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Abstract 

Rosenbloom, P.S., J.E. Laird, A. Newell and R. McCarl, A primary analysis of the Soar 
architecture as a basis for general intelligence, Artificial Intelligence 47 (1991) 289-325. 

In this article we take a step towards providing an analysis of the Soar architecture as a basis 
for general intelligence. Included are discussions of the basic assumptions underlying the 
development of Soar, a description of Soar cast in terms of the theoretical idea of multiple 
levels of description, an example of Soar performing multi-column subtraction, and three 
analyses of Soar: its natural tasks, the sources of its power, and its scope and limits 

Introduction 

T h e  c e n t r a l  sc ient i f ic  p r o b l e m  o f  ar t i f ic ia l  i n t e l l i g e n c e  ( A I )  is to  u n d e r s t a n d  

w h a t  c o n s t i t u t e s  i n t e l l i g e n t  a c t i o n  a n d  w h a t  p r o c e s s i n g  o r g a n i z a t i o n s  a r e  
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capable of such action. Human intelligence--which stands before us like a holy 
grail--shows to first observation what can only be termed general intelligence. 
A single human exhibits a bewildering diversity of intelligent behavior. The 
types of goals that humans can set for themselves or accept from the environ- 
ment seem boundless. Further observation, of course, shows limits to this 
capacity in any individual--problems range from easy to hard, and problems 
can always be found that are too hard to be solved. But the general point is still 
compelling. 

Work in AI has already contributed substantially to our knowledge of what 
functions are required to produce general intelligence. There is substantial, 
though certainly not unanimous, agreement about some functions that need to 
be supported: symbols and goal structures, for example. Less agreement exists 
about what mechanisms are appropriate to support these functions, in large 
part because such matters depend strongly on the rest of the system and on 
cost-benefit tradeoffs. Much of this work has been done under the rubric of AI 
tools and languages, rather than AI systems themselves. However, it takes only 
a slight shift of viewpoint to change from what is an aid for the programmer to 
what is structure for the intelligent system itself. Not all features survive this 
transformation, but enough do to make the development of AI languages as 
much substantive research as tool building. These proposals provide substantial 
ground on which to build. 

The Soar project has been building on this foundation in an attempt to 
understand the functionality required to support general intelligence. Our 
current understanding is embodied in the Soar architecture [22, 26]. This article 
represents an attempt at describing and analyzing the structure of the Soar 
system. We will take a particular point of view--the description of Soar as a 
hierarchy of levels--in an attempt to bring coherence to this discussion. 

The idea of analyzing systems in terms of multiple levels of description is a 
familiar one in computer science. In one version, computer systems are 
described as a sequence of levels that starts at the bottom with the device level 
and works up through the circuit level, the logic level, and then one or more 
program levels. Each level provides a description of the system at some level of 
abstraction. The sequence is built up by defining each higher level in terms of 
the structure provided at the lower levels. This idea has also recently been used 
to analyze human cognition in terms of levels of description [38]. Each level 
corresponds to a particular time scale, such as -100 msec. and -1  sec., with a 
new level occurring for each new order of magnitude. The four levels between 
--10msec. and -10sec.  comprise the cognitive band (Fig. 1). The lowest 
cognitive level--at --10 msec.---is the symbol-accessing level, where the knowl- 
edge referred to by symbols is retrievable. The second cognitive level--at 
~100 msec.--is the level at which elementary deliberate operations occur; that 
is, the level at which encoded knowledge is brought to bear, and the most 
elementary choices are made. The third and fourth cognitive levels--at - 1  sec. 
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Rational Band . . .  

Cognitive Band 

Neural Band 

- 1 0  sec. Goal attainment 
1 sec. Simple operator composition 

-100msec.  Elementary deliberate operations 
- 1 0  msec. Symbol accessing 

Fig. 1. Partial hierarchy of time scales in human cognition. 

and -10  sec.--are the simple-operator-composition and goal-attainment levels. 
At these levels, sequences of deliberations can be composed to achieve goals. 
Above the cognitive band is the rational band, at which the system can be 
described as being goal oriented, knowledge-based, and strongly adaptive. 
Below the cognitive band is the neural band. 

In Section 2 we describe Soar as a sequence of three cognitive levels: the 
memory level, at which symbol accessing occurs; the decision level, at which 
elementary deliberate operations occur; and the goal level, at which goals are 
set and achieved via sequences of decisions. The goal level is an amalgamation 
of the top two cognitive levels from the analysis of human cognition. 

In this description we will often have call to describe mechanisms that are 
built into the architecture of Soar. The architecture consists of all of the fixed 
structure of the Soar system. According to the levels analysis, the correct view 
to be taken of this fixed structure is that it comprises the set of mechanisms 
provided by the levels underneath the cognitive band. For human cognition 
this is the neural band. For artificial cognition, this may be a connectionist 
band, though it need not be. This view notwithstanding, it should be re- 
membered that it is the Soar architecture which is primary in our research. The 
use of the levels viewpoint is simply an attempt at imposing a particular, 
hopefully illuminating, theoretical structure on top of the existing architecture. 

In the remainder of this paper we describe the methodological assumptions 
underlying Soar, the structure of Soar, an illustrative example of Soar's 
performance on the task of multi-column subtraction, and a set of preliminary 
analyses of Soar as an architecture for general intelligence. 

1. Methodological assumptions 

The development of Soar is driven by four methodological assumptions. It is 
not expected that these assumptions will be shared by all researchers in the 
field. However, the assumptions do help explain why the Soar system and 
project have the shapes that they do. 

The first assumption is the utility of focusing on the cognitive band, as 
opposed to the neural or rational bands. This is a view that has traditionally 
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been shared by a large segment of the cognitive science community; it is not, 
however, shared by the connectionist community, which focuses on the neural 
band (plus the lower levels of the cognitive band), or by the logicist and 
expert-systems communities, which focus on the rational band. This assump- 
tion is not meant to be exclusionary, as a complete understanding of general 
intelligence requires the understanding of all of these descriptive bands. ~ 
Instead the assumption is that there is important work to be done by focusing 
on the cognitive band. One reason is that, as just mentioned, a complete model 
of general intelligence will require a model of the cognitive band. A second 
reason is that an understanding of the cognitive band can constrain models of 
the neural and rational bands. A third, more applied reason, is that a model of 
the cognitive band is required in order to be able to build practical intelligent 
systems. Neural-band models need the higher levels of organization that are 
provided by the cognitive band in order to reach complex task performance. 
Rational-band models need the heuristic adequacy provided by the cognitive 
band in order to be computationally feasible. A fourth reason is that there is a 
wealth of both psychological and AI data about the cognitive band that can be 
used as the basis for elucidating the structure of its levels. This data can help us 
understand what type of symbolic architecture is required to support general 
intelligence. 

The second assumption is that general intelligence can most usefully be 
studied by not making a distinction between human and artificial intelligence. 
The advantage of this assumption is that it allows wider ranges of research 
methodologies and data to be brought to bear to mutually constrain the 
structure of the system. Our research methodology includes a mixture of 
experimental data, theoretical justifications, and comparative studies in both 
artificial intelligence and cognitive psychology. Human experiments provide 
data about performance universals and limitations that may reflect the struc- 
ture of the architecture. For example, the ubiquitous power law of practice-- 
the time to perform a task is a power-law function of the number of times the 
task has been performed--was used to generate a model of human practice 
[39,55], which was later converted into a proposal for a general artificial 
learning mechanism [27,28,61]. Artificial experiments--the application of 
implemented systems to a variety of tasks requiring intelligence--provide 
sufficiency feedback about the mechanisms embodied in the architecture and 
their interactions [16, 51,60, 62, 73]. Theoretical justifications attempt to pro- 
vide an abstract analysis of the requirements of intelligence, and of how 
various architectural mechanisms fulfill those requirements [38, 40, 49, 54, 5@ 
Comparative studies, pitting one system against another, provide an evaluation 
of how well the respective systems perform, as well as insight about how the 
capabilities of one of the systems can be incorporated in the other [6, 50]. 

Investigations of the relationship of Soar to the neural and rational bands can be found in 
[38, 49,561. 
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The third assumption is that the architecture should consist of a small set of 
orthogonal mechanisms. All intelligent behaviors should involve all, or nearly 
all, of these basic mechanisms. This assumption biases the development of Soar 
strongly in the direction of uniformity and simplicity, and away from modulari- 
ty [10] and toolkit approaches. When attempting to achieve a new functionality 
in Soar, the first step is to determine in what ways the existing mechanisms can 
already provide the functionality. This can force the development of new 
solutions to old problems, and reveal new connections--through the common 
underlying mechanisms--among previously distinct capabilities [53]. Only if 
there is no appropriate way to achieve the new functionality are new mecha- 
nisms considered. 

The fourth assumption is that architectures should be pushed to the extreme 
to evaluate how much of general intelligence they can cover. A serious attempt 
at evaluating the coverage of an architecture involves a long-term commitment 
by an extensive research group. Much of the research involves the apparently 
mundane activity of replicating classical results within the architecture. Some- 
times these demonstrations will by necessity be strict replications, but often the 
architecture will reveal novel approaches, provide a deeper understanding of 
the result and its relationship to other results, or provide the means of going 
beyond what was done in the classical work. As these results accumulate over 
time, along with other more novel results, the system gradually approaches the 
ultimate goal of general intelligence. 

2. Structure of  Soar 

In this section we build up much of Soar's structure in levels, starting at the 
bottom with memory and proceeding up to decisions and goals. We then 
describe how learning and perceptual-motor behavior fit into this picture, and 
wrap up with a discussion of the default knowledge that has been incorporated 
into the system. 

2.1. Level 1: Memory 

A general intelligence requires a memory with a large capacity for the 
storage of knowledge. A variety of types of knowledge must be stored, 
including declarative knowledge (facts about the world, including facts about 
actions that can be performed), procedural knowledge (facts about how to 
perform actions, and control knowledge about which actions to perform when), 
and episodic knowledge (which actions were done when). Any particular task 
will require some subset of the knowledge stored in the memory. Memory 
access is the process by which this subset is retrieved for use in task per- 
formance. 
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The lowest level of the Soar architecture is the level at which these memory 
phenomena occur. All of Soar's long-term knowledge is stored in a single 
production memory.  Whether  a piece of knowledge represents procedural,  
declarative, or episodic knowledge, it is stored in one or more productions. 
Each production is a condition-action structure that performs its actions when 
its conditions are met. Memory access consists of the execution of these 
productions. During the execution of a production, variables in its actions are 
instantiated with values. Action variables that existed in the conditions are 
instantiated with the values bound in the conditions. Action variables that did 
not exist in the conditions act as generators of new symbols. 

The result of memory access is the retrieval of information into a global 
working memory.  The working memory is a temporary memory that contains 
all of Soar's short-term processing context. Working memory consists of an 
interrelated set of objects with attribute-value pairs. For example, an object 
representing a green cat named Fred might look like (object 0025 ^name fred 
"type cat ^color green). The symbol o025 is the identifier of the object,  a 
short-term symbol for the object that exists only as long as the object is in 
working memory.  Objects are related by using the identifiers of some objects 

as attributes and values of other objects. 
There  is one special type of working memory structure, the preference. 

Preferences encode control knowledge about the acceptability and desirability 
of actions, according to a fixed semantics of preference types. Acceptability 
preferences determine which actions should be considered as candidates. 
Desirability preferences define a partial ordering on the candidate actions. For 
example, a better (or alternatively, worse) preference can be used to represent 
the knowledge that one action is more (or less) desirable than another action, 
and a best (or worst) preference can be used to represent the knowledge that 
an action is at least as good (or as bad) as every other action. 

In a traditional production-system architecture, each production is a 
problem-solving operator  (see, for example, [42]). The right-hand side of the 
production represents some action to be performed,  and the left-hand side 
represents the preconditions for correct application of the action (plus possibly 
some desirability conditions). One consequence of this view of productions is 
that the productions must also be the locus of behavioral control. If produc- 
tions are going to act, it must be possible to control which one executes at each 
moment;  a process known as conflict resolution. In a logic architecture, each 
production is a logical implication. The meaning of such a production is that if 
the left-hand side (the antecedent)  is true, then so is the right-hand side (the 
consequent).  2 Soar's productions are neither operators nor implications. In- 
stead, Soar's productions perform (parallel) memory retrieval. Each produc- 

2 The directionality of the implication is reversed in logic programming languages such as Prolog, 
but the point still holds. 
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tion is a retrieval structure for an item in long-term memory. The right-hand 
side of the rule represents a long-term datum, and the left-hand side represents 
the situations in which it is appropriate to retrieve that datum into working 
memory. The traditional production-system and logic notions of action, con- 
trol, and truth are not directly applicable to Soar's productions. All control in 
Soar is performed at the decision level. Thus, there is no conflict resolution 
process in the Soar production system, and all productions execute in parallel. 
This all flows directly from the production system being a long-term memory. 
Soar separates the retrieval of long-term information from the control of which 
act to perform next. 

Of course it is possible to encode knowledge of operators and logical 
implications in the production memory. For example, the knowledge about 
how to implement a typical operator can be stored procedurally as a set of 
productions which retrieve the state resulting from the operator's application. 
The productions' conditions determine when the state is to be retrieved---for 
example, when the operator is being applied and its preconditions are met. An 
alternative way to store operator implementation knowledge is declaratively as 
a set of structures that are completely contained in the actions of one or more 
productions. The structures describe not only the results of the operator, but 
also its preconditions. The productions' conditions determine when to retrieve 
this declarative operator description into working memory. A retrieved 
operator description must be interpreted by other productions to actually have 
an affect. 

In general, there are these two distinct ways to encode knowledge in the 
production memory: procedurally and declaratively. If the knowledge is pro- 
cedurally encoded, then the execution of the production reflects the knowl- 
edge, but does not actually retrieve it into working memory--it only retrieves 
the structures encoded in the actions. On the other hand, if a piece of 
knowledge is encoded declaratively in the actions of a production, then it is 
retrievable in its entirety. This distinction between procedural and declarative 
encodings of knowledge is distinct from whether the knowledge is declarative 
(represents facts about the world) or procedural (represents facts about 
procedures). Moreover, each production can be viewed in either way, either as 
a procedure which implicitly represents conditional information, or as the 
indexed storage of declarative structures. 

2.2. Level 2: Decisions 

In addition to a memory, a general intelligence requires the ability to 
generate and/or select a course of action that is responsive to the current 
situation. The second level of the Soar architecture, the decision level, is the 
level at which this processing is performed. The decision level is based on the 
memory level plus an architecturally provided, fixed, decision procedure. The 
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decision level proceeds in a two phase elaborate-decide cycle. During elabora- 
tion, the memory is accessed repeatedly,  in parallel, until quiescence is 
reached; that is, until no more productions can execute. This results in the 
retrieval into working memory of all of the accessible knowledge that is 
relevant to the current decision. This may include a variety of types of 
information, but of most direct relevance here is knowledge about actions that 
can be performed and preference knowledge about what actions are acceptable 
and desirable. After  quiescence has occurred, the decision procedure selects 

one of the retrieved actions based on the preferences that were retrieved into 
working memory and their fixed semantics. 

The decision level is open both with respect to the consideration of arbitrary 
actions, and with respect to the utilization of arbitrary knowledge in making a 
selection. This openness allows Soar to behave in both plan-following and 
reactive fashions. Soar is following a plan when a decision is primarily based on 
previously generated knowledge about what to do. Soar is being reactive when 
a decision is based primarily on knowledge about the current situation (as 

reflected in the working memory) .  

2.3. Level 3: Goals 

In addition to being able to make decisions, a general intelligence must also 
be able to direct this behavior towards some end; that is, it must be able to set 
and work towards goals. The third level of the Soar architecture, the goal level, 
is the level at which goals are processed. This level is based on the decision 
level. Goals are set whenever a decision cannot be made; that is, when the 
decision procedure reaches an impasse. Impasses occur when there are no 
alternatives that can be selected (no-change and rejection impasses) or when 
there are multiple alternatives that can be selected, but insufficient discriminat- 
ing preferences exist to allow a choice to be made among them (tie and conflict 
impasses). Whenever  an impasse occurs, the architecture generates the goal of 
resolving the impasse. Along with this goal, a new performance context is 
created. The creation of a new context allows decisions to continue to be made 
in the service of achieving the goal of resolving the impasse--nothing can be 
done in the original context because it is at an impasse. If an impasse now 
occurs in this subgoal, another  new subgoal and performance context are 
created. This leads to a goal (and context) stack in which the top-level goal is 
to perform some task, and lower-level goals are to resolve impasses in problem 
solving. A subgoal is terminated when either its impasse is resolved, or some 
higher impasse in the stack is resolved (making the subgoal superfluous). 

In Soar, all symbolic goal-oriented tasks are formulated in problem spaces. 
A problem space consists of a set of states and a set of operators. The states 
represent situations, and the operators represent actions which when applied to 
states yield other states. Each performance context consists of a goal, plus roles 
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for a problem state, a state, and an operator. Problem solving is driven by 
decisions that result in the selection of problem spaces, states, and operators 
for their respective context roles. Given a goal, a problem space should be 
selected in which goal achievement can be pursued. Then an initial state should 
be selected that represents the initial situation. Then an operator should be 
selected for application to the initial state. Then another state should be 
selected (most likely the result of applying the operator to the previous state). 
This process continues until a sequence of operators has been discovered that 
transforms the initial state into a state in which the goal has been achieved. 
One subtle consequence of the use of problem spaces is that each one implicitly 
defines a set of constraints on how the task is to be performed. For example, if 
the Eight Puzzle is attempted in a problem space containing only a slide-tile 
operator, all solution paths maintain the constraint that the tiles are never 
picked up off of the board. Thus, such conditions need not be tested for 
explicitly in desired states. 

Each problem solving decision--the selection of a problem space, a state, or 
an operator--is based on the knowledge accessible in the production memory. 
If the knowledge is both correct and sufficient, Soar exhibits highly controlled 
behavior; at each decision point the right alternative is selected. Such behavior 
is accurately described as being algorithmic or knowledge-intensive. However, 
for a general intelligence faced with a broad array of unpredictable tasks, 
situations will arise--inevitably and indeed frequently--in which the accessible 
knowledge is either incorrect or insufficient. It is possible that correct decisions 
will fortuitously be made, but it is more likely that either incorrect decisions 
will be made or that impasses will occur. Under such circumstances search is 
the likely outcome. If an incorrect decision is made, the system must eventually 
recover and get itself back on a path to the goal, for example, by backtracking. 
If instead an impasse occurs, the system must execute a sequence of problem 
space operators in the resulting subgoal to find (or generate) the information 
that will allow a decision to be made. This processing may itself be highly 
algorithmic, if enough control knowledge is available to uniquely determine 
what to do, or it may involve a large amount of further search. 

As described earlier, operator implementation knowledge can be repre- 
sented procedurally in the production memory, enabling operator implementa- 
tion to be performed directly by memory retrieval. When the operator is 
selected, a set of productions execute that collectively build up the representa- 
tion of the result state by combining data from long-term memory and the 
previous state. This type of implementation is comparable to the conventional 
implementation of an operator as a fixed piece of code. However, if operator 
implementation knowledge is stored declaratively, or if no operator im- 
plementation knowledge is stored, then a subgoal occurs, and the operator 
must be implemented by the execution of a sequence of problem space 
operators in the subgoal. If a declarative description of the to-be-implemented 
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operator is available, then these lower operators may implement the operator 
by interpreting its declarative description (as was demonstrated in work on task 
acquisition in Soar [61]). Otherwise the operator can be implemented by 
decomposing it into a set of simpler operators for which operator implementa- 
tion knowledge is available, or which can in turn be decomposed further. 

When an operator is implemented in a subgoal, the combination of the 
operator and the subgoal correspond to the type of deliberately created 
subgoal common in AI problem solvers. The operator specifies a task to be 
performed, while the subgoal indicates that accomplishing the task should be 
treated as a goal for further problem solving. In complex problems, like 
computer configuration, it is common for there to be complex high-level 
operators, such as Configure-computer which are implemented by selecting 
problem spaces in which they can be decomposed into simpler tasks. Many of 
the traditional goal management issues--such as conjunction, conflict, and 
selection--show up as operator management issues in Soar. For example, a set 
of conjunctive subgoals can be ordered by ordering operators that later lead to 
impasses (and subgoals). 

As described in [54], a subgoal not only represents a subtask to be 
performed, but it also represents an introspective act that allows unlimited 
amounts of meta-level problem-space processing to be performed. The entire 
working memory--the goal stack and all information linked to it--is available 
for examination and augmentation in a subgoal. At any time a production can 
examine and augment any part of the goal stack. Likewise, a decision can be 
made at any time for any of the goals in the hierarchy. This allows subgoal 
problem solving to analyze the situation that led to the impasse, and even to 
change the subgoal, should it be appropriate. One not uncommon occurrence 
is for information to be generated within a subgoal that instead of satisfying the 
subgoal, causes the subgoal to become irrelevant and consequently to dis- 
appear. Processing tends to focus on the bottom-most goal because all of the 
others have reached impasses. However, the processing is completely oppor- 
tunistic, so that when appropriate information becomes available at a higher 
level, processing at that level continues immediately and all lower subgoals are 
terminated. 

2.4. Learning 

All learning occurs by the acquisition of chunks--productions that summa- 
rize the problem solving that occurs in subgoals [28]. The actions of a chunk 
represent the knowledge generated during the subgoal; that is, the results of 
the subgoal. The conditions of the chunk represent an access path to this 
knowledge, consisting of those elements of the parent goals upon which the 
results depended. The results of the subgoal are determined by finding the 
elements generated in the subgoal that are available for use in subgoals--an 
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element is a result of a subgoal precisely because it is available to processes 
outside of the subgoal. The access path is computed by analyzing the traces of 
the productions that fired in the subgoal----each production trace effectively 
states that its actions depended on its conditions. This dependency analysis 
yields a set of conditions that have been implicitly generalized to ignore 
irrelevant aspects of the situation. The resulting generality allows chunks to 
transfer to situations other than the one in which it was learned. The primary 
system-wide effect of chunking is to move Soar along the space-time trade-off 
by allowing relevantly similar future decisions to be based on direct retrieval of 
information from memory rather than on problem solving within a subgoal. If 
the chunk is used, an impasse will not occur, because the required information 

is already available. 
Care must be taken to not confuse the power of chunking as a learning 

mechanism with the power of Soar as a learning system. Chunking is a simple 
goal-based, dependency-tracing, caching scheme, analogous to explanation- 
based learning [4, 36, 50] and a variety of other schemes [55]. What allows Soar 
to exhibit a wide variety of learning behaviors are the variations in the types of 
subgoals that are chunked; the types of problem solving, in conjunction with 
the types and sources of knowledge, used in the subgoals; and the ways the 
chunks are used in later problem solving. The role that a chunk will play is 
determined by the type of subgoal for which it was learned. State-no-change, 
operator-tie, and operator-no-change subgoals lead respectively to state aug- 
mentation, operator selection, and operator implementation productions. The 
content of a chunk is determined by the types of problem solving and 
knowledge used in the subgoal. A chunk can lead to skill acquisition if it is 
used as a more efficient means of generating an already generatable result. A 
chunk can lead to knowledge acquisition (or knowledge level learning [5]) if it 
is used to make old/new judgments; that is, to distinguish what has been 
learned from what has not been learned [52, 53, 56]. 

2.5. Percept ion and m o t o r  control  

One of the most recent functional additions to the Soar architecture is a 
perceptual-motor interface [75, 76]. All perceptual and motor behavior is 
mediated through working memory; specifically, through the state in the top 
problem solving context. Each distinct perceptual field has a designated 
attribute of this state to which it adds its information. Likewise, each distinct 
motor field has a designated attribute of the state from which it takes its 
commands. The perceptual and motor systems are autonomous with respect to 
each other and the cognitive system. 

Encoding and decoding productions can be used to convert between the 
high-level structures used by the cognitive system, and the low-level structures 
used by the perceptual and motor systems. These productions are like ordinary 
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productions, except that they examine only the perceptual and motor fields, 
and not any of the rest of the context stack. This autonomy from the context 
stack is critical, because it allows the decision procedure to proceed without 
waiting for quiescence among the encoding and decoding productions, which 
may never happen in a rapidly changing environment. 

2.6. Default knowledge 

Soar has a set of productions (55 in all) that provide default responses to 
each of the possible impasses that can arise, and thus prevent the system from 
dropping into a bottomless pit in which it generates an unbounded number of 
content-free performance contexts. Figure 2 shows the default production that 
allows the system to continue if it has no idea how to resolve a conflict impasse 
among a set of operators. When the production executes, it rejects all of the 
conflicting operators. This allows another candidate operator to be selected, if 
there is one, or for a different impasse to arise if there are no additional 
candidates. This default response, as with all of them, can be overridden by 
additional knowledge if it is available. 

One large part of the default knowledge (10 productions) is responsible for 
setting up operator subgoaling as the default response to no-change impasses 
on operators. That is, it attempts to find some other state in the problem space 
to which the selected operators can be applied. This is accomplished by 
generating acceptable and worst preferences in the subgoal for the parent 
problem space. If another problem space is suggested, possibly for implement- 
ing the operator, it will be selected. Otherwise, the selection of the parent 
problem space in the subgoal enables operator subgoaling. A sequence of 
operators is then applied in the subgoal until a state is generated that satisfies 
the preconditions of an operator higher in the goal stack. 

Another large part of the default knowledge (33 productions) is responsible 
for setting up lookahead search as the default response to tie impasses. This is 
accomplished by generating acceptable and worst preferences for the selection 
problem space. The selection problem space consists of operators that evaluate 
the tied alternatives. Based on the evaluations produced by these operators, 
default productions create preferences that break the tie and resolve the 
impasse. In order to apply the evaluation operators, domain knowledge must 
exist that can create an evaluation. If no such knowledge is available, a second 
impasse arises--a no-change on the evaluation operator. As mentioned earlier, 

If there is an impasse because of an operator conflict 
and there are no candidate problem spaces available 

then reject the conflicting operators. 

Fig. 2. A default production. 



The Soar architecture as a basis for general intelligence 301 

the default response to an operator no-change impasse is to perform operator 
subgoaling. However, for a no-change impasse on an evaluation operator this 
is overridden and a lookahead search is performed instead. The results of the 
lookahead search are used to evaluate the tied alternatives. 

As Soar is developed, it is expected that more and more knowledge will be 
included as part of the basic system about how to deal with a variety of 
situations. For example, one area on which we are currently working is the 
provision of Soar with a basic arithmetical capability, including problem spaces 
for addition, multiplication, subtraction, division, and comparison. One way of 
looking at the existing default knowledge is as the tip of this large iceberg of 
background knowledge. However, another way to look at the default knowl- 
edge is as part of the architecture itself. Some of the default knowledge--how 
much is still unclear--must be innate rather than learned. The rest of the 
system's knowledge, such as the arithmetic spaces, should then be learnable 

from there. 

3. Example: multi-column subtraction 

Multi-column subtraction is the task we will use to demonstrate Soar. This 
task has three advantages. First, it is a familiar and simple task. This allows the 
details of Soar not to be lost in the complexities of understanding the task. 
Second, previous work has been done on modeling human learning of subtrac- 
tion in the Sierra architecture [71]. Our implementation is inspired by the 
Sierra framework. Third, this task appears to be quite different from many 
standard search-intensive tasks common in AI. On the surface, it appears 
difficult to cast subtraction within the problem-space framework of Soar--it is, 
after all, a procedure. One might also think that chunking could not learn such 
a procedure. However, in this example, we will demonstrate that multi-column 
subtraction can be performed by Soar and that important parts of the proce- 
dure can be learned through chunking. 

There exist many different procedures for performing multi-column subtrac- 
tion. Different procedures result in different behaviors, both in the order in 
which scratch marks--such as borrowing notations--are made and in the type 
of mistakes that might be generated while learning [72]. For simplicity, we will 
demonstrate the implementation of just one of the many possible procedures. 
This procedure uses a borrowing technique that recursively borrows from a 
higher-order column into a lower-order column when the top number in the 
lower-order column is less than the bottom number. 

3.1. A hierarchical subtraction procedure 

One way to implement this procedure is via the processing of a goal 
hierarchy that encodes what must be done. Figure 3 shows a subtraction goal 
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Subtraction 

I I 
Single-column Rest-columns 

B o r r o w l  

Borrow-from Borrow-into 

I I I ub ra  - l 
I 

B o r r o w l  

Fig. 3. A goal hierarchy for multi-column subtraction. 

hierarchy that is similar to the one learned by Sierra. 3 Under each goal are 
shown the subgoals that may be generated while trying to achieve it. This 
Sierra goal hierarchy is mapped onto a hierarchy of operators and problem 
spaces in Soar (as described in Section 2). The boxed goals map onto operators 
and the unboxed goals map onto problem spaces. Each problem space consists 
of the operators linked to it from below in the figure. Operators that have 
problem spaces below them are implemented by problem solving in those 
problem spaces. The other operators are implemented directly at the memory 
level by productions (except for multiple-column and regroup, which are 
recursive). These are the primitive acts of subtraction, such as writing numbers 
or subtracting digits. 

The states in these problem spaces contain symbolic representations of the 
subtraction problem and the scratch marks made on the page during problem 
solving. The representation is very simple and direct, being based on the 
spatial relationships among the digits as they would appear on a page. The 
state consists of a set of columns. Each column has pointers to its top and 
bottom digits. Additional pointers are generated when an answer for a column 
is produced, or when a scratch mark is made as the result of borrowing. The 
physical orientation of the columns on the page is represented by having "left" 
and "right" pointers from columns to their left and right neighbors. There is no 
inherent notion of multi-digit numbers except for these left and right relations 
between columns. This representation is consistent with the operators, which 

3 Sierra learned a slightly more elaborate, but computationally equivalent, procedure. 
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treat the problem symbolically and never manipulate multi-digit numbers as a 
whole. 

Using this implementation of the subtraction procedure, Soar is able to solve 
all multi-column subtraction problems that result in positive answers. Unfortu- 
nately, there is little role for learning. Most of the control knowledge is already 
embedded in the productions that select problem spaces and operators. Within 
each problem space there are only a few operators from which to select. The 
preconditions of the few operators in each problem space are sufficient for 
perfect behavior. Therefore, goals arise only to implement operators. Chunk- 
ing these goals produces productions that are able to compute answers without 
the intermediate subgoals. 4 

3.2. A single-space approach 

One way to loosen up the strict control provided by the detailed problem- 
space/operator hierarchy in Fig. 3, and thus to enable the learning of the 
control knowledge underlying the subtraction procedure, is to have only a 
single subtraction problem space that contains all of the primitive acts (writing 
results, changing columns, and so on). Figure 4 contains a description of the 

• Operators: 
Write-difference: If the difference between the top digit and the bottom digit of 

the current column is known, then write the difference as an answer to the 
current column. 

Write-top: If the lower digit of the current column is blank, then write the top 
digit as the answer to the current column. 

Borrow-into: If the result of adding 10 to the top digit of the current column is 
known, and the digit to the left of it has a scratch mark on it, then replace the 
top digit with the result. 

Borrow-from: If the result of subtracting 1 from the top digit in the current 
column is known, then replace that top digit with the result, augment it with a 
scratch mark and shift the current column to the right. 

Move-left: If the current column has an answer in it, shift the current column 
left. 

Move-borrow-left: If the current column does not have a scratch mark in it, shift 
the current column left. 

Subtract-two-digits: If the top digit is greater than or equal to the lower digit, 
then produce a result that is the difference. 

Subtract-l: If the top digit is not zero, then produce a result that is the top digit 
minus one. 

Add 10: Produce a result that is the top digit plus ten. 
• Goal Test: If each column has an answer, then succeed. 

Fig. 4. Primitive subtraction problem space. 

4 This work on subtraction was done in an earlier version of Soar that did not have the 
perceptual-motor interface described in Section 2. In that version, these chunks caused Soar to 
write out all of the column results and scratch marks in paral lel--not  very realistic motor behavior. 
To work around this problem, chunking was disabled for goals in this task during which 
environmental interactions occurred. 
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problem space operators and the goal test used in this second implementation. 
The operators can be grouped into four classes: the basic acts of writing 
answers to a single column problem (write-difference, write-top); borrow 
actions on the upper digits (borrow-into, borrow-from); moving from one 
column to the next (move-left, move-borrow-left); and performing very simple 
arithmetic computations (subtract-two-digits, subtract-l, add-10). With this 
simple problem space, Soar must learn the subtraction procedure by acquiring 
control knowledge that correctly selects operators. 

Every operator in the subtraction problem space is considered for every state 
in the space. This is accomplished by having a production for each operator 
that generates an acceptable preference for it. The conditions of the production 
only test that the appropriate problem space (subtraction) is selected. Similar 
productions existed in the original implementation, except that those produc- 
tions also contained additional tests which ensured that the operators would 
only be considered when they were the appropriate ones to apply. 

In addition to productions which generate acceptable preferences, each 
operator has one or more productions which implement it. Although every 
operator is made acceptable for every state, an operator will actually be 
applied only if all of the conditions in the productions that implement it are 
satisfied. For example, write-difference will only apply if the difference be- 
tween the top and bottom numbers is known. If an operator is selected, but the 
conditions of the productions that implement it are not satisfied, an impasse 
arises. As described in Section 2, the default response to this type of impasse is 
to perform operator subgoaling. 

Figure 5 shows a trace of Soar's problem solving as it performs a simple 
two-column subtraction problem, after the learning of control knowledge has 
been completed. Because Soar's performance prior to learning on this problem 
is considerably more complicated, it is described after this simpler case. The 

1 . 1 1 
22 write-difference ~12 move-left ~12 write-top "~ 12 

3 3 ~ 3 ~ 3 

9 9 19 

* borrow-into * 
22 ~ 2 

* ~ 1. 
22 move-left 22 borrow-from ~?. 
3 ~ 3 ~ - 3 

Fig. 5. Trace of problem solving after learning for 22 - 3. 
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top goal in this figure is to have the result of subtracting 3 from 22. Problem 
solving in the top goal proceeds from left to right, diving to a lower level 
whenever a subgoal is created in response to an impasse. Each state is a 
partially solved subtraction problem, consisting of the statement of the subtrac- 
tion problem, a * designating the current column, and possibly column results 
and/or scratch marks for borrowing. Operator applications are represented by 
arrows going from left to right. The only impasses that occur in this trace are a 
result of the failure of operator preconditions---a form of operator no-change 
impasse. These impasses are designated by circles disrupting the operator- 
application arrows, and are labeled in the order they arise (A and B). For 
example, impasse A arises because write-difference cannot apply unless the 
lower digit in the current column (3) is less than the top digit (2). 

For impasse A, operator subgoaling occurs when the subtraction problem 
space is selected in the subgoal. The preconditions of the write-difference 
operator are met when a state has been generated whose top digit has been 
changed from 2 to 12 (by borrowing). Once this occurs, the subgoal terminates 
and the operator applies, in this case writing the difference between 12 and 3. 
In this implementation of subtraction, operator subgoaling dynamically creates 
a goal hierarchy that is similar to the one programmed into the original 
implementation. 

3.3. Performance prior to learning 

Prior to learning, Soar's problem solving on this task is considerably more 
complicated. This added complexity arises because of an initial lack of knowl- 
edge about the results of simple arithmetic computations and a lack of 
knowledge about which operators should be selected for which states. Figure 6 

Subtract problem space 

Selection problem space 

Subtract problem space 

w~e-difference move-left 

22 ,d.4=AI X 12  ,12 

/ --,, 

write-difference ~012 
22 

9 

Fig. 6. Trace of problem solving before learning for 22 - 3. 
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shows a partial trace of Soar's pre-learning problem solving. Although many of 
the subgoals are missing, this small snapshot of the problem solving is 
characteristic of the impasses and subgoals that arise at all levels. 

As before, the problem solving starts at the upper left with the initial state. 
As soon as the initial state is selected, a tie impasse (A) arises because all of 
the operators are acceptable and there are no additional preferences that 
distinguish between them. Default productions cause the selection space to be 
selected for this impasse. Within this space, operators are created to evaluate 
the tied operators. This example assumes that evaluate-object(write-difference) 
is selected, possibly based on advice from a teacher. Then, because there is no 
knowledge available about how to evaluate the subtraction operators, a 
no-change impasse (B) occurs for the evaluation operator. More default 
productions lead to a lookahead search by suggesting the original problem 
space (subtraction) and state and then selecting the operator that is being 
evaluated. The operator then applies, if it can, creating a new state. In this 
example, an operator subgoal impasse (C) arises when the attempt is made to 
apply the write-difference operator--its preconditions are not satisfied. Prob- 
lem solving continues in this subgoal, requiring many additional impasses, until 
the write-difference operator can finally be applied. The lookahead search then 
continues until an evaluation is generated for the write-difference operator. 
Here, this happens shortly after impasse C is resolved. The system was given 
the knowledge that a state containing an answer for the current column is a 
(partial) success--such states are on the path to the goal. This state evaluation 
is then converted by default productions into an evaluation of "success" for the 
operator, and from there into a best preference for the operator. The creation 
of this preference breaks the operator tie, terminating the subgoals, and 
leading to the selection of the preferred operator (write-difference). The 
overall behavior of the system during this lookahead search is that of depth- 
first search--where backtracking occurs by subgoal termination--intertwined 
with operator subgoaling. Once this search is completed, further impasses (N) 
arise to actually apply the selected operator, but eventually, a solution is 
found. 

One way in which multi-column subtraction differs from the classic AI search 
tasks is that the goal test is underspecified. As shown in Fig. 4, the goal test 
used here is that a result has been generated for each column of the problem. 
This determines whether some answer has been given for the problem, but is 
inadequate to determine whether the correct answer has been generated. The 
reason for this is that when solving a subtraction problem, the answer is in 
general not already available. It is theoretically (and practically) possible to use 
an addition procedure to test whether the subtraction procedure has generated 
the correct result. However, that corresponds to a deliberate strategy of 
"checking your work", rather than to the normal procedural goal test of 
determining whether the sequence of steps has been completed. 
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One consequence of having an underspecified goal test is that the combina- 
tion of the problem space and goal test are not sufficient to ensure correct 
performance. Additional knowledge--the control knowledge which underlies 
the subtraction procedure--must also be provided in some form. VanLehn 
provided Sierra with worked-out examples which included the order in which 
the primitive external actions were to be performed [71]. The approach that we 
have taken is to provide advice to Soar [12] about which task operators it 
should evaluate first in the selection problem space. This ensures that the first 
answer generated during the lookahead search is the correct one. 

3.4. Learning in subtraction 

When chunking is used during subtraction problem solving, productions are 
created which reproduce the results of the subgoals in similar future situations. 
For the subgoals created because of tie impasses, the chunks create best 
preferences for the operators that led to the solution. These chunks essentially 
cache the results of the lookahead searches. A set of such chunks corresponds 
to a plan (or procedure)--they determine at every step what should be 
done--thus chunking converts Soar's behavior from search into plan (or 
procedure) following. When Soar is rerun on the same problem, the tie 
impasses do not arise and the solution is found directly, as in Fig. 5. 

One important issue concerning the chunked productions is their generality. 
Does Soar only learn chunks that can apply to the exact same problem, or are 
the chunks general enough so that advice is no longer needed after a few 
subtraction problems have been completed? The answer is that the learned 
control chunks are quite general--so general that only one or two are required 
per operator. Once these chunks are acquired, Soar is able to solve perfectly 
all multi-column subtraction problems that have a positive answer. One sample 
control chunk for the borrow-into operator is shown in Fig. 7. Similar chunks 
are learned for each of the other major operators. 

One reason for this generality is that operator subgoaling leads to a 
fine-grained goal hierarchy. There are a large number of relatively simple goals 
having to do with satisfying the preconditions of an operator. Because the 
problem solving for these goals is relatively minimal, the resulting chunks are 
quite general. A second reason for the generality of the learning is that the 

If the super-operator is write-difference, 
and the bottom digit is greater than the top digit, 

then make a best preference for borrow-into. 

Fig. 7. A control chunk for borrow-into. 
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control chunks do not test for the specific digits used in the problems-- if  such 
tests were included, the chunks would transfer to many fewer problems. 5 

Though the control chunks that are learned are quite general, many special- 

ized implementation chunks are also learned for the simple arithmetic 

operators. For example, the set of chunks that are eventually learned for the 

subtract-two-digits operator comprise a partial subtraction table for one- and 

two-digit numbers. Conceivably, these chunks could have been learned before 

multi-column subtraction is ever attempted----one may imagine that most of 

these simple digit manipulations are learned during earlier lessons on addition 

and single-column subtraction. Alternatively, these chunks can continue to be 

acquired as more multi-column subtraction problems are solved. The control 

chunks would all be acquired after a few trials, but learning of arithmetic 

knowledge would continue through later problems. 

4. Analysis of Soar 

There are a variety of analyses that could be performed for Soar. In this 

section we take our cue from the issues provided by the organizers of the 1987 

Workshop on the Foundations of Artificial Intelligence [14]. We examine the 

set of tasks that are natural for Soar, the sources of its power, and its scope and 
limits. 

4.1.  N a t u r a l  t a s k s  

What does it mean for a task to be natural for an architecture? To answer 

this question we first must understand what a task is, and then what it means 

for such a task to be natural. By "task" we will mean any identifiable function, 

whether externally specified, or completely internal to the system. Computer  

configuration and maneuvering through an obstacle course are both tasks, and 

so are inheritance and skill acquisition. One way to define the idea of 

naturalness for a combination of a task and architecture is to say that a task is 

natural for an architecture if the task can be performed within the architecture 

without adding an extra level of interpretation within the software. This 

definition is appealing because it allows a distinction to be made between the 

tasks that the architecture can perform directly and those that can be done, but 

for which the architecture does not provide direct support. However,  applying 

Chunking would include tests for the digits if their specific values were examined during the 
lookahead searches. However, the actual manipulation of the numbers is performed by the simple 
arithmetic operators: add-10, subtract-1 and subtract-two-digits. Before an operator such as 
write-difference is applied, an operator subgoal is created in which subtract-two-digits is selected 
and applied. The chunk for this subgoal reproduces the result whenever the same two digits are to 
be subtracted, eliminating the need for subtract-two-digits in such situations in the future. In the 
following Iookahead searches, only pointers to the digits rather than the actual digits are ever 
tested, thereby leading to control chunks that are independent of the actual digits. 
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this definition is not without its problems. One problem is that, for any 
particular task, it is possible to replace the combination of an interpreter and 
its interpreted structures with a procedure that has the same effect. Some 
forms of learning---vhunking, for example--do exactly this, by compiling 
interpreted structures into the structure of the interpreter. This has the effect 
of converting an unnatural task implementation into a natural one. Such a 
capability causes problems for the definition of naturalness--naturalness can- 
not be a fixed property of the combination of a task and an architecture--but it 
is actually a point is favor of architectures that can do such learning. 

A second problem is that in a system that is itself built up in levels, as is 
Soar, different tasks will be performed at different levels. In Soar, tasks can be 
performed directly by the architecture, by memory retrieval, by a decision, or 
by goal-based problem solving. A task is implemented at a particular level if 
that level and all lower levels are involved, but the higher levels are not. For 
example, consider the task of inheritance. Inheritance is not directly im- 
plemented by the Soar architecture, but it can be implemented at the memory 
level by the firing of productions. This implementation involves the memory 
level plus the architecture (which implements the memory level), but not the 
decision or goal levels. Alternatively, inheritance could be implemented at the 
decision level, or even higher up at goal level. As the level of implementation 
increases, performance becomes more interpretive, but the model of computa- 
tion explicitly includes all of these levels as natural for the system. 

One way out of this problem is to have pre-theoretic notions about the level 
at which a particular task ought to be performable. The system is then natural 
for the task if it can be performed at that level, and unnatural if it must be 
implemented at a higher level. If, for example, the way inheritance works 
should be a function of the knowledge in the system, then the natural level for 
the capability is at the memory level (or higher). 

In the remainder of this section we describe the major types of tasks that 
appear to us to be natural in Soar. Lacking any fundamental ways of 
partitioning the set of all tasks into principled categories, we will use a 
categorization based on four of the major functional capabilities of Soar: 
search-based tasks, knowledge-based tasks, learning tasks, and robotic tasks. 
The naturalness judgments for these task types are always based on assump- 
tions about the natural level of implementation for a variety of subtasks within 
each type of task. We will try to be as clear as possible about the levels at 
which the subtasks are being performed, so that others may also be able to 
make these judgments for themselves. 

4.1.1. Search-based tasks 
Soar performs search in two qualitatively different ways: within context and 

across context. Within-context search occurs when Soar "knows" what to do at 
every step, and thus selects a sequence of operators and states without going 
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into a subgoal. If it needs to backtrack in within-context search, and the states 
in the problem space are internal (rather than states of the outside world), it 
can do so by reselecting a previously visited state. Within-context search 
corresponds to doing the task, without lookahead, and recovering if anything 
goes wrong. Across-context search occurs when the system doesn't know what 
to do, and impasses arise. Successive states in the search show up in successive- 
ly lower contexts. Backtracking occurs by terminating subgoals. Across-context 
search corresponds to lookahead search, hypothetical scenario generation, or 
simulation. 

Various versions of Soar have been demonstrated to be able to perform over 
30 different search methods [21,25,26]. Soar can also exhibit hybrid 
methods--such as a combination of hill-climbing and depth-first search or of 
operator subgoaling and depth-first search--and use different search methods 
for different problem spaces within the same problem. 

Search methods are represented in Soar as method increments--productions 
that contain a small chunk of knowledge about some aspect of a task and its 
action consequences. For example, a method increment might include knowl- 
edge about how to compute an evaluation function for a task, along with the 
knowledge that states with better evaluations should be preferred. Such an 
increment leads to a form of hill climbing. Other increments lead to other 
search methods. Combinations of increments lead to mixed methods. 

The basic search abilities of making choices and generating subgoals are 
provided by the architecture. Individual method increments are at the memory 
level, but control occurs at the decision level, where the results of all of the 
method increments can be integrated into a single choice. Some search 
knowledge, such as the selection problem space, exists at the goal level. 

4.1.2. Knowledge-based tasks 
Knowledge-based tasks are represented in Soar as a collection of interacting 

problem spaces (as are all symbolic goal-oriented tasks). Each problem space is 
responsible for a part of the task. Problem spaces interact according to the 
different goal-subgoal relationships that can exist in Soar. Within each problem 
space, the knowledge is further decomposed into a set of problem space 
components, such as goal testing, state initialization, and operator proposal 
[77]. These components, along with additional communication constructs, can 
then be encoded directly as productions, or can be described in a high-level 
problem space language called TAQL [77], which is then compiled down into 
productions. Within this overall problem space organization, other forms of 
organization--such as object hierarchies with inheritance--are implementable 
at the memory level by multiple memory accesses. Task performance is 
represented at the goal level as search in problem spaces. 

Several knowledge-based tasks have been implemented in Soar, including 
the R1-Soar computer configuration system [51], the Cypress-Soar and De- 
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signer-Soar algorithm design systems [60, 62], the Neomycin-Soar medical 
diagnosis system [73], and the Merl-Soar job-shop scheduling system [16]. 

These five knowledge-based systems cover a variety of forms of both 
construction and classification tasks. Construction tasks involve assembling an 
object from pieces. R1-Soar--in which the task is to construct a computer 
configuration--is a good example of a construction task. Classification tasks 
involve selecting from among a set of objects. Neomycin-Soar--in which the 
task is to diagnose an illness--is a good example of a classification task. 6 In 
their simplest forms, both construction and classification occur at the decision 
level. In fact, they both occur to some extent within every decision in 
Soar--alternatives must be assembled in working-memory and then selected. 
These capabilities can require trivial amounts of processing, as when an object 
is constructed by instantiating and retrieving it from memory. They can also 
involve arbitrary amounts of problem solving and knowledge, as when the 
process of operator-implementation (or, equivalently, state-construction) is 
performed via problem solving in a subgoal. 

4.1.3. Learning tasks 
The architecture directly supports a form of experiential learning in which 

chunking compiles goal-level problem solving into memory-level productions. 
Execution of the productions should have the same effect as the problem 
solving would have had, just more quickly. The varieties of subgoals for which 
chunks are learned lead to varieties in types of productions learned: problem 
space creation and selection; state creation and selection; and operator crea- 
tion, selection, and execution. An alternative classification for this same set of 
behaviors is that it covers procedural, episodic and declarative knowledge [56]. 
The variations in goal outcomes lead to both learning from success and 
learning from failure. The ability to learn about all subgoal results leads to 
learning about important intermediate results, in addition to learning about 
goal success and failure. The implicit generalization of chunks leads to transfer 
of learned knowledge to other subtasks within the same problem (within-trial 
transfer), other instances of the same problem (across-trial transfer), and other 
problems (across-task transfer). Variations in the types of problems performed 
in Soar lead to chunking in knowledge-based tasks, search-based, and robotic 
tasks. Variations in sources of knowledge lead to learning from both internal 
and external knowledge sources. A summary of many of the types of learning 
that have so far been demonstrated in Soar can be found in [61]. 

The apparent naturalness of these various forms of learning depends primari- 
ly on the appropriateness of the required problem solving. Towards the natural 
end of the spectrum is the acquisition of operator selection productions, in 

6 In a related development ,  as part  of  an effort to map the Generic  Task approach to expert  
system construction onto Soar, the Generic  Task for classification by establish-refine has been 
implemented  in Soar as a general  problem space [17]. 
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which the problem solving consists simply of a search with the set of operators 
for which selection knowledge is to be learned. Towards the unnatural end of 
the spectrum is the acquisition of new declarative knowledge from the outside 
environment. Many systems employ a simple store command for such learning, 
effectively placing the capability at the memory level. In Soar, the capability is 
situated two levels further up, at the goal level. This occurs because the 
knowledge must be stored by chunking, which can only happen if the knowl- 
edge is used in subgoal-based problem solving. The naturalness of this learning 
in Soar thus depends on whether this extra level of interpretation is appropri- 
ate or not. It turns out that the problem solving that enables declarative 
learning in Soar takes the form of an understanding process that relates the 
new knowledge to what is already known. The chunking of this understanding 
process yields the chunks that encode the new knowledge. If it is assumed that 
new knowledge should always be understood to be learned, then Soar's 
approach starts to look more natural, and verbatim storage starts to look more 
inappropriate. 

4.1.4. Robotic tasks 

Robotic tasks are performed in Soar via its perceptual-motor interface. 
Sensors autonomously generate working memory structures representing what 
is being sensed, and motor systems autonomously take commands from 
working memory and execute them. The work on robotics in Soar is still very 
much in its infancy; however, in Robo-Soar [30], Soar has been successfully 
hooked up to the combination of a camera and a Puma arm, and then applied 
to several simple blocks-world tasks. 7 Low-level software converts the camera 
signal into information about the positions, orientations and identifying charac- 
teristics of the blocks. This perceptual information is then input to working 
memory, and further interpreted by encoding productions. Decoding produc- 
tions convert the high-level robot commands generated by the cognitive system 
to the low-level commands that are directly understood by the controller for 
the robot arm. These low-level commands are then executed through Soar's 
motor interface. 

Given a set of operators which generate motor commands, and knowledge 
about how to simulate the operators and about the expected positions of blocks 
following the actions, Robo-Soar is able to successfully solve simple blocks- 
world problems and to learn from its own behavior and from externally 
provided advice. It also can make use of a general scheme for recovering from 
incorrect knowledge [23] to recover when the unexpected occurs--such as 
when the system fails in its attempt to pick up a triangular prism--and to learn 
to avoid the failure in the future. Robo-Soar thus mixes planning (lookahead 

7 The work on Robo-Soar has been done in the newest major release of Soar (version 5) [24, 63], 
which differs in a number of interesting ways from the earlier versions upon which the rest of the 
results in this article are based. 
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search with chunking), plan execution and monitoring, reactivity, and error 
recovery (with replanning). This performance depends on all of the major 
components of the architecture, plus general background knowledge--such as 
how to do lookahead search and how to recover from errors--and specific 
problem spaces for the task. 

4.2. Where the power  resides 

Soar's power and flexibility arise from at least four identifiable sources. The 
first source of power is the universality of the architecture. While it may seem 
that this should go without saying, it is in fact a crucial factor, and thus 
important to mention explicitly. Universality provides the primitive capability 
to perform any computable task, but does not by itself explain why Soar is 
more appropriate than any other universal architecture for knowledge-based, 
search-based, learning, and robotic tasks. 

The second source of power is the uniformity of the architecture. Having 
only one type of long-term memory structure allows a single, relatively simple, 
learning mechanism to behave as a general learning mechanism. Having only 
one type of task representation (problem spaces) allows Soar to move continu- 
ously from one extreme of brute-force search to the other extreme of knowl- 
edge-intensive (or procedural) behavior without having to make any repre- 
sentational decisions. Having only one type of decision procedure allows a 
single, relatively simple, subgoal mechanism to generate all of the types of 
subgoals needed by the system. 

The traditional downside of uniformity is weakness and inefficiency. If 
instead the system were built up as a set of specialized modules or agents, as 
proposed in [10, 34], then each of the modules could be optimized for its own 
narrow task. Our approach to this issue in Soar has been to go strongly with 
uniformity--for all of the benefits listed above--but to achieve efficiency 
(power) through the addition of knowledge. This knowledge can either be 
added by hand (programming) or by chunking. 

The third source of power is the specific mechanisms incorporated into the 
architecture. The production memory provides pattern-directed access to large 
amounts of knowledge; provides the ability to use strong problem solving 
methods; and provides a memory structure with a small-grained modularity. 
The working memory allows global access to processing state. The decision 
procedure provides an open control loop that can react immediately to new 
situations and knowledge; contributes to the modularity of the memory by 
allowing memory access to proceed in an uncontrolled fashion (conflict resolu- 
tion was a major source of nonmodularity in earlier production systems); 
provides a flexible control language (preferences); and provides a notion of 
impasse that is used as the basis for the generation of subgoals. Subgoals focus 
the system's resources on situations where the accessible knowledge is 
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inadequate; and allow flexible meta-level processing. Problem spaces separate 
control from action, allowing them (control and action) to be reasoned about 
independently; provide a constrained context within which the search for a 
desired state can occur; provide the ability to use weak problem solving 
methods; and provide for straightforward responses to uncertainty and error 
(search and backtracking). Chunking acquires long-term knowledge from 
experience; compiles interpreted procedures into non-interpreted ones; and 
provides generalization and transfer. The perceptual-motor system provides 
the ability to observe and affect the external world in parallel with the 
cognitive activity. 

The fourth source of power is the interaction effects that result from the 
integration of all of the capabilities within a single system. The most compel- 
ling results generated so far come about from these interactions. One example 
comes from the mixture of weak methods, strong methods, and learning that is 
found in systems like R1-Soar. Strong methods are based on having knowledge 
about what to do at each step. Because strong methods tend to be efficient and 
to produce high-quality solutions, they should be used whenever possible. 
Weak methods are based on searching to make up for a lack of knowledge 
about what should be done. Such methods contribute robustness and scope by 
providing the system with a fall-back approach for situations in which the 
available strong methods do not work. Learning results in the addition of 
knowledge, turning weak methods into strong ones. For example, in R1-Soar it 
was demonstrated how computer configuration could be cast as a search 
problem, how strong methods (knowledge) could be used to reduce search, 
how weak methods (subgoals and search) could be used to make up for a lack 
of knowledge, and how learning could add knowledge as the result of search. 

Another interesting interaction effect comes from work on abstraction 
planning, in which a difficult problem is solved by first learning a plan for an 
abstract version of the problem, and then using the abstract plan to aid in 
finding a plan for the full problem [41, 57, 70, 69]. Chunking helps the abstrac- 
tion planning process by recording the abstract plan as a set of operator- 
selection productions, and by acquiring other productions that reduce the 
amount of search required in generating a plan. Abstraction helps the learning 
process by allowing chunks to be learned more quickly--abstract searches tend 
to be shorter than normal ones. Abstraction also helps learning by enabling 
chunks to be more general than they would otherwise be--the chunks ignore 
the details that were abstracted away--thus allowing more transfer and poten- 
tially decreasing the cost of matching the chunks (because there are now fewer 
conditions). 

4.3. Scope and limits 

The original work on Soar demonstrated its capabilities as a general problem 
solver that could use any of the weak methods when appropriate, across a wide 



The Soar architecture as a basis for general intelligence 315 

range of tasks. Later, we came to understand how to use Soar as the basis for 
knowledge-based systems, and how to incorporate appropriate learning and 
perceptual-motor capabilities into the architecture. These developments in- 
creased Soar's scope considerably beyond its origins as a weak-method prob- 
lem solver. Our ultimate goal has always been to develop the system to the 
point where its scope includes everything required of a general intelligence. In 
this section we examine how far Soar has come from its relatively limited initial 
demonstrations towards its relatively unlimited goal. This discussion is divided 
up according to the major components of the Soar architecture, as presented in 
Section 2: memory, decisions, goals, learning, and perception and motor 
control. 

4.3.1. Level 1: Memory 
The scope of Soar's memory level can be evaluated in terms of the amount 

of knowledge that can be stored, the types of knowledge that can be repre- 
sented, and the organization of the knowledge. 

Amount of knowledge. Using current technology, Soar's production memory 
can support the storage of thousands of independent chunks of knowledge. The 
size is primarily limited by the cost of processing larger numbers of produc- 
tions. Faster machines, improved match algorithms and parallel implementa- 
tions [13, 65, 66] may raise this effective limit by several orders of magnitude 
over the next few years. 

Types of knowledge. The representation of procedural and propositional 
declarative knowledge is well developed in Soar. However, we don't have well 
worked-out approaches to many other knowledge representation problems, 
such as the representation of quantified, uncertain, temporal, and episodic 
knowledge. The critical question is whether architectural support is required to 
adequately represent these types of knowledge, or whether such knowledge 
can be adequately treated as additional objects and/or attributes. Preliminary 
work on quantified [43] and episodic [56] knowledge is looking promising. 

Memory organization. An issue which often gets raised with respect to the 
organization of Soar's memory, and with respect to the organization of 
production memories in general, is the apparent lack of a higher-order memory 
organization. There are no scripts [59], frames [33], or schemas [1] to tie 
fragments of related memory together. Nor are there any obvious hierarchical 
structures which limit what sets of knowledge will be retrieved at any point in 
time. However, Soar's memory does have an organization, which is derived 
from the structure of productions, objects, and working memory (especially the 
context hierarchy). 

What corresponds to a schema in Soar is an object, or a structured collection 
of objects. Such a structure can be stored entirely in the actions of a single 
production, or it can be stored in a piecemeal fashion across multiple produc- 
tions. If multiple productions are used, the schema as a unit only comes into 
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existence when the pieces are all retrieved contemporaneously into working 
memory. The advantage of this approach is that it allows novel schemas to be 
created from fragments of separately learned ones. The disadvantage is that it 
may not be possible to determine whether a set of fragments all originated 
from a single schema. 

What corresponds to a hierarchy of retrieval contexts in Soar are the 
production conditions. Each combination of conditions implicitly defines a 
retrieval context, with a hierarchical structure induced by the subset relation- 
ship among the combinations. The contents of working memory determines 
which retrieval contexts are currently in force. For example, problem spaces 
are used extensively as retrieval contexts. Whenever there is a problem solving 
context that has a particular problem space selected within it, productions that 
test for other problem space names are not eligible to fire in that context. This 
approach has worked quite well for procedural knowledge, where it is clear 
when the knowledge is needed. We have just begun to work on appropriate 
organizational schemes for episodic and declarative knowledge, where it is 
much less clear when the knowledge should be retrieved. Our initial approach 
has been based on the incremental construction, via chunking, of multi- 
production discrimination networks [53, 56]. Though this work is too prema- 
ture for a thorough evaluation in the context of Soar, the effectiveness of 
discrimination networks in systems like Epam [7] and Cyrus [19] bodes well. 

4.3.2. Level 2: Decisions 
The scope of Soar's decision level can be evaluated in terms of its speed, the 

knowledge brought to bear, and the language of control. 
Speed. Soar currently runs at approximately 10 decisions/second on current 

workstations such as a Sun4/280. This is adequate for most of the types of 
tasks we currently implement, but is too slow for tasks requiring large amounts 
of search or very large knowledge bases (the number of decisions per second 
would get even smaller than it is now). The principal bottleneck is the speed of 
memory access, which is a function of two factors: the cost of processing 
individually expensive productions (the expensive chunks problem) [67], and 
the cost of processing a large number of productions (the average growth effect 
problem) [64]. We now have a solution to the problem of expensive chunks 
which can guarantee that all productions will be cheap---the match cost of a 
production is at worst linear in the number of conditions [68]--and are working 
on other potential solutions. Parallelism looks to be an effective solution to the 
average growth effect problem [64]. 

Bringing knowledge to bear. Iterated, parallel, indexed access to the contents 
of long-term memory has proven to be an effective means of bringing 
knowledge to bear on the decision process. The limited power provided by this 
process is offset by the ability to use subgoals when the accessible knowledge is 
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inadequate. The issue of devising good access paths for episodic and declara- 
tive knowledge is also relevant here. 

Control language. Preferences have proven to be a flexible means of 
specifying a partial order among contending objects. However, we cannot yet 
state with certainty that the set of preference types embodied in Soar is 
complete with respect to all the types of information which ultimately may 
need to be communicated to the decision procedure. 

4.3.3. Level 3: Goals 
The scope of Soar's goal level can be evaluated in terms of the types of goals 

that can be generated and the types of problem solving that can be performed 
in goals. Soar's subgoaling mechanism has been demonstrated to be able to 
create subgoals for all of the types of difficulties that can arise in problem 
solving in problem spaces [21]. This leaves three areas open. The first area is 
how top-level goals are generated; that is, how the top-level task is picked. 
Currently this is done by the programmer, but a general intelligence must 
clearly have grounds--that is, motivations--for selecting tasks on its own. The 
second area is how goal interactions are handled. Goal interactions show up in 
Soar as operator interactions, and are normally dealt with by adding explicit 
knowledge to avoid them, or by backtracking (with learning) when they 
happen. It is not yet clear the extent to which Soar could easily make use of 
more sophisticated approaches, such as non-linear planning [2]. The third area 
is the sufficiency of impasse-driven subgoaling as a means for determining 
when meta-level processing is needed. Two of the activities that might fall 
under this area are goal tests and monitoring. Both of these activities can be 
performed at the memory or decision level, but when they are complicated 
activities it may be necessary to perform them by problem solving at the goal 
level. Either activity can be called for explicitly by selecting a "monitor" or 
"goal-test" operator, which can then lead to the generation of a subgoal. 
However, goals for these tasks do not arise automatically, without delibera- 
tion. Should they? It is not completely clear. 

The scope of the problem solving that can be performed in goals can itself be 
evaluated in terms of whether problem spaces cover all of the types of 
performance required, the limits on the ability of subgoal-based problem 
solving to access and modify aspects of the system, and whether parallelism is 
possible. These points are addressed in the next three paragraphs. 

Problem space scope. Problem spaces are a very general performance model. 
They have been hypothesized to underlie all human, symbolic, goal-oriented 
behavior [37]. The breadth of tasks that have so far been represented in 
problem spaces over the whole field of AI attests to this generality. One way of 
pushing this evaluation further is to ask how well probem spaces account for 
the types of problem solving performed by two of the principal competing 
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paradigms: planning [2] and case-based reasoning [20]. s Both of these 
paradigms involve the creation (or retrieval) and use of a data structure that 
represents a sequence of actions. In planning, the data structure represents the 
sequence of actions that the system expects to use for the current problem. In 
case-based reasoning, the data structure represents the sequence of actions 
used on some previous, presumably related, problem. In both, the data 
structure is used to decide what sequence of actions to perform in the current 
problem. Soar straightforwardly performs procedural analogues of these two 
processes. When it performs a lookahead search to determine what operator to 
apply to a particular state, it acquires (by chunking) a set of search control 
productions which collectively tell it which operator should be applied to each 
subsequent state. This set of chunks forms a procedural plan for the current 
problem. When a search control chunk transfers between tasks, a form of 
procedural case-based reasoning is occurring. 

Simple forms of declarative planning and case-based reasoning have also 
been demonstrated in Soar in the context of an expert system that designs floor 
systems [47]. When this system discovers, via lookahead search, a sequence of 
operators that achieves a goal, it creates a declarative structure representing 
the sequence and returns it as a subgoal result (plan creation). This plan can 
then be used interpretively to guide performance on the immediate problem 
(plan following). The plan can also be retrieved during later problems and used 
to guide the selection of operators (case-based reasoning). This research does 
not demonstrate the variety of operations one could conceivably use to modify 
a partial or complete plan, but it does demonstrate the basics. 

Meta- leve l  access. Subgoal-based problem solving has access to all of the 
information in working memory--including the goal stack, problem spaces, 
states, operators, preferences, and other facts that have been retrieved or 
generated--plus any of the other knowledge in long-term memory that it can 
access. It does not have direct access to the productions, or to any of the data 
structures internal to the architecture. Nonetheless, it should be able to 
indirectly examine the contents of any productions that were acquired by 
chunking, which in the long run should be just about all of them. The idea is to 
reconstruct the contents of the production by going down into a subgoal and 
retracing the problem solving that was done when the chunk was learned. In 
this way it should be possible to determine what knowledge the production 
cached. This idea has not yet been explicitly demonstrated in Soar, but 
research on the recovery from incorrect knowledge has used a closely related 
approach [23]. 

The effects of problem solving are limited to the addition of information to 

The work on Robo-Soar also reveals Soar's potential to exhibit reactive planning [11]. The 
current version of Soar still has problems with raw speed and with the unbounded nature of the 
production match (the expensive chunks problem), but it is expected that these problems will be 
solved in the near future. 
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working memory. Deletion of working memory elements is accomplished by a 
garbage collector provided by the architecture. Productions are added by 
chunking, rather than by problem solving, and are never deleted by the system. 
The limitation on production creation--that it only occurs via chunking--is 
dealt with by varying the nature of the problem solving over which chunking 
occurs [56]. The limitation on production deletion is dealt with by learning new 
productions which overcome the effects of old ones [23]. 

Parallelism. Two principal sources of parallelism in Soar are at the memory 
level: production match and execution. On each cycle of elaboration, all 
productions are matched in parallel to the working memory, and then all of the 
successful instantiations are executed in parallel. This lets tasks that can be 
performed at the memory level proceed in parallel, but not so for decision- 
level and goal-level tasks. 

Another principal source of parallelism is provided by the motor systems. 
All motor systems behave in parallel with respect to each other, and with 
respect to the cognitive system. This enables one form of task-level parallelism 
in which non-interfering external tasks can be performed in parallel. To enable 
further research on task-level parallelism we have added the experimental 
ability to simultaneously select multiple problem space operators within a 
single problem solving context. Each of these operators can then proceed to 
execute in parallel, yielding parallel subgoals, and ultimately an entire tree of 
problem solving contexts in which all of the branches are being processed in 
parallel. We do not yet have enough experience with this capability to evaluate 
its scope and limits. 

Despite all of these forms of parallelism embodied in Soar, most im- 
plementations of the architecture have been on serial machines, with the 
parallelism being simulated. However, there is an active research effort to 
implement Soar on parallel computers. A parallelized version of the produc- 
tion match has been successfully implemented on an Encore Multimax, which 
has a small number (2-20) of large-grained processors [66], and unsuccessfully 
implemented on a Connection Machine [15], which has a large number 
(16K-64K)  of small-grained processors [9]. The Connection Machine im- 
plementation failed primarily because a complete parallelization of the current 
match algorithm can lead to exponential space requirements. Research on 
restricted match algorithms may fix this problem in the future. Work is also in 
progress towards implementing Soar on message-passing computers [65]. 

4.3.4. Learning 
In [61] we broke down the problem of evaluating the scope of Soar's learning 

capabilities into four parts: when can the architecture learn; from what can the 
architecture learn; what can the architecture learn; and when can the architec- 
ture apply learned knowledge. These points are discussed in Section 4.1, and 
need not be elaborated further here. 
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One important additional issue is whether Soar acquires knowledge that is at 
the appropriate level of generalization or specialization. Chunking provides a 
level of generality that is determined by a combination of the representation 
used and the problem solving performed. Under varying circumstances, this 
can lead to both overgeneralization [29] and overspecialization. The acquisition 
of overgeneral knowledge implies that the system must be able to recover from 
any errors caused by its use. One solution to this problem that has been 
implemented in Soar involves detecting that a performance error has occurred, 
determining what should have been done instead, and acquiring a new chunk 
which leads to correct performance in the future [23]. This is accomplished 
without examining or modifying the overgeneral production; instead it goes 
back down into the subgoals for which the overgeneral productions were 
learned. 

One way to deal with overspecialization is to patch the resulting knowledge 
gaps with additional knowledge. This is what Soar does constantly--if a 
production is overspecialized, it doesn't fire in circumstances when it should, 
causing an impasse to occur, and providing the opportunity to learn an 
additional chunk that covers the missing case (plus possibly other cases). 
Another way to deal with overspecialized knowledge is to work towards 
acquiring more general productions. A standard approach is to induce general 
rules from a sequence of positive and negative examples [35, 45]. This form of 
generalization must occur in Soar by search in problem spaces, and though 
there has been some initial work on doing this [48, 58], we have not yet 
provided Soar with a set of problem spaces that will allow it to generate 
appropriate generalizations from a variety of sets of examples. So, Soar cannot 
yet be described as a system of choice for doing induction from multiple 
examples. On the other hand, Soar does generalize quite naturally and 
effectively when abstraction occurs [69]. The learned rules reflect whatever 
abstraction was made during problem solving. 

Learning behaviors that have not yet been attempted in Soar include the 
construction of a model of the environment from experimentation in it [46], 
scientific discovery and theory formation [31], and conceptual clustering [8]. 

4.3.5. Perception and motor control 
The scope of Soar's perception and motor control can be evaluated in terms 

of both its low-level I /O mechanisms and its high-level language capabilities. 
Both of these capabilities are quite new, so the evaluation must be even more 
tentative than for the preceding components. 

At the low-level, Soar can be hooked up to multiple perceptual modalities 
(and multiple fields within each modality) and can control multiple effectors. 
The critical low-level aspects of perception and motor control are currently 
done in a standard procedural language outside of the cognitive system. The 
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resulting system appears to be an effective testbed for research on high-level 
aspects of perception and motor-control. It also appears to be an effective 
testbed for research on the interactions of perception and motor control with 
other cognitive capabilities, such as memory, problem solving, and learning. 
However, it does finesse many of the hard issues in perception and motor 
control, such as selective attention, shape determination, object identification, 
and temporal coordination. Work is actively in progress on selective attention 
[74]. 

At the high end of I /O capabilities is the processing of natural language. An 
early attempt to implement a semantic grammar parser in Soar was only a 
limited success [44]. It worked, but did not appear to be the right long-term 
solution to language understanding in Soar. More recent work on NL-Soar has 
focused on the incremental construction of a model of the situation by applying 
comprehension operators to each incoming word [32]. Comprehension 
operators iteratively augment and refine the situation model, setting up 
expectations for the part of the utterance still to be seen, and satisfying earlier 
expectations. As a side effect of constructing the situation model, an utterance 
model is constructed to represent the linguistic structure of the sentence. This 
approach to language understanding has been successfully applied to acquiring 
task-specific problem spaces for three immediate reasoning tasks: relational 
reasoning [18], categorical syllogisms, and sentence verification [3]. It has also 
been used to process the input for these tasks as they are performed. Though 
NL-Soar is still far from providing a general linguistic capability, the approach 
has proven promising. 

5. Conclusion 

In this article we have taken a step towards providing an analysis of the Soar 
architecture as a basis for general intelligence. In order to increase understand- 
ing of the structure of the architecture we have provided a theoretical 
framework within which the architecture can be described, a discussion of 
methodological assumptions underlying the project and the system, and an 
illustrative example of its performance on a multi-column subtraction task. In 
order to facilitate comparisons between the capabilities of the current version 
of Soar and the capabilities required to achieve its ultimate goal as an 
architecture for general intelligence, we have described the natural tasks for 
the architecture, the sources of its power, and its scope and limits. If this article 
has succeeded, it should be clear that progress has been made, but that more 
work is still required. This applies equally to the tasks of developing Soar and 
analyzing it. 
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