u + di), since the former
which the two neighbors of each node in C, are placed at now realizes an edge with circular distance d, incident on u
clockwise and counterclockwise circular distance N/ 2 - 1. (the h faulty nodes that it crosses are no longer part of the
Besides the relative prime condition, x now has to satisfy reconfigured system). Hence, none of the k spare edges cor-
either(N/2-l)x=1(modN)or(N/2-l)x=-1(mod responding to edge (u, u + di) are ever used simultaneously
NJ. If this is possible, then applying SUPER- in any k-fault set. We take advantage of this fact in our switch
CIRCULANT(k, C,) with a” as the automorphism results implementation of G&,[k, G], which we denote by
in a k-FT supergraph with k + 1 spare edges per node. Con- SWaudk G).
sider the cycle C,, where L = (0, 1, . . . , 7) is the cycle in Figure 9 illustrates the basic idea of our switch imple-
the graph; let (Y = L. Then, a3 is the automorphism (0, 3, mentation. The k + 1 edges in G&,[k, G] that provide the
6, 1, 4, 7, 2, 5) in which the two neighbors of each node necessary redundancy for edge (u, u + di) with circular dis-
occur at a circular distance of N/2 - 1 = 3. tance d;s in G are shown in Fig. 9a. In Fig. 9b, these edges

For really “bad” cycle graphs, even an automorphism that are replaced by a single edge and a 1 -to-(k + 1) demultiplexer
places neighbors at circular distance lN/ 21 - 1 may not that can switch its single input to one of its k + 1 outputs
exist. Then, in a similar manner, we can search for an au- to realize any of the original k + 1 edges.
tomorphism that places the neighbors of each node at a cir- Under fault-free conditions, the demultiplexer corre-
cular distance that is as close to lN/2 J as possible. sponding to each node u of G and circular distance di E ds(G)

The application of the automorphic method to cycle is programmed to connect u to the node u + di that is at
graphs shows the technique’s versatility in terms of the usage clockwise circular distance di from it in circ(G). The de-
different automorphisms to construct k-FI’ supergraphs with multiplexers corresponding to spare nodes in Gg,,,[k, G]
reduced complexities. For many cycle graphs it can construct are disabled, so that all their output terminals are effectively
optimal k-FT supergraphs. disconnected. Thus, when there are no faults, the connections

among the nodes of G in SW,,,,(k, G) are those of G, while
6. SWITCH IMPLEMENTATION the spare nodes of Gg,,,[k, G] are not connected to any

other nodes.
We may be able to reduce the number of spare I/O ports A static rule for selecting fout of k spare nodes to configure

and links of a fault-tolerant supergraph G’[k, G] by judicious into the system when f < k nodes fail can be established.
use of switches to switch a processor from one set of shared For example, here we assume that the subset of spare nodes
links to another when reconfiguration takes place. By a switch s(f)= {Sk-f,..., Sk-, } will be configured into the system
here we mean a hardware component that has m input and whenever fnodes fail. Suppose now that f < k faults occur
1 output terminals and can be programmed to connect some in Gk, that the edge from (u, u + d,) crossesf, faulty nodes,
subset of its inputs to some subset of its outputs. Recall that and that t, of the spare nodes crossed by (u, u + di) are in
we assume that switch failure probabilities are negligible; S(f). Then the edge (u, u + di) has a circular distance d,
hence a switch implementation of G’[k, G] is as reliable as + t, - f, in the newly configured system, since it crosses
G’[k, G]. Typical examples of switches are multiplexers, exactly that many good nodes of this system. Assume that
demultiplexers, crossbar switches, and the routing switches node u is not faulty. The demultiplexer switch corresponding
introduced in [8 1. There we discussed a switch implemen- to edge (u, u + d,) is reprogrammed so that u is connected
tation of k-FI trees using 2 X 2 routing switches. The fault- to the node u making di the circular distance of edge (u, V)
tolerant automorphic designs for circulant graphs proposed in the newly reconfigured system. Moreover, every spare
in this paper can also be efficiently implemented using shared node si that is configured into the new system is also con-
links and demultiplexer switches. This switch implementa- nected to nodes that are at clockwise circular distances di
tion takes advantage of the circulant property of the k-R from it, for every di E ds(G) . The next theorem follows from
supergraphs and the automorphic nature of the reconfigu- the preceding discussion.
ration process.

In the following discussion, we assume that the nodes of THEOREM 7. The switch implementation SW,& k, G)

GareO, 1, N - 2, N - 1; that they are arranged on realizes Gg,,, [k, G] and has an incremental reconfiguration

circ(G) in that order, i.e., according to the automorphism scheme that can reconjigure around any f & k faulty nodes.

(0, 1,. . . , N - 1) of G; and that the spare nodes of Gk are To illustrate the feasibility and cost of the proposed

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 259

260 DUTT AND HAYES

“Lx. ‘..\
',ou+di+k

(4

\ 1.. .-O u+di+l

(W

u+di u+di+l u+di+k-I u+d,+k

From u

(c)

FIG. 9. (a) Spare edges in G&,[k, G] corresponding to the edge (u, u + d,) in G. (b) Switch replacement of the spare edges employing a I-to-(k
+ I) demultiplexer switch. (c) A possible logic design of the demultiplexer switch.

switching approach, a specific implementation at the logic
level is outlined in Fig. 9c. A l-to-(k + 1) demultiplexer can
be constructed from k + 1 comparators connected in a daisy-
chain fashion, as shown. Each comparator is capable of ac-
tivating exactly one output terminal and has a hardwired
address corresponding to the node of G’ connected to the
output terminal it controls. When the node u controlling a
demultiplexer sends it the address of the node to which the
demultiplexer should make a connection, the address passes
through the comparators until it reaches the one which reg-
isters a match with its hard-wired address. This comparator
captures the address, activates its output terminal, and pre-
vents the address from propagating further. The address sent
to the demultiplexer needs only to be of length rlog(k + 1)1 ,
since address resolution is among k + 1 nodes. Address
transmission can be over the data lines as shown in Fig. 9c
and requires time 8(log k) .

Figure 10 shows a representative part of the proposed
switch implementation of the 3-FT graph H3 of Fig. 6. The
edges in Fig. 10 are labeled by their circular distances. Cor-
responding to each edge of circular distance 5 are four links
entering a node u from the output terminals of four demul-
tiplexers. Since exactly one of these links is used to realize
an edge between v and another node u at counterclockwise
circular distance of 5 from V, all links can share a common
bus connected to a single I/O port of o, as shown in the
figure. Only one of these links is active at any time.

Figure 11 a shows the symmetry and regularity of the over-
all switch implementation for a 2-FI supergraph of Q$,
which is a circulant edge supergraph (to be specified later)
of a four-dimensional hypercube Q4. Figure 11 b gives a more

” 0
I6 0

s 2 ,‘- \,,’

‘5 0

l4 0

‘3 0

12 0

0 11

FIG. 10. Part of a switch implementation of the 3-R graph H3 of
Fig. 6.

FAULT-TOLERANT DESIGN USING ALJTOMORPHISMS 261

1100

0000
Sharedbus B, OOQI

FIG. 11. (a) Switch implementation of the 2-FT supergraph CL., [2, Qs] of a four-dimensional hypercube. (b) An enlarged view of part of the stitch
mplementation.

262 DUTT AND HAYES

detailed view of part of this switch implementation; the active
comparators in each demultiplexer and the active links re-
alizing the connections betwen nodes corresponding to the
fault-free case are darkened; the inactive comparators are
shown lightened, while the inactive links are either shown
dashed or lightened. For instance, this darkening shows that
the connection between nodes 0000 and 0001 is realized by
demultiplexer Di activating its output link to bus B, , while
the connection between 0000 and 0010 is realized by de-
multiplexer D2 activating its output link to bus B2.

Though the switch implementation substantially reduces
the wiring complexity of the fault-tolerant realization, one
might argue that it reduces the overall reliability of the sys-
tem. This is because switches, unlike the links they replace,
are active components and thus have a higher probability of
failure than links. However, the switches that we use are
simple ones; each l-to-(k + 1) demultiplexer of the type
shown in Fig. 9c can be realized by using only (k + 1)(2
X log(k + 1) + 2) basic gates like OR and XOR. Thus the
total gate complexity of all the switches in a k-FI’ imple-
mentation is e(k + 1)(2 log(k + 1) + 2). To use some
actual numbers, consider the 2-F-l four-dimensional hyper-
cube of Fig. 1 la. The total gate complexity of all the 48
switches used in this 2-FT realization is 48 X 18 = 864,
which is a very small number compared to the hundreds of
thousands of gates used in a single processor chip. Thus we
can ignore the possibility of a fault occurring in the switches
due to internal factors like fabrication defects and operational
stuck-at-type faults. However, external factors like radiation
and power line surges can still cause the switches to become
faulty. It is generally feasible to model a switch failure (as
well as a link failure) as the failure of the processor controlling
it [91. We can thus deal with switch and link failures at the
system level and reconfigure around them in the rare cases
that they do become faulty.

We now discuss how reconfiguration around processor
faults can be achieved in our fault-tolerant switch imple-
mentation. We assume that the faulty processors have been
detected using system-level fault-diagnosis techniques [2 1,
10, 16, 261 in either a centralized or distributed manner,
and that the fault information has been disseminated among
all nonfaulty processors. Hence, it is straightforward to keep
track of the number of faults that have occurred up to the
current time. Once this number exceeds k, the degree of
fault tolerance, it will not be possible for the system to re-
configure structurally, and some other actions, which are
outside the scope of this paper, will have to be initiated. Our
concern here is with the mechanisms for structural recon-
figuration, once faults have been detected. In the following,
we refer only to those edges that emanate in the clockwise
direction from each node-edges in the counterclockwise
direction from a node are in the clockwise direction from
their second end nodes and are thus accounted for. For dis-
tributed reconfiguration, each node has to know which faulty

nodes are crossed by each of its edges in the clockwise di-
rection, which is determined during the diagnosis phase. We
also assume that each node knows which spares are crossed
by these edges. In any fault situation with k or fewer faults,
a nonfaulty node can determine in time 8(k) the nodes to
which each of its edges should connect. The complexity of
8(k) arises from the time required to compute the number
of nodes in S(f), the set of spares to be configured into the
system, which are crossed by an incident edge. Since every
node has r d/ 21 incident edges in the clockwise direction, the
total computation time required by each node is 8(kd/2).
As noted earlier, it takes 8(log k) time to transmit the address
of the node to be connected to each demultiplexer. Since the
address has to pass through e(k) comparators, the process
of connecting u to the appropriate node takes time 8(k),
for each edge from u . Thus the total reconfiguration time is
8(kd/2).

To recover completely from the effects of faults, the parallel
processes that were executing on different processors will
have to roll back to a previous checkpoint in order to reach
a consistent state. Subsequently, these processes will have to
be reassigned to new processors. For example, the process
running previously on processor 2 will have to be transferred,
along with its state information, to the processor relabeled
as 2 after structural reconfiguration. This involves None-to-
one communications from every processor x to processor u,
where x is the processor previously labeled as U, over the
interconnection network. The time taken to accomplish the
transfer of processes is a function of the amount of infor-
mation to be transferred between each processor pair, and
the interconnection network. For example, in a k-FT n-di-
mensional hypercube SW,,,,(k, Q,), it is possible to accom-
plish the N transfers in @(log N) hops using a pipelined
store-and-forward scheme. Furthermore, if the interconnec-
tion network can be circuit switched, i.e., it is possible to
create a single electrical connection between two nonadjacent
nodes through the routing switches of intermediate nodes,
then the N transfers can each be realized in a single hop
using disjoint paths. In this case, however, the computa-
tion time required to set up these circuit-switched paths is
0(log N) .

For every edge in G, the switch implementation requires
one 1 -to-(k + 1) demultiplexer. As described earlier, the
(k + 1) switches in the demultiplexer of Fig. 9c can be
@log k)-bit comparators, whose hardware complexity is
8(log k) . Hence the area/ hardware complexity of each de-
multiplexer is 8(k log k). In this analysis, we assume that
the nodes of Gk are arranged in some regular fashion in a
two-dimensional region so that nodes that are close to one
another on circ(Gk) are also physically near; it is not nec-
essary for them to be on the perimeter of a circle. For ex-
ample, if the nodes are arranged in rows in a rectangular
area A, then they can be labeled in a snake-like manner
along the rows as 0, 1, . . . , N - 1, so, . . . , $-I, which

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 263

conforms to their order on circ(Gk). In such a situation,
each demultiplexer corresponding to an edge from u can be
laid out so that each of its k + 1 comparators is close to the
node that it connects to, as suggested by Fig. 10. For each
di in ds(G) there will then be k + 1 comparators, each be-
longing to a different demultiplexer, near node o. Since the
output terminals from each of these demultiplexers share a
common bus connected to an I/O port of u, the total wire
area required is dominated by these buses and can be shown
to be 0(kd2/4) for each node. The area required by the
demultiplexers is @((Nkd/2)log k); thus the total redundant
area/ hardware complexity is 8(max (Nkd* / 4, (Nkdl
2)log k)). In addition to reasonable complexity, another
attractive feature of this switch implementation is that the
degree of each node remains constant at d.

(4 6

(b)

7. CYCLE MERGING

A natural way to extend the methodology developed in
the previous sections to noncirculant graphs is to construct
edge supergraphs that are circulant. In this section, we discuss
a simple and efficient strategy to construct circulant edge
supergraphs of noncirculant graphs. Let G be a noncirculant
graph, and let cy = C,C2. . . C, be an automorphism of G
with t cycles, where Ci is the cycle (Xi,o, x;,,, . . . , Xi,/,-1).
Merge these t cycles of G to form a single cycle (Y~ = (x~,~,

(cl (d)
FIG. 12. (a) A graph K with an automorphism /3 = (I, 2, 3, 4, 5)(6,

7, 8, 9, 10). (b) Merging of the cycles (1, 2, 3, 4, 5) and (6, 7, 8, 9. 10).
(c) Merging ofthe cycle (1,2,3,4,5) with the clockwise l-rotation (10,6,
7, 8, 9) of cycle (6, 7, 8, 9, 10). (d) An arbitrary circular ordering of the
nodes of K.

. . .) x~.I,~~~ x2,0> . . . , .Q-~, . . . , -%,o, . . . , xf,/,-l) of length
N, and add edges to G to construct an edge supergraph G”
of G, so that cy, is an automorphism of G”. We term this
process cycle merging. To construct G”, place the nodes of
G on a circle @ in the order that they appear in al, and
compute the set D of circular distances d, on C? of each edge
of G . Add edges between every pair of nodes at circular dis-
tances d, , for each d, in D. The resulting edge supergraph is
G”, with 01~ as one of its automorphisms and D as its distance
sequence. The trick, however, is to arrange the cycles of CY
so that I D I is as small as possible. For example, if the cycle
(x2,0, . . . 3 x~,~,-~) is rotated clockwise i times to yield the
cycle (X2,&ir X2,1z-r+1 3 . . . , X2Jp1 9 X2.01 X2.1 9 . . . , x2,/2-i-I 1,

which is then merged with the other cycles of (Y, a different
and possibly smaller D may be obtained. Besides rotation of
each cycle of IX, the ordering of the cycles for merging also
affects the final outcome.

= { 1, 4 } is smaller than that obtained for the arrangement
of Fig. 12b.

Consider the graph K with 10 nodes shown in Fig. 12a; /3
= (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) is an automorphism of K.
To construct a circulant edge supergraph of K, we merge the
two cycles C, = (1, 2, 3, 4, 5) and C2 = (6, 7, 8, 9, 10) of
p. Figure 12b shows the two cycles arranged on a circle to
yield the ordering (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) of the nodes
of K; each edge is labeled by its circular distance. The set D
of edge circular distances for this ordering is { 1,4, 5 } . Now
if C2 is rotated clockwise by one node, and then merged with
C,, we obtain a circular ordering (1, 2, 3, 4, 5, 10, 6, 7, 8,
9) of the nodes as shown in Fig. 12~. In this case, the set D

Visualize the nodes of G laid out on @, with the nodes in
each Ci laid out in the order x,,o, . . . , Xi,/,-1 and the cycles
laid out in the order C, , . . . , C,. Suppose, further, that there
is an edge (Xi,o, x,,~) in G between cycles Ci and Cj. Since 01’
is an automorphism of G mapping Xi.0 to Xi,s, and Xj,p to
x,,~+~, there are also edges { (Xi,s, Xi,,+,) } in G, where s is any
integer, and the addition in the second subscript is mod Zi
for the nodes in Ci and mod I, for the nodes in Cj. Suppose,
without loss of generality, that 1, > b. If cd(xi,o, Xj,p) = d,,
then Cd(xi,,, Xi,,+,) = d,, for 0 < s < 4 - P, while Cd(Xi,s,
Xi,p+s) = d, - l,, for Z, - p G s < 21, - p, etc. Thus the set of
edges { (xl,, , xj,s+p) } introduces more than one circular dis-
tance on @. In general, it can be shown that the number of
distinct circular distances corresponding to the edges between
C, and C, is at most di,j + d,,i, where dh,, is the number of
edges in G between a node in C,, and the nodes in C,. Note
that dh,, is well defined, since the nodes in a cycle of an au-
tomorphism are similar and hence have the same number
of edges to another cycle in that automorphism.

Suppose that instead of merging cycles to construct a cir-
culant edge supergraph of G, some random merging scheme
is used. This rearranges the nodes of G in an arbitrary cyclic
order to yield a circulant G”. Since there are a total of di,jli
edges between the nodes of C, and C,, potentially di,jli distinct
circular distances could be introduced in G” by these edges.
Refer to Fig. 12d, where the nodes of the graph Kare arranged
randomly on a circle in the order (1, 6, 3, 4, 10, 7, 8, 5, 2,

264 DUTT AND HAYES

9) ; the corresponding set D of edge circular distances is { 1,
2, 3, 4, 5 } , and the resulting edge-circulant supergraph is
complete. On the other hand, merging cycles introduces at
most d,j + d,i circular distances corresponding to the edges
between Ci and Cj. For example, for the cycle-merging cases
of Figs. 12b and 12c, only one circular distance is introduced
by the intercycle edges. Hence, cycle merging is a good heu-
ristic for constructing a circulant edge supergraph of G. The
following result establishes a loose upper bound on the node
degree of a circulant edge supergraph of G.

THEOREM 8. Let G be a noncirculant graph and a! an
automorphism of G with t cycles C, , , C,. If the degree
of each node in Ci is di, then the circulant edge supergraph
G” resulting from merging the cycles of a has node degree at
most 2 C j=, di. Thus if G is a regular graph with node degree
d, then G’ has node degree at most 2dt.

Proof Let the cycles of (Y be merged in any order. By
our earlier discussion, we know that the number of distinct
circular distances introduced by the edges between cycles Ci
and Cj is at most di,j + dj,i , when i # j, and exactly di,i , when
i = j. In the worst case, the sets of circular distances Di,j
introduced by the edges between each pair of cycles (Ci, C,)
are disjoint. Thus we can have a maximum of C:J~ Cf:j+,
(di,j + 4,i) + Z fzh di,i = C :I; di distinct circular distances
in ds(G”). This means that the maximum node degree in
G” is 2 C :+-, d, , which is the contention of the theorem. n

Let Ci be a cycle whose nodes are ordered as (Xi,02 Xi.1,
. . .) xi,/z-l). The ordered set (Xi,/,-/z, Xi,/,-h+~, . . . , Xi,/,-1 , Xi.09

. . .) Xi,l,-h-l) obtained by rotating Ci clockwise by h nodes
is called the clockwise h-rotation of Ci and is denoted by
Cf. A heuristic procedure MERGE-CYCLES for cycle
merging, which rotates cycles and orders them to minimize
the node degree of G”, is given in Fig. 13. It is easy to see
that MERGE-CYCLES is a superset of the cycle-merging
scheme assumed in Theorem 8. It will thus perform at least
as well as the lower bound (with respect to performance)
stated in the theorem. The time complexity of this algorithm
is 0(N2d,&, where d,,,,, is the maximum node degree
ofG.

8. APPLICATION TO HYPERCUBE COMPUTERS

We now describe an application of the foregoing theory
to hypercube architectures. A hypercube Q,, of dimension n
is a graph with 2” nodes, each of which can be labeled by a
distinct binary vector of length n, so that there is an edge
between two nodes u and 2) if and only if the labels of u and
o differ in exactly one bit position. An automorphism of Q,,
can be generated by any pattern of complementation and
permutation of the bits in the label of each node [25 1. For
example, consider the labeling of Q3 shown in Fig. 14a. Let
us employ the permutation (1)(2, 3) of the dimensions of
Q3 (the leftmost bit position in an n-bit boolean vector rep-
resents dimension 1 and the rightmost represents dimension
n) and complement bit 3 of each label after employing the
above permutation. Then, label 000 remains 000 on per-
muting its bits according to (1)(2, 3) and becomes 00 1 on
complementing bit 3. Similarly, label 00 1 after permutation

Procedure MERGE-CYCLES(G); /* Th is is a heuristic for constructing
a low-cost circulant edge-supergraph of a graph G using cycle merging */
begin

Select an automorphism 0: = C~ Cz . . . C, of G;
Compute the set Di,j of circular distances introduced by placing
Ci adjacent to Cj, for each pair (C;, Cj) of distinct cycles;
Place the pair (Ci, Cj) adjacent to one another to minimize lDi,j 1;
Lo := Cj; L-1 := Ci; D := Di,j U Di,i U Dj,j;
Not-Inserted := {C,, ., Ct} - {Ci, Cj};
while (Not-inserted # 0) do

for each C, in Not-Inserted do
Let the inserted cycles be in the order L-h L-h+1 . . . Lo L1 . . Lt;
ifh>tthenp:=telsep:=--h;
for each clockwise rotation Cj of C, do

Compute the set 05 of additional circular distances
introduced by placing Cj adjacent to 6,;

endfor;
D,:=nin{lD~I:OIi~Z,-1);

endfor;
Select C. for placing adjacent to L, to minimize (D,I;
Place that Cf adjacent to L, so that D, = 0:;
D:=D u D,;
Not-Inserted := Not-Inserted - {C.};

endwhile;
Prom each node of G place edges to nodes at circular distances d+
in the clockwise and counterclockwise directions, for each 4 in D;

end. /* MERGE-CYCLES ‘/

FIG. 13. A heuristic procedure for constructing a circulant edge supergraph of a noncirculant graph G.

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 265

110 111

100 101

~

010 011

000 001

111 101

110 100

~

011 001

010 000

(a) (b)
FIG. 14. (a) A labeling of Q3. (b) A relabeling of Q3 by the automor-

phism (000, 001, 011, OlO)(100, 101, 111, 110).

according to (1)(2,3) becomes 0 10, and on complementing,
bit 3 becomes 0 11. If we continue this way, the permutation
induced on the nodes of Q, in this manner is found to be
(000,001,011,010)(100, 101, 111, 110). This permutation
preserves adjacency of the nodes of Q3 and hence is an au-
tomorphism of QJ. The new labeling of Q3 according to this
automorphism is shown in Fig. 14b.

The following theorem establishes that it is possible to
construct a circulant edge supergraph of Q,, by cycle merging
so that the node degree increases by exactly n - 2.

THEOREM 9. There exists a circulant edge supergraph
of Q, in which each node has degree 2n - 2.

Proof Sketch. The proof, which is by construction, is as
follows. Consider the automorphism (Y = C1, . . . , &I,
where Cj is the cycle (a,a,- 1 . . . a20, a,a,-, * . * a2 1) con-
taining two nodes, and a,,a,-, * * * a20 is the binary repre-
sentation of the integer 2 (i - 1) . The cycles of (Y are arranged
on a circle in the order C,, . . . , C&Z, C&J+,, . . . , C&l,

C&3. g2+lh.. . 3 . Such an arrangement of the nodes of
4 is s own m Fig. 15a. It can be seen that the set D of

circular distances in this case is { 1,2,4 } , and thus a circulant
edge supergraph Qt can be constructed with ds(Q$) = D,

(4

such that each node has degree 6; see Fig. 15b. For the general
case Qn, the set D of circular distances for the above-men-
tioned arrangement of the cycles of (Y is { 2 i : 0 < i < n - 2 } ;
hence a circulant supergraph with distance sequence D and
node degree 2 (n - 1) can be constructed. n

The switch implementation of a 2-FT Q$ G&[2, Q$]
generated by SUPER-CIRCULANT is shown in Fig. 11.
The distance sequence of Qs is (1, 2, 4); thus the distance
sequenceofG&,[2,Q:]is((1,2,4)+ (1)); {I} =(1,2,
3,4,5)+{1}=(1,2,3,4,5,6),anditsnodedegreeis12.
However, note that the node degree in the switch imple-
mentation of G&,[2, Q:] reduces to 6, the node degree of
Q$. In general, assuming k = 2’, where i < n - 3, the
node degree of G&[k, QE] constructed by SUPER
CIRCULANTis2(n(k+ I)-(k+ l)logk-3).However,
the switch implementation SW,& k, Qg] reduces the node
degree to 2n - 2, while the redundant area/hardware re-
quired for the switch implementation of G&[k, Q”,] is
e(Nk 1og’N). Indeed, the node degree can be further reduced
to n by using a two-to-one multiplexer to switch the two
edges with circular distance 2’, for 0 < i < n - 3, incident
on node u, to one I/O port of u. This is possible, since
exactly one edge with circular distance 2 i, either in the clock-
wise or the counterclockwise direction, is required at each
node to realize Q,, where 0 < i < n - 3; see Fig. 15a.

For the purpose of comparison, we now briefly outline a
previous design for 1 -FT hypercubes due to Rennels [23]
that uses crossbar switches. In this approach, an n-dimen-
sional hypercube Qn is partitioned into 2”-” disjoint Qm’s,
where m is a constant between 1 and n. Two crossbar
switches, a relay crossbar (RCB) and a connection crossbar
(CCB), and a spare node are associated with each of these
Qm’s. An RCB is a 2 “-input (n - m)-output crossbar switch,
while a CCB is a (2 m + n - m) -input n-output crossbar
switch. The 2” inputs of the RCB corresponding to a Q,,, A
are connected to an I/O port of each node in A, while its n
- m outputs go to one input in each CCB of the Qm’s adjacent

(b)

FIG. 15. (a) An arrangement of the nodes of Q4 on a circle. (b) A circulant edge supergraph (2; of Q4.

266 DUTT AND HAYES

To RCB’s of
adjacent subcubes

m-dimensional
subcube Q,

From RCB’s of
adjacent subcubes

“-Ill
/’

CCB “r

Spare processor

FIG. 16. Connections for an m-dimensional subcube of Q, to realize a
1 -FT Q, due to Rennels [23 1.

to A. 2” of the inputs to the CCB corresponding to A are
also connected to the nodes of A, while the other n - m
inputs come from one output of the RCBs of the Q,,,‘s ad-
jacent to A. The 12 outputs of this CCB are connected to the
spare node associated with A. These connections are shown
for one of the Q,‘s in Fig. 16. When a node u in Q,,, A
becomes faulty, A’s CCB is programmed to connect the m
neighbors of u in A to the spare node sA associated with A.
Each Q,, B adjacent to A contains one neighbor of u, which
is connected to an output of B’s RCB that is connected to
an input of A’s CCB. The CCB of A is further programmed
to connect its n - m inputs coming from the RCBs of the II
- m adjacent Qm’s to sA. In this manner, all the neighbors
of u in Q,, are connected to sA to complete the reconfiguration
process.

The area/hardware complexity of the crossbars is @nz2n)
= 8(N log2N), which is the total redundant complexity of
our switch implementation for k = 1. It is difficult to analyze
the redundant wire area required in this design, though it is
likely to be more than 8(N log2N). Note that while we use
only one spare node in our 1-F-I design of Q,, , the l-IT
design in [231 uses 2 n-m spare nodes. Moreover, each node
in our design has y1 I/O ports irrespective of k, while each

node in the 1 -IT design of [231 has y1+ 1 I/O ports.
Table I compares the automorphic design of fault-tolerant

hypercubes to the previous fault-tolerant hypercube designs
of Rennels [231 and the Diogenes approach [7, 241, which
was mentioned in Section 1. Note that the Rennels design
is I-FT and hence is comparable with other designs only
when k = 1. In the expression for the maximum edge length
of the automorphic k-IT hypercube design, e,,, is the max-
imum edge length in the nonredundant layout of Qn. For
an area-optimal layout of Qn, e,, is 8(N) [31. Table I shows
that the fault-tolerant hypercubes constructed by the auto-
morphic design method are significantly better in most char-
acteristics than the other two methods. In all other respects,
this method is at least as good as the other methods. We
estimate that in the best case, an n-input m-output crossbar
switch can be programmed in a distributed manner in time
8(min(n, m)). Hence, the reconfiguration time for the
Rennels design is Q(log N) .

9. CONCLUSIONS

We have presented a new approach to fault tolerance that
uses the automorphisms of graphs to construct their k-FT
supergraphs. We demonstrated various ways to exploit au-
tomorphisms including a cost-effective iterative scheme.
We developed this iterative method for a class of graphs
termed circulant and presented fault-tolerant design (SU-
PERCIRCULANT) and reconfiguration algorithm that
applies to such graphs. This scheme is simple and systematic
and, unlike most previously published methods, provides
for any arbitrary degree k of fault tolerance, as well as for
incremental design. We showed that the automorphic
method can construct optimal k-FT supergraphs for many
cycle graphs. The k-FT supergraphs constructed by SU-
PERCIRCULANT are amenable to an efficient and low-
cost switch implementation SW,& k, G). Further, a dis-

TABLE I

Comparison of the Automorphic Method to Previous Designs of k-FT n-Dimensional Hypercubes

Characteristics Rennels [23] Diogenes [7] Automorphic

Spare nodes for 1 -FT case
Generalizable to k faults
Redundant switch area
Redundant wire area
I/O ports per node
Maximum edge length
Incremental design
Local sparing
Reconfiguration time
Incremental reconfiguration
Distributed reconfiguration

pn-”
No
8(N log2N)
Unknown
n+l
Unknown
N/A
N/A
fi (log N)
N/A
Yes

1
Yes
@(NW + k))
8(N(N+ k)logN)

:((N + k)log N)
No
No
e(N(N + k))
Yes
No

1
Yes
WN/2W log NJ
8(N* + Nk Iog’N)

&em, + k log N)
Yes
Yes
8(k log N)
Yes
Yes

Note. em,, , the maximum edge length in a nonredundant layout of Qn; N/A, not applicable.

FAULT-TOLERANT DESIGN USING AUTOMORPHISMS 267

tributed and incremental reconfiguration scheme with small
time complexity (8(kd)) was also given for this switch im-
plementation. To apply our fault-tolerant design scheme and
switch implementation to noncirculant graphs, we presented
a technique called cycle merging to construct efficient cir-
culant edge supergraphs of such graphs. The design meth-
odology is thus applicable to general graphs, as illustrated
for the hypercube Q,,, which is noncirculant for IZ 2 3. Ap-
plication of the automorphic approach to hypercubes also
resulted in a fault-tolerant design significantly better than
those presented in previous work [7, 231.

SUPER-CIRCULANT and cycle merging assume some
knowledge of the automorphism group aut (G) of the original
graph G. As demonstrated for the hypercube case, it is pos-
sible to deduce the relevant properties of aut (G), if G is
sufficiently regular and symmetric; this is the case with most
of the multiprocessor architectures that have been proposed.
For example, we have also been able to characterize aut(G)
fully, when G is a two-dimensional toroidal mesh. However,
it is still desirable to be able to automate the automorphism-
generation process, as well as develop algorithms to search
for automorphisms with certain desirable properties like a
small number of blocks (for single-cycle automorphisms),
or a small number of cycles (for multiple-cycle automor-
phisms). We are pursuing these topics using results from
computational group theory [18 1.

The automorphic method can also be extended to imple-
ment local sparing. Suppose that each subset I’, of a partition
{VI, . f. 2 V, > of V(G) corresponds to a cycle Ci of an au-
tomorphism LY of G. Since the subgraph induced by a cycle
of LY is circulant, we can apply SUPERCIRCULANT to
each G(C;) to construct its ki-FT supergraph (recall that
G(S) denotes the subgraph induced in G by the subset of
nodes S), for some k;. Finally, for edges between any two
cycles C, and C, of CV, spare edges have to be added so that
the resulting design can tolerate k, faults in each C,; two
ways in which this can be accomplished are discussed in [91.
Thus, implementing local sparing obviates the need to always
construct circulant edge supergraphs of noncirculant graphs
in order to apply automorphic design. This is especially useful
when G is not “circulant-like,” and thus the number of extra
edges required to obtain its circulant edge-supergraph is large.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

REFERENCES

1. Babai, L. On the abstract group of automorphisms. Combinatorics, Proc.
8th British Combinatoric Conference, Swansea, 1981, pp. l-40.

2. Banerjee, P., Kuo, S. Y., and Fuchs, W. K. Reconfigurable cube-con-
nected cycles architecture. Proc. Sixteenth Fault Tolerant Computing
Symposium, June 1986, pp. 286-29 1.

3. Bhatt, S. N., and Leighton, F. T. A framework for solving graph layout
problems. J. Comput. System Sci. 28 (1984), 300-343.

4. B&s, N. Finite Groups of Automorphisms. Cambridge Univ. Press,
Cambridge, 197 1.

24.

25.

26.

21.

B&s, N. Algebraic Methods in Graph Theory. Cambridge Tracts in
Mathematics, Cambridge Univ. Press, Cambridge, 1974.
Boesch, F. T., and Tindell, R. Circulants and their connectivities. J.
Graph Theory 8 (1984), 487-499.
Chung, F. R. K., Leighton, F. T., and Rosenberg, A. L. Diogenes: A
methodology for designing fault-tolerant VLSI processor arrays. Proc.
Thirteenth Fault Tolerant Computing Symposium, June 1983, pp. 26-
31.
Dutt, S., and Hayes, J. P. On designing and reconfiguring k-fault-tolerant
tree architectures. IEEE Trans. Comput. C-39 (Apr. 1990)) 490-503.
Dutt, S. Designing and reconfiguring fault-tolerant multiprocessor sys-
tems. Ph.D. thesis, Department of Electrical Engineering and Computer
Science, University of Michigan, Aug. 1990.
Hakimi, S. L., and Amin, A. L. Characterization of connection assign-
ment of diagnosable systems. IEEE Trans. Comput. (Jan. 1974), 86-
88.
Hassan, A. S. M., and Agarwal, V. K. A modular approach to fault-
tolerant modular tree architectures. Proc. F$eenth Fault Tolerant
Computing Symposium, June 1985, pp. 344-349.
Hayes, J. P. A graph model for fault tolerant computing systems. ZEEE
Trans. Comput. C-25 (Sept. 1976), 875-883.
Hayes, J. P., et al. A microprocessor-based hypercube supercomputer.
IEEE Micro. 6 (Oct. 1986), 6-17.
Hillis, W. D. The Connection Machine. MIT Press, Cambridge, MA,
1985.
Hopkins, A. L., Jr., Smith, T. B., III, and Lala, J. H. FIMP-A highly
reliable fault-tolerant multiprocessor for aircraft. Proc. IEEE 66 (Oct.
1978), 1221-1239.
Kuhl, J. G., and Reddy, S. M. Distributed fault tolerance for large mul-
tiprocessor systems. Proc. Seventh Annual International Symposium on
Computer Architecture, May 1980, pp. 23-30.
Kwan, C. L., and Toida, S. An optimal 2-fault tolerant realization of
symmetric hierarchical tree systems. Networks 12 (1982), 231-239.
Leon, J. Computing automorphism groups of combinatorial objects. In
Atkinson, M. D. (Ed.). Computational Group Theory. Academic Press,
New York, 1984, pp. 321-337.
Lombardi, F., Negrini, R., Sami, M. G., and Stefanelli, R. Reconfigur-
ation of VLSI arrays: A covering approach. Proc. Seventeenth Fault
Tolerant Computing Symposium, June 1987, pp. 25 l-256.
Lowrie, M. B., and Fuchs, W. K. Reconfigurable tree architectures using
subtree oriented fault tolerance. IEEE Trans. Comput. C-36 (Oct. 1987),
1172-1182.
Preparata, F. P., Metze, G., and Chien, R. T. On the connection as-
signment problem of diagnosable systems. IEEE Trans. Electron. Com-
put. EC-16 (Dec. 1967), 848-854.
Raghavendra, C. S., Avizienis, A., and Ercegovac, M. D. Fault tolerance
in binary tree architectures. IEEE Trans. Comput. C-33 (June 1984),
568-572.
Rennels, D. A. On implementing fault-tolerance in binary hypercubes.
Proc. Sixteenth Fault Tolerant Computing Symposium, June 1986, pp.
344-349.
Rosenberg, A. L. The Diogenes approach to testable fault-tolerant arrays
of processors. IEEE Trans. Comput. C-32 (Oct. 1983), 902-910.
Saad, Y., and Schultz, M. H. Topological properties of hypercubes.
IEEE Trans. Comput. C-37 (July 1988), 867-872.

Sullivan, G. F. A polynomial time algorithm for fault diagnosability.
Proc. Twenty-Fifth Annual Symposium on Foundations qf Computer
Science, Oct. 1984, pp. 148-156.
Turner, J. Point-symmetric graphs with a prime number of points. J.
Combin. Theory3 (1967), 136-145.

268 DUTT AND HAYES

28. Yanney, R. M., and Hayes, J. P. Distributed fault recovery in multi-
processor networks. IEEE Trans. Comput. C-35 (Oct. 1986), 871-879.

29. Yap, H. P. Some Topics in Graph Theory. Cambridge Univ. Press,
Cambridge, 1986, pp. 96-97.

by the University of Michigan. His current technical interests include the
design of fault-tolerant multiprocessor systems, parallel and distributed
computing, computer architecture, and distributed fault diagnosis. He is a
member of the IEEE Computer Society and the ACM Special Interest Group
on Computer Architecture.

SHANTANU DUTT received the B.E. degree in electronics and com-
munication engineering from the MS. University of Baroda, India, in 1983,
the M.Tech. degree in computer engineering from the Indian Institute of
Technology, Kbaragpur, India, in 1985, and the Ph.D. degree in computer
science and engineering from the University of Michigan, Ann Arbor, in
1990. He is currently an assistant professor at the Department of Electrical
Engineering, University of Minnesota, Twin Cities. He was awarded a Na-
tional Merit Scholarship by the Government of India, a University Fellowship
by the MS. University of Baroda, and a Rackham Predoctoral Fellowship

Received September 30, 1990; accepted February 19, 199 1

JOHN P. HAYES received the B.E. degree from the National University
of Ireland in 1965 and the MS. and Ph.D. degrees from the University of
Illinois in 1967 and 1970, respectively, all in electrical engineering. He has
been a professor in the EECS Department at the University of Michigan
since 1982. He teaches and conducts research in the areas of computer-
aided design and testing, computer architecture, and fault-tolerant computing.
Hayes has authored several books, including Computer Architecture and
Organization (McGraw-Hill, 2nd ed. 1988), and over 100 technical papers.
He is a fellow of IEEE and a member of ACM and Sigma Xi.

