
Artificial Intelligence 47 (1991) 289-325 289
Elsevier

A preliminary analysis of the
Soar architecture as a basis
for general intelligence

Paul S. Rosenbloom*
Information Sciences Institute, University of Southern California, 4676 Admiralty Way,
Marina del Rey, CA 90292-6695, USA

John E. Laird
Department of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109, USA

Allen Newell
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213,
USA

Robert McCarl
Department of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, M1 48109, USA

Received May 1989

Abstract

Rosenbloom, P.S., J.E. Laird, A. Newell and R. McCarl, A primary analysis of the Soar
architecture as a basis for general intelligence, Artificial Intelligence 47 (1991) 289-325.

In this article we take a step towards providing an analysis of the Soar architecture as a basis
for general intelligence. Included are discussions of the basic assumptions underlying the
development of Soar, a description of Soar cast in terms of the theoretical idea of multiple
levels of description, an example of Soar performing multi-column subtraction, and three
analyses of Soar: its natural tasks, the sources of its power, and its scope and limits

Introduction

T h e c e n t r a l sc ient i f ic p r o b l e m o f ar t i f ic ia l i n t e l l i g e n c e (A I) is to u n d e r s t a n d

w h a t c o n s t i t u t e s i n t e l l i g e n t a c t i o n a n d w h a t p r o c e s s i n g o r g a n i z a t i o n s a r e

* Much of the work on this article was done while the first author was affiliated with the
Knowledge Systems Laboratory, Department of Computer Science, Stanford University.

0004-3702/91/$03.50 O 1991 - - Elsevier Science Publishers B.V.

290 P.S. Rosenbloom et al.

capable of such action. Human intelligence--which stands before us like a holy
grail--shows to first observation what can only be termed general intelligence.
A single human exhibits a bewildering diversity of intelligent behavior. The
types of goals that humans can set for themselves or accept from the environ-
ment seem boundless. Further observation, of course, shows limits to this
capacity in any individual--problems range from easy to hard, and problems
can always be found that are too hard to be solved. But the general point is still
compelling.

Work in AI has already contributed substantially to our knowledge of what
functions are required to produce general intelligence. There is substantial,
though certainly not unanimous, agreement about some functions that need to
be supported: symbols and goal structures, for example. Less agreement exists
about what mechanisms are appropriate to support these functions, in large
part because such matters depend strongly on the rest of the system and on
cost-benefit tradeoffs. Much of this work has been done under the rubric of AI
tools and languages, rather than AI systems themselves. However, it takes only
a slight shift of viewpoint to change from what is an aid for the programmer to
what is structure for the intelligent system itself. Not all features survive this
transformation, but enough do to make the development of AI languages as
much substantive research as tool building. These proposals provide substantial
ground on which to build.

The Soar project has been building on this foundation in an attempt to
understand the functionality required to support general intelligence. Our
current understanding is embodied in the Soar architecture [22, 26]. This article
represents an attempt at describing and analyzing the structure of the Soar
system. We will take a particular point of view--the description of Soar as a
hierarchy of levels--in an attempt to bring coherence to this discussion.

The idea of analyzing systems in terms of multiple levels of description is a
familiar one in computer science. In one version, computer systems are
described as a sequence of levels that starts at the bottom with the device level
and works up through the circuit level, the logic level, and then one or more
program levels. Each level provides a description of the system at some level of
abstraction. The sequence is built up by defining each higher level in terms of
the structure provided at the lower levels. This idea has also recently been used
to analyze human cognition in terms of levels of description [38]. Each level
corresponds to a particular time scale, such as -100 msec. and -1 sec., with a
new level occurring for each new order of magnitude. The four levels between
--10msec. and -10sec. comprise the cognitive band (Fig. 1). The lowest
cognitive level--at --10 msec.---is the symbol-accessing level, where the knowl-
edge referred to by symbols is retrievable. The second cognitive level--at
~100 msec.--is the level at which elementary deliberate operations occur; that
is, the level at which encoded knowledge is brought to bear, and the most
elementary choices are made. The third and fourth cognitive levels--at - 1 sec.

The Soar architecture as a basis for general intelligence 291

Rational Band . . .

Cognitive Band

Neural Band

- 1 0 sec. Goal attainment
1 sec. Simple operator composition

-100msec. Elementary deliberate operations
- 1 0 msec. Symbol accessing

Fig. 1. Partial hierarchy of time scales in human cognition.

and -10 sec.--are the simple-operator-composition and goal-attainment levels.
At these levels, sequences of deliberations can be composed to achieve goals.
Above the cognitive band is the rational band, at which the system can be
described as being goal oriented, knowledge-based, and strongly adaptive.
Below the cognitive band is the neural band.

In Section 2 we describe Soar as a sequence of three cognitive levels: the
memory level, at which symbol accessing occurs; the decision level, at which
elementary deliberate operations occur; and the goal level, at which goals are
set and achieved via sequences of decisions. The goal level is an amalgamation
of the top two cognitive levels from the analysis of human cognition.

In this description we will often have call to describe mechanisms that are
built into the architecture of Soar. The architecture consists of all of the fixed
structure of the Soar system. According to the levels analysis, the correct view
to be taken of this fixed structure is that it comprises the set of mechanisms
provided by the levels underneath the cognitive band. For human cognition
this is the neural band. For artificial cognition, this may be a connectionist
band, though it need not be. This view notwithstanding, it should be re-
membered that it is the Soar architecture which is primary in our research. The
use of the levels viewpoint is simply an attempt at imposing a particular,
hopefully illuminating, theoretical structure on top of the existing architecture.

In the remainder of this paper we describe the methodological assumptions
underlying Soar, the structure of Soar, an illustrative example of Soar's
performance on the task of multi-column subtraction, and a set of preliminary
analyses of Soar as an architecture for general intelligence.

1. Methodological assumptions

The development of Soar is driven by four methodological assumptions. It is
not expected that these assumptions will be shared by all researchers in the
field. However, the assumptions do help explain why the Soar system and
project have the shapes that they do.

The first assumption is the utility of focusing on the cognitive band, as
opposed to the neural or rational bands. This is a view that has traditionally

292 P.S. Rosenbloom et al.

been shared by a large segment of the cognitive science community; it is not,
however, shared by the connectionist community, which focuses on the neural
band (plus the lower levels of the cognitive band), or by the logicist and
expert-systems communities, which focus on the rational band. This assump-
tion is not meant to be exclusionary, as a complete understanding of general
intelligence requires the understanding of all of these descriptive bands. ~
Instead the assumption is that there is important work to be done by focusing
on the cognitive band. One reason is that, as just mentioned, a complete model
of general intelligence will require a model of the cognitive band. A second
reason is that an understanding of the cognitive band can constrain models of
the neural and rational bands. A third, more applied reason, is that a model of
the cognitive band is required in order to be able to build practical intelligent
systems. Neural-band models need the higher levels of organization that are
provided by the cognitive band in order to reach complex task performance.
Rational-band models need the heuristic adequacy provided by the cognitive
band in order to be computationally feasible. A fourth reason is that there is a
wealth of both psychological and AI data about the cognitive band that can be
used as the basis for elucidating the structure of its levels. This data can help us
understand what type of symbolic architecture is required to support general
intelligence.

The second assumption is that general intelligence can most usefully be
studied by not making a distinction between human and artificial intelligence.
The advantage of this assumption is that it allows wider ranges of research
methodologies and data to be brought to bear to mutually constrain the
structure of the system. Our research methodology includes a mixture of
experimental data, theoretical justifications, and comparative studies in both
artificial intelligence and cognitive psychology. Human experiments provide
data about performance universals and limitations that may reflect the struc-
ture of the architecture. For example, the ubiquitous power law of practice--
the time to perform a task is a power-law function of the number of times the
task has been performed--was used to generate a model of human practice
[39,55], which was later converted into a proposal for a general artificial
learning mechanism [27,28,61]. Artificial experiments--the application of
implemented systems to a variety of tasks requiring intelligence--provide
sufficiency feedback about the mechanisms embodied in the architecture and
their interactions [16, 51,60, 62, 73]. Theoretical justifications attempt to pro-
vide an abstract analysis of the requirements of intelligence, and of how
various architectural mechanisms fulfill those requirements [38, 40, 49, 54, 5@
Comparative studies, pitting one system against another, provide an evaluation
of how well the respective systems perform, as well as insight about how the
capabilities of one of the systems can be incorporated in the other [6, 50].

Investigations of the relationship of Soar to the neural and rational bands can be found in
[38, 49,561.

The Soar architecture as a basis for general intelligence 293

The third assumption is that the architecture should consist of a small set of
orthogonal mechanisms. All intelligent behaviors should involve all, or nearly
all, of these basic mechanisms. This assumption biases the development of Soar
strongly in the direction of uniformity and simplicity, and away from modulari-
ty [10] and toolkit approaches. When attempting to achieve a new functionality
in Soar, the first step is to determine in what ways the existing mechanisms can
already provide the functionality. This can force the development of new
solutions to old problems, and reveal new connections--through the common
underlying mechanisms--among previously distinct capabilities [53]. Only if
there is no appropriate way to achieve the new functionality are new mecha-
nisms considered.

The fourth assumption is that architectures should be pushed to the extreme
to evaluate how much of general intelligence they can cover. A serious attempt
at evaluating the coverage of an architecture involves a long-term commitment
by an extensive research group. Much of the research involves the apparently
mundane activity of replicating classical results within the architecture. Some-
times these demonstrations will by necessity be strict replications, but often the
architecture will reveal novel approaches, provide a deeper understanding of
the result and its relationship to other results, or provide the means of going
beyond what was done in the classical work. As these results accumulate over
time, along with other more novel results, the system gradually approaches the
ultimate goal of general intelligence.

2. Structure of Soar

In this section we build up much of Soar's structure in levels, starting at the
bottom with memory and proceeding up to decisions and goals. We then
describe how learning and perceptual-motor behavior fit into this picture, and
wrap up with a discussion of the default knowledge that has been incorporated
into the system.

2.1. Level 1: Memory

A general intelligence requires a memory with a large capacity for the
storage of knowledge. A variety of types of knowledge must be stored,
including declarative knowledge (facts about the world, including facts about
actions that can be performed), procedural knowledge (facts about how to
perform actions, and control knowledge about which actions to perform when),
and episodic knowledge (which actions were done when). Any particular task
will require some subset of the knowledge stored in the memory. Memory
access is the process by which this subset is retrieved for use in task per-
formance.

294 P.S. Rosenbloorn et al.

The lowest level of the Soar architecture is the level at which these memory
phenomena occur. All of Soar's long-term knowledge is stored in a single
production memory. Whether a piece of knowledge represents procedural,
declarative, or episodic knowledge, it is stored in one or more productions.
Each production is a condition-action structure that performs its actions when
its conditions are met. Memory access consists of the execution of these
productions. During the execution of a production, variables in its actions are
instantiated with values. Action variables that existed in the conditions are
instantiated with the values bound in the conditions. Action variables that did
not exist in the conditions act as generators of new symbols.

The result of memory access is the retrieval of information into a global
working memory. The working memory is a temporary memory that contains
all of Soar's short-term processing context. Working memory consists of an
interrelated set of objects with attribute-value pairs. For example, an object
representing a green cat named Fred might look like (object 0025 ^name fred
"type cat ^color green). The symbol o025 is the identifier of the object, a
short-term symbol for the object that exists only as long as the object is in
working memory. Objects are related by using the identifiers of some objects

as attributes and values of other objects.
There is one special type of working memory structure, the preference.

Preferences encode control knowledge about the acceptability and desirability
of actions, according to a fixed semantics of preference types. Acceptability
preferences determine which actions should be considered as candidates.
Desirability preferences define a partial ordering on the candidate actions. For
example, a better (or alternatively, worse) preference can be used to represent
the knowledge that one action is more (or less) desirable than another action,
and a best (or worst) preference can be used to represent the knowledge that
an action is at least as good (or as bad) as every other action.

In a traditional production-system architecture, each production is a
problem-solving operator (see, for example, [42]). The right-hand side of the
production represents some action to be performed, and the left-hand side
represents the preconditions for correct application of the action (plus possibly
some desirability conditions). One consequence of this view of productions is
that the productions must also be the locus of behavioral control. If produc-
tions are going to act, it must be possible to control which one executes at each
moment; a process known as conflict resolution. In a logic architecture, each
production is a logical implication. The meaning of such a production is that if
the left-hand side (the antecedent) is true, then so is the right-hand side (the
consequent). 2 Soar's productions are neither operators nor implications. In-
stead, Soar's productions perform (parallel) memory retrieval. Each produc-

2 The directionality of the implication is reversed in logic programming languages such as Prolog,
but the point still holds.

The Soar architecture as a basis for general intelligence 295

tion is a retrieval structure for an item in long-term memory. The right-hand
side of the rule represents a long-term datum, and the left-hand side represents
the situations in which it is appropriate to retrieve that datum into working
memory. The traditional production-system and logic notions of action, con-
trol, and truth are not directly applicable to Soar's productions. All control in
Soar is performed at the decision level. Thus, there is no conflict resolution
process in the Soar production system, and all productions execute in parallel.
This all flows directly from the production system being a long-term memory.
Soar separates the retrieval of long-term information from the control of which
act to perform next.

Of course it is possible to encode knowledge of operators and logical
implications in the production memory. For example, the knowledge about
how to implement a typical operator can be stored procedurally as a set of
productions which retrieve the state resulting from the operator's application.
The productions' conditions determine when the state is to be retrieved---for
example, when the operator is being applied and its preconditions are met. An
alternative way to store operator implementation knowledge is declaratively as
a set of structures that are completely contained in the actions of one or more
productions. The structures describe not only the results of the operator, but
also its preconditions. The productions' conditions determine when to retrieve
this declarative operator description into working memory. A retrieved
operator description must be interpreted by other productions to actually have
an affect.

In general, there are these two distinct ways to encode knowledge in the
production memory: procedurally and declaratively. If the knowledge is pro-
cedurally encoded, then the execution of the production reflects the knowl-
edge, but does not actually retrieve it into working memory--it only retrieves
the structures encoded in the actions. On the other hand, if a piece of
knowledge is encoded declaratively in the actions of a production, then it is
retrievable in its entirety. This distinction between procedural and declarative
encodings of knowledge is distinct from whether the knowledge is declarative
(represents facts about the world) or procedural (represents facts about
procedures). Moreover, each production can be viewed in either way, either as
a procedure which implicitly represents conditional information, or as the
indexed storage of declarative structures.

2.2. Level 2: Decisions

In addition to a memory, a general intelligence requires the ability to
generate and/or select a course of action that is responsive to the current
situation. The second level of the Soar architecture, the decision level, is the
level at which this processing is performed. The decision level is based on the
memory level plus an architecturally provided, fixed, decision procedure. The

296 P.S. Rosenbloom et al.

decision level proceeds in a two phase elaborate-decide cycle. During elabora-
tion, the memory is accessed repeatedly, in parallel, until quiescence is
reached; that is, until no more productions can execute. This results in the
retrieval into working memory of all of the accessible knowledge that is
relevant to the current decision. This may include a variety of types of
information, but of most direct relevance here is knowledge about actions that
can be performed and preference knowledge about what actions are acceptable
and desirable. After quiescence has occurred, the decision procedure selects

one of the retrieved actions based on the preferences that were retrieved into
working memory and their fixed semantics.

The decision level is open both with respect to the consideration of arbitrary
actions, and with respect to the utilization of arbitrary knowledge in making a
selection. This openness allows Soar to behave in both plan-following and
reactive fashions. Soar is following a plan when a decision is primarily based on
previously generated knowledge about what to do. Soar is being reactive when
a decision is based primarily on knowledge about the current situation (as

reflected in the working memory) .

2.3. Level 3: Goals

In addition to being able to make decisions, a general intelligence must also
be able to direct this behavior towards some end; that is, it must be able to set
and work towards goals. The third level of the Soar architecture, the goal level,
is the level at which goals are processed. This level is based on the decision
level. Goals are set whenever a decision cannot be made; that is, when the
decision procedure reaches an impasse. Impasses occur when there are no
alternatives that can be selected (no-change and rejection impasses) or when
there are multiple alternatives that can be selected, but insufficient discriminat-
ing preferences exist to allow a choice to be made among them (tie and conflict
impasses). Whenever an impasse occurs, the architecture generates the goal of
resolving the impasse. Along with this goal, a new performance context is
created. The creation of a new context allows decisions to continue to be made
in the service of achieving the goal of resolving the impasse--nothing can be
done in the original context because it is at an impasse. If an impasse now
occurs in this subgoal, another new subgoal and performance context are
created. This leads to a goal (and context) stack in which the top-level goal is
to perform some task, and lower-level goals are to resolve impasses in problem
solving. A subgoal is terminated when either its impasse is resolved, or some
higher impasse in the stack is resolved (making the subgoal superfluous).

In Soar, all symbolic goal-oriented tasks are formulated in problem spaces.
A problem space consists of a set of states and a set of operators. The states
represent situations, and the operators represent actions which when applied to
states yield other states. Each performance context consists of a goal, plus roles

The Soar architecture as a basis for general intelligence 297

for a problem state, a state, and an operator. Problem solving is driven by
decisions that result in the selection of problem spaces, states, and operators
for their respective context roles. Given a goal, a problem space should be
selected in which goal achievement can be pursued. Then an initial state should
be selected that represents the initial situation. Then an operator should be
selected for application to the initial state. Then another state should be
selected (most likely the result of applying the operator to the previous state).
This process continues until a sequence of operators has been discovered that
transforms the initial state into a state in which the goal has been achieved.
One subtle consequence of the use of problem spaces is that each one implicitly
defines a set of constraints on how the task is to be performed. For example, if
the Eight Puzzle is attempted in a problem space containing only a slide-tile
operator, all solution paths maintain the constraint that the tiles are never
picked up off of the board. Thus, such conditions need not be tested for
explicitly in desired states.

Each problem solving decision--the selection of a problem space, a state, or
an operator--is based on the knowledge accessible in the production memory.
If the knowledge is both correct and sufficient, Soar exhibits highly controlled
behavior; at each decision point the right alternative is selected. Such behavior
is accurately described as being algorithmic or knowledge-intensive. However,
for a general intelligence faced with a broad array of unpredictable tasks,
situations will arise--inevitably and indeed frequently--in which the accessible
knowledge is either incorrect or insufficient. It is possible that correct decisions
will fortuitously be made, but it is more likely that either incorrect decisions
will be made or that impasses will occur. Under such circumstances search is
the likely outcome. If an incorrect decision is made, the system must eventually
recover and get itself back on a path to the goal, for example, by backtracking.
If instead an impasse occurs, the system must execute a sequence of problem
space operators in the resulting subgoal to find (or generate) the information
that will allow a decision to be made. This processing may itself be highly
algorithmic, if enough control knowledge is available to uniquely determine
what to do, or it may involve a large amount of further search.

As described earlier, operator implementation knowledge can be repre-
sented procedurally in the production memory, enabling operator implementa-
tion to be performed directly by memory retrieval. When the operator is
selected, a set of productions execute that collectively build up the representa-
tion of the result state by combining data from long-term memory and the
previous state. This type of implementation is comparable to the conventional
implementation of an operator as a fixed piece of code. However, if operator
implementation knowledge is stored declaratively, or if no operator im-
plementation knowledge is stored, then a subgoal occurs, and the operator
must be implemented by the execution of a sequence of problem space
operators in the subgoal. If a declarative description of the to-be-implemented

298 P.S. Rosenbloorn et al.

operator is available, then these lower operators may implement the operator
by interpreting its declarative description (as was demonstrated in work on task
acquisition in Soar [61]). Otherwise the operator can be implemented by
decomposing it into a set of simpler operators for which operator implementa-
tion knowledge is available, or which can in turn be decomposed further.

When an operator is implemented in a subgoal, the combination of the
operator and the subgoal correspond to the type of deliberately created
subgoal common in AI problem solvers. The operator specifies a task to be
performed, while the subgoal indicates that accomplishing the task should be
treated as a goal for further problem solving. In complex problems, like
computer configuration, it is common for there to be complex high-level
operators, such as Configure-computer which are implemented by selecting
problem spaces in which they can be decomposed into simpler tasks. Many of
the traditional goal management issues--such as conjunction, conflict, and
selection--show up as operator management issues in Soar. For example, a set
of conjunctive subgoals can be ordered by ordering operators that later lead to
impasses (and subgoals).

As described in [54], a subgoal not only represents a subtask to be
performed, but it also represents an introspective act that allows unlimited
amounts of meta-level problem-space processing to be performed. The entire
working memory--the goal stack and all information linked to it--is available
for examination and augmentation in a subgoal. At any time a production can
examine and augment any part of the goal stack. Likewise, a decision can be
made at any time for any of the goals in the hierarchy. This allows subgoal
problem solving to analyze the situation that led to the impasse, and even to
change the subgoal, should it be appropriate. One not uncommon occurrence
is for information to be generated within a subgoal that instead of satisfying the
subgoal, causes the subgoal to become irrelevant and consequently to dis-
appear. Processing tends to focus on the bottom-most goal because all of the
others have reached impasses. However, the processing is completely oppor-
tunistic, so that when appropriate information becomes available at a higher
level, processing at that level continues immediately and all lower subgoals are
terminated.

2.4. Learning

All learning occurs by the acquisition of chunks--productions that summa-
rize the problem solving that occurs in subgoals [28]. The actions of a chunk
represent the knowledge generated during the subgoal; that is, the results of
the subgoal. The conditions of the chunk represent an access path to this
knowledge, consisting of those elements of the parent goals upon which the
results depended. The results of the subgoal are determined by finding the
elements generated in the subgoal that are available for use in subgoals--an

The Soar architecture as a basis for general intelligence 299

element is a result of a subgoal precisely because it is available to processes
outside of the subgoal. The access path is computed by analyzing the traces of
the productions that fired in the subgoal----each production trace effectively
states that its actions depended on its conditions. This dependency analysis
yields a set of conditions that have been implicitly generalized to ignore
irrelevant aspects of the situation. The resulting generality allows chunks to
transfer to situations other than the one in which it was learned. The primary
system-wide effect of chunking is to move Soar along the space-time trade-off
by allowing relevantly similar future decisions to be based on direct retrieval of
information from memory rather than on problem solving within a subgoal. If
the chunk is used, an impasse will not occur, because the required information

is already available.
Care must be taken to not confuse the power of chunking as a learning

mechanism with the power of Soar as a learning system. Chunking is a simple
goal-based, dependency-tracing, caching scheme, analogous to explanation-
based learning [4, 36, 50] and a variety of other schemes [55]. What allows Soar
to exhibit a wide variety of learning behaviors are the variations in the types of
subgoals that are chunked; the types of problem solving, in conjunction with
the types and sources of knowledge, used in the subgoals; and the ways the
chunks are used in later problem solving. The role that a chunk will play is
determined by the type of subgoal for which it was learned. State-no-change,
operator-tie, and operator-no-change subgoals lead respectively to state aug-
mentation, operator selection, and operator implementation productions. The
content of a chunk is determined by the types of problem solving and
knowledge used in the subgoal. A chunk can lead to skill acquisition if it is
used as a more efficient means of generating an already generatable result. A
chunk can lead to knowledge acquisition (or knowledge level learning [5]) if it
is used to make old/new judgments; that is, to distinguish what has been
learned from what has not been learned [52, 53, 56].

2.5. Percept ion and m o t o r control

One of the most recent functional additions to the Soar architecture is a
perceptual-motor interface [75, 76]. All perceptual and motor behavior is
mediated through working memory; specifically, through the state in the top
problem solving context. Each distinct perceptual field has a designated
attribute of this state to which it adds its information. Likewise, each distinct
motor field has a designated attribute of the state from which it takes its
commands. The perceptual and motor systems are autonomous with respect to
each other and the cognitive system.

Encoding and decoding productions can be used to convert between the
high-level structures used by the cognitive system, and the low-level structures
used by the perceptual and motor systems. These productions are like ordinary

300 P.S. Rosenbloom et al.

productions, except that they examine only the perceptual and motor fields,
and not any of the rest of the context stack. This autonomy from the context
stack is critical, because it allows the decision procedure to proceed without
waiting for quiescence among the encoding and decoding productions, which
may never happen in a rapidly changing environment.

2.6. Default knowledge

Soar has a set of productions (55 in all) that provide default responses to
each of the possible impasses that can arise, and thus prevent the system from
dropping into a bottomless pit in which it generates an unbounded number of
content-free performance contexts. Figure 2 shows the default production that
allows the system to continue if it has no idea how to resolve a conflict impasse
among a set of operators. When the production executes, it rejects all of the
conflicting operators. This allows another candidate operator to be selected, if
there is one, or for a different impasse to arise if there are no additional
candidates. This default response, as with all of them, can be overridden by
additional knowledge if it is available.

One large part of the default knowledge (10 productions) is responsible for
setting up operator subgoaling as the default response to no-change impasses
on operators. That is, it attempts to find some other state in the problem space
to which the selected operators can be applied. This is accomplished by
generating acceptable and worst preferences in the subgoal for the parent
problem space. If another problem space is suggested, possibly for implement-
ing the operator, it will be selected. Otherwise, the selection of the parent
problem space in the subgoal enables operator subgoaling. A sequence of
operators is then applied in the subgoal until a state is generated that satisfies
the preconditions of an operator higher in the goal stack.

Another large part of the default knowledge (33 productions) is responsible
for setting up lookahead search as the default response to tie impasses. This is
accomplished by generating acceptable and worst preferences for the selection
problem space. The selection problem space consists of operators that evaluate
the tied alternatives. Based on the evaluations produced by these operators,
default productions create preferences that break the tie and resolve the
impasse. In order to apply the evaluation operators, domain knowledge must
exist that can create an evaluation. If no such knowledge is available, a second
impasse arises--a no-change on the evaluation operator. As mentioned earlier,

If there is an impasse because of an operator conflict
and there are no candidate problem spaces available

then reject the conflicting operators.

Fig. 2. A default production.

The Soar architecture as a basis for general intelligence 301

the default response to an operator no-change impasse is to perform operator
subgoaling. However, for a no-change impasse on an evaluation operator this
is overridden and a lookahead search is performed instead. The results of the
lookahead search are used to evaluate the tied alternatives.

As Soar is developed, it is expected that more and more knowledge will be
included as part of the basic system about how to deal with a variety of
situations. For example, one area on which we are currently working is the
provision of Soar with a basic arithmetical capability, including problem spaces
for addition, multiplication, subtraction, division, and comparison. One way of
looking at the existing default knowledge is as the tip of this large iceberg of
background knowledge. However, another way to look at the default knowl-
edge is as part of the architecture itself. Some of the default knowledge--how
much is still unclear--must be innate rather than learned. The rest of the
system's knowledge, such as the arithmetic spaces, should then be learnable

from there.

3. Example: multi-column subtraction

Multi-column subtraction is the task we will use to demonstrate Soar. This
task has three advantages. First, it is a familiar and simple task. This allows the
details of Soar not to be lost in the complexities of understanding the task.
Second, previous work has been done on modeling human learning of subtrac-
tion in the Sierra architecture [71]. Our implementation is inspired by the
Sierra framework. Third, this task appears to be quite different from many
standard search-intensive tasks common in AI. On the surface, it appears
difficult to cast subtraction within the problem-space framework of Soar--it is,
after all, a procedure. One might also think that chunking could not learn such
a procedure. However, in this example, we will demonstrate that multi-column
subtraction can be performed by Soar and that important parts of the proce-
dure can be learned through chunking.

There exist many different procedures for performing multi-column subtrac-
tion. Different procedures result in different behaviors, both in the order in
which scratch marks--such as borrowing notations--are made and in the type
of mistakes that might be generated while learning [72]. For simplicity, we will
demonstrate the implementation of just one of the many possible procedures.
This procedure uses a borrowing technique that recursively borrows from a
higher-order column into a lower-order column when the top number in the
lower-order column is less than the bottom number.

3.1. A hierarchical subtraction procedure

One way to implement this procedure is via the processing of a goal
hierarchy that encodes what must be done. Figure 3 shows a subtraction goal

302 P.S. Rosenbloom et al.

Subtraction

I I
Single-column Rest-columns

B o r r o w l

Borrow-from Borrow-into

I I I ub ra - l
I

B o r r o w l

Fig. 3. A goal hierarchy for multi-column subtraction.

hierarchy that is similar to the one learned by Sierra. 3 Under each goal are
shown the subgoals that may be generated while trying to achieve it. This
Sierra goal hierarchy is mapped onto a hierarchy of operators and problem
spaces in Soar (as described in Section 2). The boxed goals map onto operators
and the unboxed goals map onto problem spaces. Each problem space consists
of the operators linked to it from below in the figure. Operators that have
problem spaces below them are implemented by problem solving in those
problem spaces. The other operators are implemented directly at the memory
level by productions (except for multiple-column and regroup, which are
recursive). These are the primitive acts of subtraction, such as writing numbers
or subtracting digits.

The states in these problem spaces contain symbolic representations of the
subtraction problem and the scratch marks made on the page during problem
solving. The representation is very simple and direct, being based on the
spatial relationships among the digits as they would appear on a page. The
state consists of a set of columns. Each column has pointers to its top and
bottom digits. Additional pointers are generated when an answer for a column
is produced, or when a scratch mark is made as the result of borrowing. The
physical orientation of the columns on the page is represented by having "left"
and "right" pointers from columns to their left and right neighbors. There is no
inherent notion of multi-digit numbers except for these left and right relations
between columns. This representation is consistent with the operators, which

3 Sierra learned a slightly more elaborate, but computationally equivalent, procedure.

The Soar architecture as a basis for general intelligence 303

treat the problem symbolically and never manipulate multi-digit numbers as a
whole.

Using this implementation of the subtraction procedure, Soar is able to solve
all multi-column subtraction problems that result in positive answers. Unfortu-
nately, there is little role for learning. Most of the control knowledge is already
embedded in the productions that select problem spaces and operators. Within
each problem space there are only a few operators from which to select. The
preconditions of the few operators in each problem space are sufficient for
perfect behavior. Therefore, goals arise only to implement operators. Chunk-
ing these goals produces productions that are able to compute answers without
the intermediate subgoals. 4

3.2. A single-space approach

One way to loosen up the strict control provided by the detailed problem-
space/operator hierarchy in Fig. 3, and thus to enable the learning of the
control knowledge underlying the subtraction procedure, is to have only a
single subtraction problem space that contains all of the primitive acts (writing
results, changing columns, and so on). Figure 4 contains a description of the

• Operators:
Write-difference: If the difference between the top digit and the bottom digit of

the current column is known, then write the difference as an answer to the
current column.

Write-top: If the lower digit of the current column is blank, then write the top
digit as the answer to the current column.

Borrow-into: If the result of adding 10 to the top digit of the current column is
known, and the digit to the left of it has a scratch mark on it, then replace the
top digit with the result.

Borrow-from: If the result of subtracting 1 from the top digit in the current
column is known, then replace that top digit with the result, augment it with a
scratch mark and shift the current column to the right.

Move-left: If the current column has an answer in it, shift the current column
left.

Move-borrow-left: If the current column does not have a scratch mark in it, shift
the current column left.

Subtract-two-digits: If the top digit is greater than or equal to the lower digit,
then produce a result that is the difference.

Subtract-l: If the top digit is not zero, then produce a result that is the top digit
minus one.

Add 10: Produce a result that is the top digit plus ten.
• Goal Test: If each column has an answer, then succeed.

Fig. 4. Primitive subtraction problem space.

4 This work on subtraction was done in an earlier version of Soar that did not have the
perceptual-motor interface described in Section 2. In that version, these chunks caused Soar to
write out all of the column results and scratch marks in paral lel--not very realistic motor behavior.
To work around this problem, chunking was disabled for goals in this task during which
environmental interactions occurred.

304 P.S. Rosenbloom et al.

problem space operators and the goal test used in this second implementation.
The operators can be grouped into four classes: the basic acts of writing
answers to a single column problem (write-difference, write-top); borrow
actions on the upper digits (borrow-into, borrow-from); moving from one
column to the next (move-left, move-borrow-left); and performing very simple
arithmetic computations (subtract-two-digits, subtract-l, add-10). With this
simple problem space, Soar must learn the subtraction procedure by acquiring
control knowledge that correctly selects operators.

Every operator in the subtraction problem space is considered for every state
in the space. This is accomplished by having a production for each operator
that generates an acceptable preference for it. The conditions of the production
only test that the appropriate problem space (subtraction) is selected. Similar
productions existed in the original implementation, except that those produc-
tions also contained additional tests which ensured that the operators would
only be considered when they were the appropriate ones to apply.

In addition to productions which generate acceptable preferences, each
operator has one or more productions which implement it. Although every
operator is made acceptable for every state, an operator will actually be
applied only if all of the conditions in the productions that implement it are
satisfied. For example, write-difference will only apply if the difference be-
tween the top and bottom numbers is known. If an operator is selected, but the
conditions of the productions that implement it are not satisfied, an impasse
arises. As described in Section 2, the default response to this type of impasse is
to perform operator subgoaling.

Figure 5 shows a trace of Soar's problem solving as it performs a simple
two-column subtraction problem, after the learning of control knowledge has
been completed. Because Soar's performance prior to learning on this problem
is considerably more complicated, it is described after this simpler case. The

1 . 1 1
22 write-difference ~12 move-left ~12 write-top "~ 12

3 3 ~ 3 ~ 3

9 9 19

* borrow-into *
22 ~ 2

* ~ 1.
22 move-left 22 borrow-from ~?.
3 ~ 3 ~ - 3

Fig. 5. Trace of problem solving after learning for 22 - 3.

The Soar architecture as a basis for general intelligence 305

top goal in this figure is to have the result of subtracting 3 from 22. Problem
solving in the top goal proceeds from left to right, diving to a lower level
whenever a subgoal is created in response to an impasse. Each state is a
partially solved subtraction problem, consisting of the statement of the subtrac-
tion problem, a * designating the current column, and possibly column results
and/or scratch marks for borrowing. Operator applications are represented by
arrows going from left to right. The only impasses that occur in this trace are a
result of the failure of operator preconditions---a form of operator no-change
impasse. These impasses are designated by circles disrupting the operator-
application arrows, and are labeled in the order they arise (A and B). For
example, impasse A arises because write-difference cannot apply unless the
lower digit in the current column (3) is less than the top digit (2).

For impasse A, operator subgoaling occurs when the subtraction problem
space is selected in the subgoal. The preconditions of the write-difference
operator are met when a state has been generated whose top digit has been
changed from 2 to 12 (by borrowing). Once this occurs, the subgoal terminates
and the operator applies, in this case writing the difference between 12 and 3.
In this implementation of subtraction, operator subgoaling dynamically creates
a goal hierarchy that is similar to the one programmed into the original
implementation.

3.3. Performance prior to learning

Prior to learning, Soar's problem solving on this task is considerably more
complicated. This added complexity arises because of an initial lack of knowl-
edge about the results of simple arithmetic computations and a lack of
knowledge about which operators should be selected for which states. Figure 6

Subtract problem space

Selection problem space

Subtract problem space

w~e-difference move-left

22 ,d.4=AI X 12 ,12

/ --,,

write-difference ~012
22

9

Fig. 6. Trace of problem solving before learning for 22 - 3.

306 P.S. R o s e n b l o o m et al.

shows a partial trace of Soar's pre-learning problem solving. Although many of
the subgoals are missing, this small snapshot of the problem solving is
characteristic of the impasses and subgoals that arise at all levels.

As before, the problem solving starts at the upper left with the initial state.
As soon as the initial state is selected, a tie impasse (A) arises because all of
the operators are acceptable and there are no additional preferences that
distinguish between them. Default productions cause the selection space to be
selected for this impasse. Within this space, operators are created to evaluate
the tied operators. This example assumes that evaluate-object(write-difference)
is selected, possibly based on advice from a teacher. Then, because there is no
knowledge available about how to evaluate the subtraction operators, a
no-change impasse (B) occurs for the evaluation operator. More default
productions lead to a lookahead search by suggesting the original problem
space (subtraction) and state and then selecting the operator that is being
evaluated. The operator then applies, if it can, creating a new state. In this
example, an operator subgoal impasse (C) arises when the attempt is made to
apply the write-difference operator--its preconditions are not satisfied. Prob-
lem solving continues in this subgoal, requiring many additional impasses, until
the write-difference operator can finally be applied. The lookahead search then
continues until an evaluation is generated for the write-difference operator.
Here, this happens shortly after impasse C is resolved. The system was given
the knowledge that a state containing an answer for the current column is a
(partial) success--such states are on the path to the goal. This state evaluation
is then converted by default productions into an evaluation of "success" for the
operator, and from there into a best preference for the operator. The creation
of this preference breaks the operator tie, terminating the subgoals, and
leading to the selection of the preferred operator (write-difference). The
overall behavior of the system during this lookahead search is that of depth-
first search--where backtracking occurs by subgoal termination--intertwined
with operator subgoaling. Once this search is completed, further impasses (N)
arise to actually apply the selected operator, but eventually, a solution is
found.

One way in which multi-column subtraction differs from the classic AI search
tasks is that the goal test is underspecified. As shown in Fig. 4, the goal test
used here is that a result has been generated for each column of the problem.
This determines whether some answer has been given for the problem, but is
inadequate to determine whether the correct answer has been generated. The
reason for this is that when solving a subtraction problem, the answer is in
general not already available. It is theoretically (and practically) possible to use
an addition procedure to test whether the subtraction procedure has generated
the correct result. However, that corresponds to a deliberate strategy of
"checking your work", rather than to the normal procedural goal test of
determining whether the sequence of steps has been completed.

The Soar architecture as a basis for general intelligence 307

One consequence of having an underspecified goal test is that the combina-
tion of the problem space and goal test are not sufficient to ensure correct
performance. Additional knowledge--the control knowledge which underlies
the subtraction procedure--must also be provided in some form. VanLehn
provided Sierra with worked-out examples which included the order in which
the primitive external actions were to be performed [71]. The approach that we
have taken is to provide advice to Soar [12] about which task operators it
should evaluate first in the selection problem space. This ensures that the first
answer generated during the lookahead search is the correct one.

3.4. Learning in subtraction

When chunking is used during subtraction problem solving, productions are
created which reproduce the results of the subgoals in similar future situations.
For the subgoals created because of tie impasses, the chunks create best
preferences for the operators that led to the solution. These chunks essentially
cache the results of the lookahead searches. A set of such chunks corresponds
to a plan (or procedure)--they determine at every step what should be
done--thus chunking converts Soar's behavior from search into plan (or
procedure) following. When Soar is rerun on the same problem, the tie
impasses do not arise and the solution is found directly, as in Fig. 5.

One important issue concerning the chunked productions is their generality.
Does Soar only learn chunks that can apply to the exact same problem, or are
the chunks general enough so that advice is no longer needed after a few
subtraction problems have been completed? The answer is that the learned
control chunks are quite general--so general that only one or two are required
per operator. Once these chunks are acquired, Soar is able to solve perfectly
all multi-column subtraction problems that have a positive answer. One sample
control chunk for the borrow-into operator is shown in Fig. 7. Similar chunks
are learned for each of the other major operators.

One reason for this generality is that operator subgoaling leads to a
fine-grained goal hierarchy. There are a large number of relatively simple goals
having to do with satisfying the preconditions of an operator. Because the
problem solving for these goals is relatively minimal, the resulting chunks are
quite general. A second reason for the generality of the learning is that the

If the super-operator is write-difference,
and the bottom digit is greater than the top digit,

then make a best preference for borrow-into.

Fig. 7. A control chunk for borrow-into.

308 P.S. Rosenbloom et al.

control chunks do not test for the specific digits used in the problems-- if such
tests were included, the chunks would transfer to many fewer problems. 5

Though the control chunks that are learned are quite general, many special-

ized implementation chunks are also learned for the simple arithmetic

operators. For example, the set of chunks that are eventually learned for the

subtract-two-digits operator comprise a partial subtraction table for one- and

two-digit numbers. Conceivably, these chunks could have been learned before

multi-column subtraction is ever attempted----one may imagine that most of

these simple digit manipulations are learned during earlier lessons on addition

and single-column subtraction. Alternatively, these chunks can continue to be

acquired as more multi-column subtraction problems are solved. The control

chunks would all be acquired after a few trials, but learning of arithmetic

knowledge would continue through later problems.

4. Analysis of Soar

There are a variety of analyses that could be performed for Soar. In this

section we take our cue from the issues provided by the organizers of the 1987

Workshop on the Foundations of Artificial Intelligence [14]. We examine the

set of tasks that are natural for Soar, the sources of its power, and its scope and
limits.

4.1. N a t u r a l t a s k s

What does it mean for a task to be natural for an architecture? To answer

this question we first must understand what a task is, and then what it means

for such a task to be natural. By "task" we will mean any identifiable function,

whether externally specified, or completely internal to the system. Computer

configuration and maneuvering through an obstacle course are both tasks, and

so are inheritance and skill acquisition. One way to define the idea of

naturalness for a combination of a task and architecture is to say that a task is

natural for an architecture if the task can be performed within the architecture

without adding an extra level of interpretation within the software. This

definition is appealing because it allows a distinction to be made between the

tasks that the architecture can perform directly and those that can be done, but

for which the architecture does not provide direct support. However, applying

Chunking would include tests for the digits if their specific values were examined during the
lookahead searches. However, the actual manipulation of the numbers is performed by the simple
arithmetic operators: add-10, subtract-1 and subtract-two-digits. Before an operator such as
write-difference is applied, an operator subgoal is created in which subtract-two-digits is selected
and applied. The chunk for this subgoal reproduces the result whenever the same two digits are to
be subtracted, eliminating the need for subtract-two-digits in such situations in the future. In the
following Iookahead searches, only pointers to the digits rather than the actual digits are ever
tested, thereby leading to control chunks that are independent of the actual digits.

The Soar architecture as a basis for general intelligence 309

this definition is not without its problems. One problem is that, for any
particular task, it is possible to replace the combination of an interpreter and
its interpreted structures with a procedure that has the same effect. Some
forms of learning---vhunking, for example--do exactly this, by compiling
interpreted structures into the structure of the interpreter. This has the effect
of converting an unnatural task implementation into a natural one. Such a
capability causes problems for the definition of naturalness--naturalness can-
not be a fixed property of the combination of a task and an architecture--but it
is actually a point is favor of architectures that can do such learning.

A second problem is that in a system that is itself built up in levels, as is
Soar, different tasks will be performed at different levels. In Soar, tasks can be
performed directly by the architecture, by memory retrieval, by a decision, or
by goal-based problem solving. A task is implemented at a particular level if
that level and all lower levels are involved, but the higher levels are not. For
example, consider the task of inheritance. Inheritance is not directly im-
plemented by the Soar architecture, but it can be implemented at the memory
level by the firing of productions. This implementation involves the memory
level plus the architecture (which implements the memory level), but not the
decision or goal levels. Alternatively, inheritance could be implemented at the
decision level, or even higher up at goal level. As the level of implementation
increases, performance becomes more interpretive, but the model of computa-
tion explicitly includes all of these levels as natural for the system.

One way out of this problem is to have pre-theoretic notions about the level
at which a particular task ought to be performable. The system is then natural
for the task if it can be performed at that level, and unnatural if it must be
implemented at a higher level. If, for example, the way inheritance works
should be a function of the knowledge in the system, then the natural level for
the capability is at the memory level (or higher).

In the remainder of this section we describe the major types of tasks that
appear to us to be natural in Soar. Lacking any fundamental ways of
partitioning the set of all tasks into principled categories, we will use a
categorization based on four of the major functional capabilities of Soar:
search-based tasks, knowledge-based tasks, learning tasks, and robotic tasks.
The naturalness judgments for these task types are always based on assump-
tions about the natural level of implementation for a variety of subtasks within
each type of task. We will try to be as clear as possible about the levels at
which the subtasks are being performed, so that others may also be able to
make these judgments for themselves.

4.1.1. Search-based tasks
Soar performs search in two qualitatively different ways: within context and

across context. Within-context search occurs when Soar "knows" what to do at
every step, and thus selects a sequence of operators and states without going

310 P.S. Rosenbloorn et al.

into a subgoal. If it needs to backtrack in within-context search, and the states
in the problem space are internal (rather than states of the outside world), it
can do so by reselecting a previously visited state. Within-context search
corresponds to doing the task, without lookahead, and recovering if anything
goes wrong. Across-context search occurs when the system doesn't know what
to do, and impasses arise. Successive states in the search show up in successive-
ly lower contexts. Backtracking occurs by terminating subgoals. Across-context
search corresponds to lookahead search, hypothetical scenario generation, or
simulation.

Various versions of Soar have been demonstrated to be able to perform over
30 different search methods [21,25,26]. Soar can also exhibit hybrid
methods--such as a combination of hill-climbing and depth-first search or of
operator subgoaling and depth-first search--and use different search methods
for different problem spaces within the same problem.

Search methods are represented in Soar as method increments--productions
that contain a small chunk of knowledge about some aspect of a task and its
action consequences. For example, a method increment might include knowl-
edge about how to compute an evaluation function for a task, along with the
knowledge that states with better evaluations should be preferred. Such an
increment leads to a form of hill climbing. Other increments lead to other
search methods. Combinations of increments lead to mixed methods.

The basic search abilities of making choices and generating subgoals are
provided by the architecture. Individual method increments are at the memory
level, but control occurs at the decision level, where the results of all of the
method increments can be integrated into a single choice. Some search
knowledge, such as the selection problem space, exists at the goal level.

4.1.2. Knowledge-based tasks
Knowledge-based tasks are represented in Soar as a collection of interacting

problem spaces (as are all symbolic goal-oriented tasks). Each problem space is
responsible for a part of the task. Problem spaces interact according to the
different goal-subgoal relationships that can exist in Soar. Within each problem
space, the knowledge is further decomposed into a set of problem space
components, such as goal testing, state initialization, and operator proposal
[77]. These components, along with additional communication constructs, can
then be encoded directly as productions, or can be described in a high-level
problem space language called TAQL [77], which is then compiled down into
productions. Within this overall problem space organization, other forms of
organization--such as object hierarchies with inheritance--are implementable
at the memory level by multiple memory accesses. Task performance is
represented at the goal level as search in problem spaces.

Several knowledge-based tasks have been implemented in Soar, including
the R1-Soar computer configuration system [51], the Cypress-Soar and De-

The Soar architecture as a basis for general intelligence 311

signer-Soar algorithm design systems [60, 62], the Neomycin-Soar medical
diagnosis system [73], and the Merl-Soar job-shop scheduling system [16].

These five knowledge-based systems cover a variety of forms of both
construction and classification tasks. Construction tasks involve assembling an
object from pieces. R1-Soar--in which the task is to construct a computer
configuration--is a good example of a construction task. Classification tasks
involve selecting from among a set of objects. Neomycin-Soar--in which the
task is to diagnose an illness--is a good example of a classification task. 6 In
their simplest forms, both construction and classification occur at the decision
level. In fact, they both occur to some extent within every decision in
Soar--alternatives must be assembled in working-memory and then selected.
These capabilities can require trivial amounts of processing, as when an object
is constructed by instantiating and retrieving it from memory. They can also
involve arbitrary amounts of problem solving and knowledge, as when the
process of operator-implementation (or, equivalently, state-construction) is
performed via problem solving in a subgoal.

4.1.3. Learning tasks
The architecture directly supports a form of experiential learning in which

chunking compiles goal-level problem solving into memory-level productions.
Execution of the productions should have the same effect as the problem
solving would have had, just more quickly. The varieties of subgoals for which
chunks are learned lead to varieties in types of productions learned: problem
space creation and selection; state creation and selection; and operator crea-
tion, selection, and execution. An alternative classification for this same set of
behaviors is that it covers procedural, episodic and declarative knowledge [56].
The variations in goal outcomes lead to both learning from success and
learning from failure. The ability to learn about all subgoal results leads to
learning about important intermediate results, in addition to learning about
goal success and failure. The implicit generalization of chunks leads to transfer
of learned knowledge to other subtasks within the same problem (within-trial
transfer), other instances of the same problem (across-trial transfer), and other
problems (across-task transfer). Variations in the types of problems performed
in Soar lead to chunking in knowledge-based tasks, search-based, and robotic
tasks. Variations in sources of knowledge lead to learning from both internal
and external knowledge sources. A summary of many of the types of learning
that have so far been demonstrated in Soar can be found in [61].

The apparent naturalness of these various forms of learning depends primari-
ly on the appropriateness of the required problem solving. Towards the natural
end of the spectrum is the acquisition of operator selection productions, in

6 In a related development , as part of an effort to map the Generic Task approach to expert
system construction onto Soar, the Generic Task for classification by establish-refine has been
implemented in Soar as a general problem space [17].

312 P.S. Rosenbloom et al.

which the problem solving consists simply of a search with the set of operators
for which selection knowledge is to be learned. Towards the unnatural end of
the spectrum is the acquisition of new declarative knowledge from the outside
environment. Many systems employ a simple store command for such learning,
effectively placing the capability at the memory level. In Soar, the capability is
situated two levels further up, at the goal level. This occurs because the
knowledge must be stored by chunking, which can only happen if the knowl-
edge is used in subgoal-based problem solving. The naturalness of this learning
in Soar thus depends on whether this extra level of interpretation is appropri-
ate or not. It turns out that the problem solving that enables declarative
learning in Soar takes the form of an understanding process that relates the
new knowledge to what is already known. The chunking of this understanding
process yields the chunks that encode the new knowledge. If it is assumed that
new knowledge should always be understood to be learned, then Soar's
approach starts to look more natural, and verbatim storage starts to look more
inappropriate.

4.1.4. Robotic tasks

Robotic tasks are performed in Soar via its perceptual-motor interface.
Sensors autonomously generate working memory structures representing what
is being sensed, and motor systems autonomously take commands from
working memory and execute them. The work on robotics in Soar is still very
much in its infancy; however, in Robo-Soar [30], Soar has been successfully
hooked up to the combination of a camera and a Puma arm, and then applied
to several simple blocks-world tasks. 7 Low-level software converts the camera
signal into information about the positions, orientations and identifying charac-
teristics of the blocks. This perceptual information is then input to working
memory, and further interpreted by encoding productions. Decoding produc-
tions convert the high-level robot commands generated by the cognitive system
to the low-level commands that are directly understood by the controller for
the robot arm. These low-level commands are then executed through Soar's
motor interface.

Given a set of operators which generate motor commands, and knowledge
about how to simulate the operators and about the expected positions of blocks
following the actions, Robo-Soar is able to successfully solve simple blocks-
world problems and to learn from its own behavior and from externally
provided advice. It also can make use of a general scheme for recovering from
incorrect knowledge [23] to recover when the unexpected occurs--such as
when the system fails in its attempt to pick up a triangular prism--and to learn
to avoid the failure in the future. Robo-Soar thus mixes planning (lookahead

7 The work on Robo-Soar has been done in the newest major release of Soar (version 5) [24, 63],
which differs in a number of interesting ways from the earlier versions upon which the rest of the
results in this article are based.

The Soar architecture as a basis for general intelligence 313

search with chunking), plan execution and monitoring, reactivity, and error
recovery (with replanning). This performance depends on all of the major
components of the architecture, plus general background knowledge--such as
how to do lookahead search and how to recover from errors--and specific
problem spaces for the task.

4.2. Where the power resides

Soar's power and flexibility arise from at least four identifiable sources. The
first source of power is the universality of the architecture. While it may seem
that this should go without saying, it is in fact a crucial factor, and thus
important to mention explicitly. Universality provides the primitive capability
to perform any computable task, but does not by itself explain why Soar is
more appropriate than any other universal architecture for knowledge-based,
search-based, learning, and robotic tasks.

The second source of power is the uniformity of the architecture. Having
only one type of long-term memory structure allows a single, relatively simple,
learning mechanism to behave as a general learning mechanism. Having only
one type of task representation (problem spaces) allows Soar to move continu-
ously from one extreme of brute-force search to the other extreme of knowl-
edge-intensive (or procedural) behavior without having to make any repre-
sentational decisions. Having only one type of decision procedure allows a
single, relatively simple, subgoal mechanism to generate all of the types of
subgoals needed by the system.

The traditional downside of uniformity is weakness and inefficiency. If
instead the system were built up as a set of specialized modules or agents, as
proposed in [10, 34], then each of the modules could be optimized for its own
narrow task. Our approach to this issue in Soar has been to go strongly with
uniformity--for all of the benefits listed above--but to achieve efficiency
(power) through the addition of knowledge. This knowledge can either be
added by hand (programming) or by chunking.

The third source of power is the specific mechanisms incorporated into the
architecture. The production memory provides pattern-directed access to large
amounts of knowledge; provides the ability to use strong problem solving
methods; and provides a memory structure with a small-grained modularity.
The working memory allows global access to processing state. The decision
procedure provides an open control loop that can react immediately to new
situations and knowledge; contributes to the modularity of the memory by
allowing memory access to proceed in an uncontrolled fashion (conflict resolu-
tion was a major source of nonmodularity in earlier production systems);
provides a flexible control language (preferences); and provides a notion of
impasse that is used as the basis for the generation of subgoals. Subgoals focus
the system's resources on situations where the accessible knowledge is

314 P.S. Rosenbloom et al.

inadequate; and allow flexible meta-level processing. Problem spaces separate
control from action, allowing them (control and action) to be reasoned about
independently; provide a constrained context within which the search for a
desired state can occur; provide the ability to use weak problem solving
methods; and provide for straightforward responses to uncertainty and error
(search and backtracking). Chunking acquires long-term knowledge from
experience; compiles interpreted procedures into non-interpreted ones; and
provides generalization and transfer. The perceptual-motor system provides
the ability to observe and affect the external world in parallel with the
cognitive activity.

The fourth source of power is the interaction effects that result from the
integration of all of the capabilities within a single system. The most compel-
ling results generated so far come about from these interactions. One example
comes from the mixture of weak methods, strong methods, and learning that is
found in systems like R1-Soar. Strong methods are based on having knowledge
about what to do at each step. Because strong methods tend to be efficient and
to produce high-quality solutions, they should be used whenever possible.
Weak methods are based on searching to make up for a lack of knowledge
about what should be done. Such methods contribute robustness and scope by
providing the system with a fall-back approach for situations in which the
available strong methods do not work. Learning results in the addition of
knowledge, turning weak methods into strong ones. For example, in R1-Soar it
was demonstrated how computer configuration could be cast as a search
problem, how strong methods (knowledge) could be used to reduce search,
how weak methods (subgoals and search) could be used to make up for a lack
of knowledge, and how learning could add knowledge as the result of search.

Another interesting interaction effect comes from work on abstraction
planning, in which a difficult problem is solved by first learning a plan for an
abstract version of the problem, and then using the abstract plan to aid in
finding a plan for the full problem [41, 57, 70, 69]. Chunking helps the abstrac-
tion planning process by recording the abstract plan as a set of operator-
selection productions, and by acquiring other productions that reduce the
amount of search required in generating a plan. Abstraction helps the learning
process by allowing chunks to be learned more quickly--abstract searches tend
to be shorter than normal ones. Abstraction also helps learning by enabling
chunks to be more general than they would otherwise be--the chunks ignore
the details that were abstracted away--thus allowing more transfer and poten-
tially decreasing the cost of matching the chunks (because there are now fewer
conditions).

4.3. Scope and limits

The original work on Soar demonstrated its capabilities as a general problem
solver that could use any of the weak methods when appropriate, across a wide

The Soar architecture as a basis for general intelligence 315

range of tasks. Later, we came to understand how to use Soar as the basis for
knowledge-based systems, and how to incorporate appropriate learning and
perceptual-motor capabilities into the architecture. These developments in-
creased Soar's scope considerably beyond its origins as a weak-method prob-
lem solver. Our ultimate goal has always been to develop the system to the
point where its scope includes everything required of a general intelligence. In
this section we examine how far Soar has come from its relatively limited initial
demonstrations towards its relatively unlimited goal. This discussion is divided
up according to the major components of the Soar architecture, as presented in
Section 2: memory, decisions, goals, learning, and perception and motor
control.

4.3.1. Level 1: Memory
The scope of Soar's memory level can be evaluated in terms of the amount

of knowledge that can be stored, the types of knowledge that can be repre-
sented, and the organization of the knowledge.

Amount of knowledge. Using current technology, Soar's production memory
can support the storage of thousands of independent chunks of knowledge. The
size is primarily limited by the cost of processing larger numbers of produc-
tions. Faster machines, improved match algorithms and parallel implementa-
tions [13, 65, 66] may raise this effective limit by several orders of magnitude
over the next few years.

Types of knowledge. The representation of procedural and propositional
declarative knowledge is well developed in Soar. However, we don't have well
worked-out approaches to many other knowledge representation problems,
such as the representation of quantified, uncertain, temporal, and episodic
knowledge. The critical question is whether architectural support is required to
adequately represent these types of knowledge, or whether such knowledge
can be adequately treated as additional objects and/or attributes. Preliminary
work on quantified [43] and episodic [56] knowledge is looking promising.

Memory organization. An issue which often gets raised with respect to the
organization of Soar's memory, and with respect to the organization of
production memories in general, is the apparent lack of a higher-order memory
organization. There are no scripts [59], frames [33], or schemas [1] to tie
fragments of related memory together. Nor are there any obvious hierarchical
structures which limit what sets of knowledge will be retrieved at any point in
time. However, Soar's memory does have an organization, which is derived
from the structure of productions, objects, and working memory (especially the
context hierarchy).

What corresponds to a schema in Soar is an object, or a structured collection
of objects. Such a structure can be stored entirely in the actions of a single
production, or it can be stored in a piecemeal fashion across multiple produc-
tions. If multiple productions are used, the schema as a unit only comes into

316 P.S. Rosenbloom et al.

existence when the pieces are all retrieved contemporaneously into working
memory. The advantage of this approach is that it allows novel schemas to be
created from fragments of separately learned ones. The disadvantage is that it
may not be possible to determine whether a set of fragments all originated
from a single schema.

What corresponds to a hierarchy of retrieval contexts in Soar are the
production conditions. Each combination of conditions implicitly defines a
retrieval context, with a hierarchical structure induced by the subset relation-
ship among the combinations. The contents of working memory determines
which retrieval contexts are currently in force. For example, problem spaces
are used extensively as retrieval contexts. Whenever there is a problem solving
context that has a particular problem space selected within it, productions that
test for other problem space names are not eligible to fire in that context. This
approach has worked quite well for procedural knowledge, where it is clear
when the knowledge is needed. We have just begun to work on appropriate
organizational schemes for episodic and declarative knowledge, where it is
much less clear when the knowledge should be retrieved. Our initial approach
has been based on the incremental construction, via chunking, of multi-
production discrimination networks [53, 56]. Though this work is too prema-
ture for a thorough evaluation in the context of Soar, the effectiveness of
discrimination networks in systems like Epam [7] and Cyrus [19] bodes well.

4.3.2. Level 2: Decisions
The scope of Soar's decision level can be evaluated in terms of its speed, the

knowledge brought to bear, and the language of control.
Speed. Soar currently runs at approximately 10 decisions/second on current

workstations such as a Sun4/280. This is adequate for most of the types of
tasks we currently implement, but is too slow for tasks requiring large amounts
of search or very large knowledge bases (the number of decisions per second
would get even smaller than it is now). The principal bottleneck is the speed of
memory access, which is a function of two factors: the cost of processing
individually expensive productions (the expensive chunks problem) [67], and
the cost of processing a large number of productions (the average growth effect
problem) [64]. We now have a solution to the problem of expensive chunks
which can guarantee that all productions will be cheap---the match cost of a
production is at worst linear in the number of conditions [68]--and are working
on other potential solutions. Parallelism looks to be an effective solution to the
average growth effect problem [64].

Bringing knowledge to bear. Iterated, parallel, indexed access to the contents
of long-term memory has proven to be an effective means of bringing
knowledge to bear on the decision process. The limited power provided by this
process is offset by the ability to use subgoals when the accessible knowledge is

The Soar architecture as a basis for general intelligence 317

inadequate. The issue of devising good access paths for episodic and declara-
tive knowledge is also relevant here.

Control language. Preferences have proven to be a flexible means of
specifying a partial order among contending objects. However, we cannot yet
state with certainty that the set of preference types embodied in Soar is
complete with respect to all the types of information which ultimately may
need to be communicated to the decision procedure.

4.3.3. Level 3: Goals
The scope of Soar's goal level can be evaluated in terms of the types of goals

that can be generated and the types of problem solving that can be performed
in goals. Soar's subgoaling mechanism has been demonstrated to be able to
create subgoals for all of the types of difficulties that can arise in problem
solving in problem spaces [21]. This leaves three areas open. The first area is
how top-level goals are generated; that is, how the top-level task is picked.
Currently this is done by the programmer, but a general intelligence must
clearly have grounds--that is, motivations--for selecting tasks on its own. The
second area is how goal interactions are handled. Goal interactions show up in
Soar as operator interactions, and are normally dealt with by adding explicit
knowledge to avoid them, or by backtracking (with learning) when they
happen. It is not yet clear the extent to which Soar could easily make use of
more sophisticated approaches, such as non-linear planning [2]. The third area
is the sufficiency of impasse-driven subgoaling as a means for determining
when meta-level processing is needed. Two of the activities that might fall
under this area are goal tests and monitoring. Both of these activities can be
performed at the memory or decision level, but when they are complicated
activities it may be necessary to perform them by problem solving at the goal
level. Either activity can be called for explicitly by selecting a "monitor" or
"goal-test" operator, which can then lead to the generation of a subgoal.
However, goals for these tasks do not arise automatically, without delibera-
tion. Should they? It is not completely clear.

The scope of the problem solving that can be performed in goals can itself be
evaluated in terms of whether problem spaces cover all of the types of
performance required, the limits on the ability of subgoal-based problem
solving to access and modify aspects of the system, and whether parallelism is
possible. These points are addressed in the next three paragraphs.

Problem space scope. Problem spaces are a very general performance model.
They have been hypothesized to underlie all human, symbolic, goal-oriented
behavior [37]. The breadth of tasks that have so far been represented in
problem spaces over the whole field of AI attests to this generality. One way of
pushing this evaluation further is to ask how well probem spaces account for
the types of problem solving performed by two of the principal competing

318 P.S. Rosenbloom et al.

paradigms: planning [2] and case-based reasoning [20]. s Both of these
paradigms involve the creation (or retrieval) and use of a data structure that
represents a sequence of actions. In planning, the data structure represents the
sequence of actions that the system expects to use for the current problem. In
case-based reasoning, the data structure represents the sequence of actions
used on some previous, presumably related, problem. In both, the data
structure is used to decide what sequence of actions to perform in the current
problem. Soar straightforwardly performs procedural analogues of these two
processes. When it performs a lookahead search to determine what operator to
apply to a particular state, it acquires (by chunking) a set of search control
productions which collectively tell it which operator should be applied to each
subsequent state. This set of chunks forms a procedural plan for the current
problem. When a search control chunk transfers between tasks, a form of
procedural case-based reasoning is occurring.

Simple forms of declarative planning and case-based reasoning have also
been demonstrated in Soar in the context of an expert system that designs floor
systems [47]. When this system discovers, via lookahead search, a sequence of
operators that achieves a goal, it creates a declarative structure representing
the sequence and returns it as a subgoal result (plan creation). This plan can
then be used interpretively to guide performance on the immediate problem
(plan following). The plan can also be retrieved during later problems and used
to guide the selection of operators (case-based reasoning). This research does
not demonstrate the variety of operations one could conceivably use to modify
a partial or complete plan, but it does demonstrate the basics.

Meta- leve l access. Subgoal-based problem solving has access to all of the
information in working memory--including the goal stack, problem spaces,
states, operators, preferences, and other facts that have been retrieved or
generated--plus any of the other knowledge in long-term memory that it can
access. It does not have direct access to the productions, or to any of the data
structures internal to the architecture. Nonetheless, it should be able to
indirectly examine the contents of any productions that were acquired by
chunking, which in the long run should be just about all of them. The idea is to
reconstruct the contents of the production by going down into a subgoal and
retracing the problem solving that was done when the chunk was learned. In
this way it should be possible to determine what knowledge the production
cached. This idea has not yet been explicitly demonstrated in Soar, but
research on the recovery from incorrect knowledge has used a closely related
approach [23].

The effects of problem solving are limited to the addition of information to

The work on Robo-Soar also reveals Soar's potential to exhibit reactive planning [11]. The
current version of Soar still has problems with raw speed and with the unbounded nature of the
production match (the expensive chunks problem), but it is expected that these problems will be
solved in the near future.

The Soar architecture as a basis for general intelligence 319

working memory. Deletion of working memory elements is accomplished by a
garbage collector provided by the architecture. Productions are added by
chunking, rather than by problem solving, and are never deleted by the system.
The limitation on production creation--that it only occurs via chunking--is
dealt with by varying the nature of the problem solving over which chunking
occurs [56]. The limitation on production deletion is dealt with by learning new
productions which overcome the effects of old ones [23].

Parallelism. Two principal sources of parallelism in Soar are at the memory
level: production match and execution. On each cycle of elaboration, all
productions are matched in parallel to the working memory, and then all of the
successful instantiations are executed in parallel. This lets tasks that can be
performed at the memory level proceed in parallel, but not so for decision-
level and goal-level tasks.

Another principal source of parallelism is provided by the motor systems.
All motor systems behave in parallel with respect to each other, and with
respect to the cognitive system. This enables one form of task-level parallelism
in which non-interfering external tasks can be performed in parallel. To enable
further research on task-level parallelism we have added the experimental
ability to simultaneously select multiple problem space operators within a
single problem solving context. Each of these operators can then proceed to
execute in parallel, yielding parallel subgoals, and ultimately an entire tree of
problem solving contexts in which all of the branches are being processed in
parallel. We do not yet have enough experience with this capability to evaluate
its scope and limits.

Despite all of these forms of parallelism embodied in Soar, most im-
plementations of the architecture have been on serial machines, with the
parallelism being simulated. However, there is an active research effort to
implement Soar on parallel computers. A parallelized version of the produc-
tion match has been successfully implemented on an Encore Multimax, which
has a small number (2-20) of large-grained processors [66], and unsuccessfully
implemented on a Connection Machine [15], which has a large number
(16K-64K) of small-grained processors [9]. The Connection Machine im-
plementation failed primarily because a complete parallelization of the current
match algorithm can lead to exponential space requirements. Research on
restricted match algorithms may fix this problem in the future. Work is also in
progress towards implementing Soar on message-passing computers [65].

4.3.4. Learning
In [61] we broke down the problem of evaluating the scope of Soar's learning

capabilities into four parts: when can the architecture learn; from what can the
architecture learn; what can the architecture learn; and when can the architec-
ture apply learned knowledge. These points are discussed in Section 4.1, and
need not be elaborated further here.

320 P.S. R o s e n b l o o m et al.

One important additional issue is whether Soar acquires knowledge that is at
the appropriate level of generalization or specialization. Chunking provides a
level of generality that is determined by a combination of the representation
used and the problem solving performed. Under varying circumstances, this
can lead to both overgeneralization [29] and overspecialization. The acquisition
of overgeneral knowledge implies that the system must be able to recover from
any errors caused by its use. One solution to this problem that has been
implemented in Soar involves detecting that a performance error has occurred,
determining what should have been done instead, and acquiring a new chunk
which leads to correct performance in the future [23]. This is accomplished
without examining or modifying the overgeneral production; instead it goes
back down into the subgoals for which the overgeneral productions were
learned.

One way to deal with overspecialization is to patch the resulting knowledge
gaps with additional knowledge. This is what Soar does constantly--if a
production is overspecialized, it doesn't fire in circumstances when it should,
causing an impasse to occur, and providing the opportunity to learn an
additional chunk that covers the missing case (plus possibly other cases).
Another way to deal with overspecialized knowledge is to work towards
acquiring more general productions. A standard approach is to induce general
rules from a sequence of positive and negative examples [35, 45]. This form of
generalization must occur in Soar by search in problem spaces, and though
there has been some initial work on doing this [48, 58], we have not yet
provided Soar with a set of problem spaces that will allow it to generate
appropriate generalizations from a variety of sets of examples. So, Soar cannot
yet be described as a system of choice for doing induction from multiple
examples. On the other hand, Soar does generalize quite naturally and
effectively when abstraction occurs [69]. The learned rules reflect whatever
abstraction was made during problem solving.

Learning behaviors that have not yet been attempted in Soar include the
construction of a model of the environment from experimentation in it [46],
scientific discovery and theory formation [31], and conceptual clustering [8].

4.3.5. Perception and motor control
The scope of Soar's perception and motor control can be evaluated in terms

of both its low-level I /O mechanisms and its high-level language capabilities.
Both of these capabilities are quite new, so the evaluation must be even more
tentative than for the preceding components.

At the low-level, Soar can be hooked up to multiple perceptual modalities
(and multiple fields within each modality) and can control multiple effectors.
The critical low-level aspects of perception and motor control are currently
done in a standard procedural language outside of the cognitive system. The

The Soar architecture as a basis for general intelligence 321

resulting system appears to be an effective testbed for research on high-level
aspects of perception and motor-control. It also appears to be an effective
testbed for research on the interactions of perception and motor control with
other cognitive capabilities, such as memory, problem solving, and learning.
However, it does finesse many of the hard issues in perception and motor
control, such as selective attention, shape determination, object identification,
and temporal coordination. Work is actively in progress on selective attention
[74].

At the high end of I /O capabilities is the processing of natural language. An
early attempt to implement a semantic grammar parser in Soar was only a
limited success [44]. It worked, but did not appear to be the right long-term
solution to language understanding in Soar. More recent work on NL-Soar has
focused on the incremental construction of a model of the situation by applying
comprehension operators to each incoming word [32]. Comprehension
operators iteratively augment and refine the situation model, setting up
expectations for the part of the utterance still to be seen, and satisfying earlier
expectations. As a side effect of constructing the situation model, an utterance
model is constructed to represent the linguistic structure of the sentence. This
approach to language understanding has been successfully applied to acquiring
task-specific problem spaces for three immediate reasoning tasks: relational
reasoning [18], categorical syllogisms, and sentence verification [3]. It has also
been used to process the input for these tasks as they are performed. Though
NL-Soar is still far from providing a general linguistic capability, the approach
has proven promising.

5. Conclusion

In this article we have taken a step towards providing an analysis of the Soar
architecture as a basis for general intelligence. In order to increase understand-
ing of the structure of the architecture we have provided a theoretical
framework within which the architecture can be described, a discussion of
methodological assumptions underlying the project and the system, and an
illustrative example of its performance on a multi-column subtraction task. In
order to facilitate comparisons between the capabilities of the current version
of Soar and the capabilities required to achieve its ultimate goal as an
architecture for general intelligence, we have described the natural tasks for
the architecture, the sources of its power, and its scope and limits. If this article
has succeeded, it should be clear that progress has been made, but that more
work is still required. This applies equally to the tasks of developing Soar and
analyzing it.

322 P.S. Rosenbloom et al.

Acknowledgement

This research was sponsored by the Defense Advanced Research Projects
Agency (DOD) under contract N00039-86-C-0133 and by the Sloan Founda-
tion. Computer facilities were partially provided by NIH grant RR-00785 to
Sumex-Aim. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research
Projects Agency, the US Government, the Sloan Foundation, or the National
Institutes of Health.

We would like to thank Beth Adelson, David Kirsh, and David McAllester
for their helpful comments on an earlier draft of this article.

References

[1] F.C. Bartlett, Remembering: A Study in Experimental and Social Psychology (Cambridge
University Press, Cambridge, England, 1932).

[2] D. Chapman, Planning for conjunctive goals, Artif. lntell. 32 (1987) 333-377.
[3] H.H. Clark and W.G. Chase, On the process of comparing sentences against pictures, Cogn.

Psychol. 3 (1972) 472-517.
[4] G. DeJong and R.J. Mooney, Explanation-based learning: an alternative view, Mach. Learn.

1 (1986) 145-176.
[5] T.G. Dietterich, Learning at the knowledge level, Mach. Learn. 1 (1986) 287-315.
[6] O. Etzioni and T.M. Mitchell, A comparative analysis of chunking and decision analytic

control, in: Proceedings AAAI Spring Symposium on Limited Rationality and A1, Stanford,
CA (1989).

[7] E.A. Feigenbaum and H.A. Simon, Epam-like models of recognition and learning, Cogn. Sci.
8 (1984) 305-336.

[8] D.H. Fisher and P. Langley, Approaches to conceptual clustering, in: Proceedings 1JCA1-85,
Los Angeles, CA (1985) 691-697.

[9] R. Flynn, Placing Soar on the connection machine, Prepared for and distributed at the AAAI
Mini-Symposium "How Can Slow Components Think So Fast" (1988).

[10] J.A. Fodor, The Modularity of Mind (Bradford Books/MIT Press, Cambridge, MA, 1983).
[11] M.E Georgeff and A.L. Lansky, Reactive reasoning and planning, in: Proceedings AAAI-87,

Seattle, WA (1987) 677-682.
[12] A. Golding, P.S. Rosenbloom and J.E. Laird. Learning general search control from outside

guidance, in: Proceedings HCAI-87, Milan, Italy (1987).
[13] A. Gupta and M. Tambe, Suitability of message passing computers for implementing

production systems, in: Proceedings AAA1-88, St. Paul, MN (1988) 687-692.
[14] C. Hewitt and D. Kirsh, Personal communication (1987).
[15] W.D. Hillis, The Connection Machine (MIT Press, Cambridge, MA, 1985).
[16] W. Hsu, M. Prietula and D. Steier, Merl-Soar: applying Soar to scheduling, in: Proceedings

Workshop on Artificial Intelligence Simulation, AAA1-88, St. Paul, MN (1988) 81-84.
[17] T.R. Johnson, J.W. Smith Jr and B. Chandrasekaran, Generic Tasks and Soar, in: Working

Notes A A A I Spring Symposium on Knowledge System Development Tools and Languages,
Stanford, CA (1989) 25-28.

[18] P,N. Johnson-Laird, Reasoning by rule or model? in: Proceedings lOth Annual Conference of
the Cognitive Science Society, Montreal, Que. (1988) 765-771.

[19] J.L. Kolodner, Maintaining order in a dynamic long-term memory, Cogn. Sci. 7 (1983)
243 -280.

The Soar architecture as a basis for general intelligence 323

[20] J.L. Kolodner, ed., Proceedings DARPA Workshop on Case-Based Reasoning, Clearwater
Beach, FL (1988).

[21] J.E. Laird, Universal subgoaling, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA
(1983); also in: J.E. Laird, P.S. Rosenbloom and A. Newell, Universal Subgoaling and
Chunking: The Automatic Generation and Learning of Goal Hierarchies (Kluwer, Hingham,
MA, 1986).

[22] J.E. Laird, Soar user's manual (version 4), Tech. Rept. ISL-15, Xerox Palo Alto Research
Center, Palo Alto, CA (1986).

[23] J.E. Laird, Recovery from incorrect knowledge in Soar, in: Proceedings AAA1-88, St. Paul,
MN (1988) 618-623.

[24] J.E. Laird and K.A. McMahon, Destructive state modification in Soar, Draft V, Department
of EECS, University of Michigan, Ann Arbor, MI (1989).

[25] J.E. Laird and A. Newell, A universal weak method, Tech. Rept. 83-141, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1983).

[26] J.E. Laird, A. Newell and P.S. Rosenbloom, SOAR: an architecture for general intelligence,
Artif. lntell. 33 (1987) 1-64.

[27] J.E. Laird, P.S. Rosenbloom and A. Newell, Towards chunking as a general learning
mechanism, in: Proceedings AAA1-84, Austin, TX (1984) 188-192.

[28] J.E. Laird, P.S. Rosenbloom and A. Newell, Chunking in Soar: the anatomy of a general
learning mechanism, Mach. Learn. 1 (1986) 11-46.

[29] J.E. Laird, P.S. Rosenbloom and A. Newell, Overgeneralization during knowledge compila-
tion in Soar, in: T.G. Dietterich, ed., Proceedings Workshop on Knowledge Compilation,
Otter Crest, OR (1986).

[30] J.E. Laird, E.S. Yager, C.M. Tuck and M. Hucka, Learning in tele-autonomous systems
using Soar, in: Proceedings NASA Conference on Space Telerobotics, Pasadena, CA (1989).

[31] P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow, Scientific Discovery: Computa-
tional Explorations of the Creative Processes (MIT Press, Cambridge, MA, 1987).

[32] R.L. Lewis, A. Newell and T.A. Polk, Toward a Soar theory of taking instructions for
immediate reasoning tasks, in: Proceedings 11th Annual'Conference of the Cognitive Science
Society, Ann Arbor, MI (1989).

[33] M. Minsky, A framework for the representation of knowledge, in: P. Winston, ed., The
Psychology of Computer Vision (McGraw-Hill, New York, 1975).

[34] M. Minsky, The Society of Mind (Simon and Schuster, New York, 1986).
[35] T.M. Mitchell, Generalization as search, Artif. Intell. 18 (1982) 203-226.
[36] T.M. Mitchell, R.M. Keller and S.T. Kedar-Cabelli, Explanation-based generalization: a

unifying view, Mach. Learn. 1 (1986) 47-80.
[37] A. Newell, Reasoning, problem solving and decision processes: the problem space as a

fundamental category, in: R. Nickerson, ed., Attention and performance 8 (Erlbaum, Hills-
dale, N J, 1980).

[38] A. Newell, Unified Theories of Cognition (Harvard University Press, Cambridge, MA, 1990).
[39] A. Newell and P.S. Rosenbloom, Mechanisms of skill acquisition and the law of practice, in:

J.R. Anderson, ed., Cognitive Skills and Their Acquisition (Erlbaum, Hillsdale, NJ, 1981)
1-55.

[40] A. Newell, P.S. Rosenbloom and J.E. Laird, Symbolic architectures for cognition, in: M.I.
Posner, ed., Foundations of Cognitive Science (Bradford Books/MIT Press, Cambridge, MA,
1989).

[41] A. Newell and H.A. Simon, Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,
1972).

[42] N.J. Nilsson, Principles of Artificial Intelligence (Tioga, Palo Alto, CA, 1980).
[43] T.A. Polk and A. Newell, Modeling human syllogistic reasoning in Soar, in: Proceedings lOth

Annual Conference of the Cognitive Science Society, Montreal, Oue. (1988) 181-187.
[44] L. Powell, Parsing the picnic problem with a Soar3 implementation of Dypar-1, Department

of Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1984).
[45] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81-106.
[46] S. Rajamoney, G.F. DeJong, and B. Faltings, Towards a model of conceptual knowledge

324 P.S. Rosenbloom et al.

acquisition through directed experimentation, in: Proceedings IJCA1-85, Los Angeles, CA
(1985) 688-690.

[47] Y. Reich, Learning plans as a weak method for design, Department of Civil Engineering,
Carnegie-Mellon University, Pittsburgh, PA (1988).

[48] P.S. Rosenbloom, Beyond generalization as search: towards a unified framework for the
acquisition of new knowledge, in: G.F. DeJong, ed., Proceedings AAAI Symposium on
Explanation-Based Learning, Stanford, CA (1988) 17-21.

[49] P.S. Rosenbloom, A symbolic goal-oriented perspective on connectionism and Soar, in: R.
Pfeifer, Z. Schreter, F. Fogelman-Soulie and L. Steels, eds., Connectionism in Perspective
(Elsevier, Amsterdam, 1989).

[50] P.S. Rosenboom and J.E. Laird., Mapping explanation-based generalization onto Soar, in:
Proceedings AAAI-86, Philadelphia, PA (1986) 561-567.

[51] ES. Rosenbloom, J.E. Laird, J. McDermott, A. Newell and E. Orciuch, R1-Soar: an
experiment in knowledge-intensive programming in a problem-solving architecture, IEEE
Trans. Pattern Anal. Mach. lntell. 7 (1985) 561-569.

[52] P.S. Rosenbloom, J.E. Laird and A. Newell, Knowledge level leaning in Soar, in: Proceedings
AAAI-87, Seattle, WA (1987) 499-504.

[53] ES. Rosenbloom, J.E. Laird and A. Newell, The chunking of skill and knowledge, in:
B.A.G. Elsendoorn and H. Bouma, eds., Working Models of Human Perception (Academic
Press, London, 1988) 391-410.

[54] P.S. Rosenbloom, J.E. Laird and A. Newell, Meta-levels in Soar, in: P. Maes and D. Nardi,
eds., Meta-Level Architectures and Reflection (North-Holland, Amsterdam, 1988) 227-240.

[55] P.S. Rosenbloom and A. NewelI, The chunking of goal hierarchies: a generalized model of
practice, in: R.S. Michalski, J.G. Carbonnell and T.M. Mitchell, eds., Machine Learning: An
Artificial Intelligence Approach 2 (Morgan Kaufmann, Los Altos, CA, 1986) 247-288.

[56] ES. Rosenbloom, A. Newell and J.E. Laird, Towards the knowledge level in Soar: the role of
the architecture in the use of knowledge, in: K. VanLehn, ed., Architectures for Intelligence
(Erlbaum, Hillsdale, NJ, 1990).

[57] E.D. Sacerdoti, Planning in a l~ierarchy of abstraction spaces, Artif. lntell. 5 (1974) 115-135.
[58] R.H. Saul, A Soar2 implementation of version-space inductive learning, Department of

Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1984).
[59] R. Schank and R. Ableson, Scripts, Plans, Goals and Understanding (Erlbaum, Hillsdale, NJ,

1977).
[60] D. Steier, Cypress-Soar: a case study in search and learning in algorithm design, in:

Proceedings HCA1-87, Milan, Italy (1987) 327-330.
[61] D.M. Steier, J.E. Laird, A. Newell, P.S. Rosenbloom, R. Flynn, A Golding, T.A. Polk,

O.G. Shivers, A. Unruh and G.R. Yost, Varieties of learning in Soar: 1987, in: P. Langley,
ed., Proceedings Fourth International Workshop on Machine Learning, Irvine, CA (1987)
300-311.

[62] D.M. Steier and A. Newell, Integrating multiple sources of knowledge in Designer-Soar: an
automatic algorithm designer, in: Proceedings AAAI-88, St. Paul, MN (1988) 8-13.

[63] K.R. Swedlow and D.M. Steier, Soar 5.0 user's manual, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA (1989).

[64] M. Tambe, Speculations on the computationa ! effects of chunking, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA (1988).

[65] M. Tambe, A. Acharya and A. Gupta, Implementation of production systems on message
passing computers: Simulation results and analysis, Tech. Rept. CMU-CS-89-129, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA (1989).

[66] M. Tambe, D. Kalp, A. Gupta, C.L. Forgy, B. Milnes and A. Newell, Soar/PSM-E:
Investigating match parallelism in a learning production system, in: Proceedings ACM/
S1GPLAN Symposium on Parallel Programming: Experience with Applications, Languages,
and Systems (1988) 146-161.

[67] M. Tambe and A. Newell, Some chunks are expensive, in: J. Laird, ed., Proceedings Fifth
International Conference on Machine Learning Ann Arbor, MI (1988) 451-458.

[68] M. Tambe and P.S. Rosenbloom, Eliminating expensive chunks by restricting expressiveness,
in: Proceedings IJCA1-89, Detroit, MI (1989).

The Soar architecture as a basis for general intelligence 325

[69] A. Unruh and P.S. Rosenbloom, Abstraction in problem solving and learning, in: Proceedings
1JCAI-89, Detroit, MI (1989).

[70] A. Unruh, P.S. Rosenbloom and J.E. Laird, Dynamic abstraction problem solving in Soar, in:
Proceedings Third Annual Aerospace Applications of Artificial Intelligence Conference, Day-
ton, OH (1987) 245-256.

[71] K. VanLehn, Mind Bugs: The Origins of Procedural Misconceptions (MIT Press, Cambridge,
MA, 1990).

[72] K. VanLehn and W. Ball, Non-LIFO execution of cognitive procedures, Cogn. Sci. 13 (1989)
415-465.

[73] R. Washington and P.S. Rosenbloom, Applying problem solving and learning to diagnosis,
Department of Computer Science, Stanford University, CA (1988).

[74] M. Wiesmeyer, Personal communication (1988).
[75] M. Wiesmeyer, Soar I/O reference manual, version 2, Department of EECS, University of

Michigan, Ann Arbor, MI (1988),
[76] M. Wiesmeyer, New and improved Soar IO, Department of EECS, University of Michigan,

Ann Arbor, MI (1989).
[77] G.R. Yost and A. Newell, A problem space approach to expert system specification, in:

Proceedings IJCAI-89, Detroit, MI (1989).

