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Ah&r&--In this paper, we study the problems of radial diffusion of a fluid through a hollow 
non-linearly elastic orthotropic cylinder. It is found that shearing and stretching have qualitatively 
different effects on the diifusion process. The effect of orthotropy on the difision process is also 
studied. These results are compared with those for the isotropic case [cf. Znr. 1. Engng Sci. 25, 
1441-1457 (1987)]. 

1. INTRODUCTION 

The theory of interacting continua (cf. Truesdell [l], Bowen [2], Atkin and Craine [3], Bedford 
and Drumheller [4], Passman et al. [5]) has relevance to several important technical problems 
in biomechanics, dyeing of textiles, and diffusion through composites, polymers and wood 
products, filtration, and the flow of fluid-solid mixtures to name just a few. Despite such wide 
applicability, until recently few boundary value problems have been solved within the context 
of this theory. This void can be traced to the difficulties associated with specifying adequate 
number of boundary conditions for traction boundary value problems. The theory supposes the 
existence of partial stress tensors for each constituent making up the mixture. Thus, in the case 
of a mixture of two constituents, there would be a partial stress tensor and thus a partial 
traction vector associated with each constituent, acting on the boundary. While the total 
traction on the boundary is known, we do not know how this splits into the individual partial 
tractions. 

This knowledge is essential if we are to solve the boundary value problem as it is defined by 
balance of linear momentum equation for each constituent. Recently, motivated by some 
earlier work (cf. Shi et al. [6], Rajagopal et al. [7]), Rajagopal et al. [8] have developed a 
method for developing additional boundary conditions for a class of problems, based on a 
thermodynamic principle. Using the above additional boundary condition, Gandhi et al. [9] 
solved several prototype problems involving a mixture of an isotropic non-linearly elastic solid 
and a fluid. 

To date, boundary value problems within the context of the theory of interacting continua 
associated with the diffusion of a fluid through a non-linearly elastic solid have assumed the 
solid to be isotropic. However, in many applications, the solid is anisotropic. For example, 
biological materials are orthotropic or transversely isotropic. The method used by Gandhi et al. 
[9] can once again be used to generate additional boundary conditions for problems involving 
the diffusion of fluids through anisotropic non-linearly elastic solids. 

In this paper, we study the radial diffusion of a fluid through an orthotropic non-linearly 
elastic cylinder. We assume a particular form for the specific Helmholtx free energy function 
appropriate for orthotropic solids. We investigate the effect of the anisotropy on the diffusion 
process. We also study how shearing and stretching the cylinder affect the diffusion. In Section 
2, the notations and the basic equations of the theory of interacting continua are introduced. 
The constitutive equations for the incompressible solid and the fluid are postulated and the 
boundary conditions are developed. In the next section, the appropriate specific Helmholtz free 
energy function is introduced. In Section 4, the diffusion of a fluid through a hollow 
non-linearly elastic orthotropic cylinder is studied in detail. Section 5 is devoted to a discussion 
of the diffusion of a fluid through a non-linearly elastic orthotropic cylinder that is both sheared 
and stretched. The effect of the shearing and stretching are delineated. 
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2. PRELIMINARIES: NOTATIONS AND BASIC EQUATIONS 

We consider the interaction of two continua, a solid S, and a tluid &. At any time t, it is 
assumed that each place in the region of space is occupied by particles belonging to both S, and 
S,. Let X and Y denote reference positions of typical particles of S, and &. The motions of S, 
and S, are denoted, respectively, by 

x = x2(X, t) and y = &Y, t). (1) 

We shall assume that these motions are one-to-one, continuous and invertible. The various 
kinematical quantities associated with the solid S, and the fluid S, can be defined in the usual 
manner, i.e. 

Veiocity 

Acceleration 

Ve~ci~ gradienf 

Stretching 

Vorticity 

S, 

dxl 
U=:dt’ 

d’s 
a,=%) 

&I =- 
L ax’ 

d=;(L+LT), 

r=i(L-L7), 

The deformation gradient associated with S, is given by 

F=$ 

(2) 

s, 

dxz 
w=-$ 

d”xz 
af=st 

M=$, 

f = ; (M + MT), 

A=;(M-MT). 

(3) 

Next, we document the basic equations of the theory of interacting continua. 

2 1 Co~e~ation of mass 

Let p1 and p2 denote the mass densities of the solid and fluid, respectively. The total density 
p of the mixture is given by 

P = Pl + P2. (4) 

The conservation of mass for the solid S, is given by 

PI ldet Fl = ploy (5) 

and for the fluid S, by 

% + div(p,w) = 0. (6) 

2.2 Coleman of linear Ernest 

Let u and a denote the partial stress tensors associated with the solid and fluid, respectively. 
The total stress tensor is defined by 

T=o+n. (7) 

It is assumed that there is no external body force. The mechanical interaction between the solid 
and fluid is accounted for by a difTusive body force b. Then, the balances of linear momentum 
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for the solid and fluid are, respectively 

div o - b = plas, (8) 
and 

div rr + b = p2aP (9) 

2.3 Conservation of angular momentum 

The conservation of angular momentum for a mixture states that the total stress is 
symmetric, i.e. 

o+sc=o=+Jc=. (10) 

However, the partial stresses need not be symmetric. 

2.4 Surface conditions 

Let II, s and p denote the unit outer normal vector at a point on the surface of the mixture 
region, the partial traction vectors taken by S, and &,, respectively. Then 

s=oTn and p= nTn. (11) 

2.5 Thermodynamical considerations 

LA the Helmboltz free energy per unit mass of S, and S, be denoted by AI and A*, 
respectively. The Helmboltz free energy per unit mass of the mixture is defined by 

Note that by setting 
PA = PIAI + PZAZ. (12) 

b=grad&+b=-grad&+b, (13) 

u = &I+ 5, (14) 

where 
Jr= &I+%, (15) 

+I= PI(AI -A), @2 = PZ(AZ -A), $%+#2=0. (16) 

Equations (7)-( 10) become 

T=i%++, (17) 

div ii - 1; = pIaS, (18) 

div ji + 1; = p2af, (19) 

a+ji=cSrT+jiT. (20) 

But, the terms in (I, JC and b which depend on & and C#J~ do not contribute to the equations of 
motion or total stress (cf. Green and Naghdi [lo]). 

2 6 Volume additivity constraint 

We restrict our attention to a mixture of incompressible materials. This implies that the 
motion of the interacting continua is such that it meets the following volume additivity 
constraint (cf. Mills [ll]): 

L!L+p2=1* 
PlO P20 

(21) 

2 7 Entropy inequality equation 

We refer the reader to [6] for a more detailed discussion of the entropy inequality. The stress 
is split into a static and dynamic part (cf. [6]). By using standard thermodynamic arguments, it 
can be shown that the equation used to restrict the constitutive equations for the dynamic part 
of the partial stress and the diffusive force is 
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2.8 Constitutive equations 

We assume that the mixture consists of an orthotropic elastic solid and a fluid. Accordingly, 
all constitutive functions are assumed to depend on the following variables (cf. 161): 

F, VF, pz, grad p2, 8, grad 6, u, w, Land M, (23) 

where 8 denotes the absolute temperature. A lengthy but standard argument, based on the 
entropy production inequality and restrictions due to frame indifference and material symmetry 
lead to Helmholtz free energy per unit mass of the mixture to have the following form (cf. 
Green and Adkins [12]): 

a =A(&,, Ezz, ED, E:z, Ef3, J%, 13, ~2, 0)s 

where 

Eij = i (&F;f - a,), 

It follows from (5) and (21) that 

(24) 

(25) 

Z3 = ldet Ff = (1 -:)-I. 

We shall restrict our attention to isothermal problems. By virtue of (26), (24) can be expressed 
as 

A = A(&> Ez, E33, E:,, E:3, E;3, pd. (27) 

The constitutive relations for partial stresses and diffusive body force have the form (cf. [6]) 

and 

(29) 

(30) 

We shall assume that the dynamical parts of the partial stresses and diffusive force depend on 
the dynamic terms and are given by 

tii = tii(&n~ fmn)~ (31) 

&i = K$(&,, fmn), (32) 
and 

6: = @(U, - K?z). (33) 

Since the velocity of the fluid is always very small, we assume that the stresses depend on the 
dynamic variables linearly. We also assume that all the constitutive equations are independent 
of the rate of deformation tensor of the solid. Notice that 

sE=J, 31 
axk afij 2 rq axk 

(34) 

(35) 

It follows, from the dissipation inequality and the assumption that the stresses depend linearly 
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on the dynamic variables, that (cf. Dai [13]) 

(37) 

where 

a&, aA 
4 P2Eqz 

aA 
(38) 

*plpz=c 
PlOP20 * 

(39) 

and we have neglected the viscous effects in the fluid, since we are interested in the diffusion of 
an ideal fluid. It is also useful to record the representation for the total stress 

Tki = ski + %ki 

+ (&F,, + &Fk3)& $ . 
23 1 

In the remainder of this paper, we shall only need to use a, fi and 6. For notational 
convenience, we now drop the superposed bars. 

2.9 Boundary conditions 

A difficulty with the theory of mixtures is that there is no clear physical guidance for 
specifying partial tractions. Only the total surface traction s + p can be specified, and this in 
general is not suf5cient to solve boundary value problems. Rajagopal et al. [S] have suggested a 
method for generating appropriate additional boundary conditions for a class of boundary 
value problems. This method of generating additional boundary conditions is based on the 
assumption that the boundary of the solid-fluid mixture is in a saturated state. 

In such a state we shall assume that the variation in the Helmholtz free energy equals the 
variation in the work due to the virtual displacement (cf. [S]). Thus, 

6W=mtYA+Abm, (41) 

where Sm, SA and 6W denote the variation in the mass, specific Helmholtz free energy and the 
work done due to the virtual deformation. Since 

it follows that 

m=pdetF=p,detF+(p,,-p,), 

6m = pzo G(det F). 

(42) 

(43) 
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+ 2En -$ ~4%~ + 2E23 T$ 

13 23 
d&3 + 2 dp,. (9 

Depending on the specific problem under consideration, (41) leads to a relationship between 
the strain components and the stresses T-f, &, TTJ etc. We shall derive the boundary condition 
appropriate to the specific boundary value problem under consideration in due course. 

3. SPECIFIC HELMHOLTZ FREE ENERGY FUNCTION 

In order to evaluate the partial stresses and diffusive forces, we should specify the free 
energy function for the mixture. We dready have the general form of the free energy 
A =A(Z&, En, Es3, E&, E&, E&, p2). We shall assume that 

A = Kl&l+ &&z. +- K&,3 + &&1E22 f W&E33 + K&22& 

+ K~E:1+K8E~~+K~E~3+KKloE%+KT,ET3~Kt2E~s 

+(K*sEII+KI~Eu+KIsE~~)~+K~ E () 2 (45) 

where K1,K2,..., K,, and K are constants and f is a function of p2/pm. When K, = K2 = K3 
and tu,=O, n=4,5,.-. 15, we recover the isotropic model. Its specific form should be 
determined by experiment for a specific material. To make comparison with previous work in 
this area (cf. [6], [7] and [9]), we use 

where 

P2 

ff 1 l--Y - =-lnfl-v)+X(l-v), 
P20 y 

v=(detF)-‘=1-E, 

(41 

(47) 

which is appropriate for a mixture of a rubber-like solid and a solvent. Then, we get the final 
form of the free energy in our investigation: 

A = K&n + &&.z f K3E33 + K&-E22 + G&E33 + K&2&33 

+ K7E:I+KsE~~+K~E:3+K10E:2+KIIE:+K12E223 

+ (K&II + Kdh+K&33) E+K ~ln(l-v)+Xfl-v)]. (48) 

4. DIFFUSION OF A FLUID THROUGH A HOLLOW ELASTIC ORTHOTROPIC 
CYLINDER 

Consider a hollow elastic orthotropic cylinder that has been axially stretched and radially 
expanded so that its outer surface in the deformed state is rigidly bonded to the inner surface of 
a rigid hollow cylindrical porous support (See Fig. 1). Suppose that the fluid diffuses in a radial 

Fig. 1. Diffusion through a hollow cylinder. 
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direction. As the solid absorbs the fluid and swells, the outer surface of the elastic cylinder 
remains lixed while the inner surface changes position. We consider the situation in which the 
solid cylinder has reached a fixed state of deformation and the fluid velocity field is steady. 

For the problem under consideration, we shall assume an axially symmetric deformation of 
the form in a cylindrical coordinate system: 

r = r(R), (49) 

6 = 0, (50) 

z=AZ, (51) 

where Iz is assumed to be constant. The stretch ratios in the radial, circumferential and axial 
direction are defined, respectively, through 

A _dr r--& h,=;, ---&=A. A, - dz (52) 

We shall assume the velocity field to be of the form 

w, = w(r) and w, = w, = 0. (53) 

It follows from (49)-(52) that the deformation gradient for the solid is given by A, 0 0 
F= [ 0 l* 0 1 . 

0 0 A 
(54) 

Thus, the Green-St. Venant strain tensor E is given by 

E=;(F’F-I)=; (55) 

The only non-zero physical components of the gradient of the deformation gradient are 

F _ -!% 
“J - dr ’ 

Fee;, = 2, Fe,;@ = FrB,e = 1 (A, - A,). 
r 

The conservation of mass for the fluid, (6), reduces to 

;-$ (rp,w) = 0, (57) 

which can be integrated to yield 
rp,w = F, (58) 

where the constant F denotes the mass flux through a unit length of the cylinder in unit time. 
Equation (58) states that the mass flux is the same through all surfaces r = constant. 

From the constitutive equations (36)-(38) and the assumed form for the specific Helmholtz 
free energy (48), it follows that the partial stresses for the solid are given by 

and 

[ 
2Kr + K&2, - 1) + K5(AZ - 1) + 2K,(A? - 1) + 2K13 “1, 

Pzo 
(59) 

u CW= -P 2 + ; pn; 2K2 + &(A? - 1) + K&2 - 1) + 2K& - 
[ 

1)+2zC$ , 
P20 1 (60) 

u II = -p ;. + ; PA2 2K3 + &(A; - 1) + K& - 1) + 2Kg(A2 - 1) + 2K15 “1, 
[ PZO 

(61) 

u fjr = a,, = a,, = 0. (62) 
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The partial stresses for the fluid are 
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ar,, = Jr@@ = Jr=,, = -p E + ; /$I&&; - 1) + K& - 1) + K& - 1) + 2Kf’] E 

and 

where 

f’(E) + Ml - Y) + y + xylem 

The diffusive body force components are given by 

b,=-p~(~)-,P’PI,+~~,[K,,(rl:-l) 
ProP20 

+ K14(A: - 1) + K15(A2 - 1) + 2Kf’]i (E) 

; p* I[ A, 2K1+ K,(Az, 1) + &(A* 1) + 2K,(AP 1) + 2K*3 ~2 - - - -1 dk - - 
~2~ dr 

~2 db 2k2 + &(A; - 1) + &(A* - 1) + 2K,& - 1) + 2K14 pzo 1 I dr , 

and 

be = b, = 0. 

By virtue of (40), the components of total traction are 

T, = -p - ; p[K& - 1) + K& - 1) + z&(A2 - 1) + 2Kf’] E 

+ ; pA;[ 2K1+ &(A; - 1) + &(A* - 1) + 2K,(AZ - 1) + 2K13 -@I. 

T,, = -p - ; ,o[K&; - 1) + K&, - 1) + &(A* - 1) + 2Kf’] E 

+ ; pn2, 2K* + &(A; - 1) + &(A* - 1) + 2K,(AZ, - 1) + 2K,, E [ 1 ) 
T,, = -p - ; p[K1& - 1) + K& - 1) + &(A2 - 1) + 2Kf’] ; 

+ ; pi2[ 2K3 + &(A,2 - 1) + K&z, - 1) + 2&(A2 - 1) + 2K15 “1, 
P20 

and 

Tro = T, = TBz = 0. 

, (63) 

(W 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

For the problem under consideration, on neglecting the inertial effects, since the accelerations 
are small the balance of linear momentum for the solid reduces to 

6, -ues-b,=O, 
r (72) 

(73) 
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It follows from (59)-(61), (66), (72) and (73) that 

_ PI *+a PlPZ 

( > 

d ~2 

iG ar 

- w -; j&[K& - 1) + K& - 1) + KiS(A2 - 1) + 2Kf’] ;i; (--) 
PlOP20 

+ld 2;1; 
I [ 

pg 2K1+ K‘@‘, - 1) + KS@* - 1) + K,(hZ - 1) + 2K,3 fi 
P20 II 

+Ip 2; 
I [ 
n; 2K1+ K,oL2, - 1) + KS(A2 - 1) + 2K,(A? - 1) + 2Ki3 fi 

P20 I 

- n’, 2K* + K&Z - 1) + K6(12 - 1) + 2K& - 1) + 2K+J 
[ 

~2 d& + i2{ 1,[2K, + K&Z, - 1) + KS@* - 1) + 2K,(A? - 1) + 2K,,l”d] dr 

and 

~2 dAe 2K, + K&f - 1) + K,(P - 1) + 2K*(Ai - 1) + 2K14 pzo 1 I dr = 0, (74) 

1 p1 ap top o ----_=_--_= 

r plo aa plo a2 * (75) 

Equation (75) implies that 

P =pw. (76) 
Equation (74) gives one equation for the indeterminate scalar p, the radial deformation of the 
cylinder r and the radial fluid velocity W. 

Another appropriate equation is obtained by adding (8) and (9), using (7) and neglecting the 
inertia of the fluid. The balance of linear momentum reduces to 

dTr Tr - Too 
-2 = 0. 

r (77) 

It follows from (68) and (69) that (77) becomes 

_---- z ;;r(pLw l)+K,,(I:-l)+K,(L"-1)+2Kf'l~] 

+ ; -$ 2K1 + K&2, - 1) + K5(A2 - 1) + 2K,(n; - 1) + 2Ki3 “I] 
P20 

2K1 + K&?, - 1) + K5(A2 - 1) + 2K,(k; - 1) + 2K13 pz 
P20 I 

-A’, 2K2+ K&F- l)+ K&*- l)+ 2K&',- l)+ 2K1+ 
II 
=O. 

P20 
(78) 

From (74) and (78), we have 

if-$ P[K&~-- I l)+ K&Z,- l)+ K&*- 10 1)+2Kf'l~o] 

- ; p1[K13(A; - 1) + K& - 1) + K15(A2 - 1) + 2Kf’] 5 (2) + “sm w 

1 ~2 d 
+ zp z 

20 
2K, + K,(kz, - 1) + K5(Az - 1) + 2K,(A: - 1) + 2K13 E 

I] 

+ ; F. (.h:[ 2K1 + K4(A; - 1) + KS@* - 1) + 2K,# - 1) + 2K13 pz 
Pu, I 

-A', 2K,+ K4(A;- 1) + K6(A2 - 1) + 2Ks(h; - 1) + 2K14 z 



428 F. DA1 et al. 

The fluid velocity w can be eliminated in favor of the mass flux by using (58). Furthermore, it 
is preferabIe to regard ali quantities as functions of the reference coordinate R, Thus, using 
(52),, we transform (79) to obtain 

2K, + K,,(A$ - 1) + Ks(a2 - 1) + 2K,(a: - 1) + 2Ka3 pz 
P20 1 

2Kz+ Kc@:-- I)-!- K6(a2-lf)+2Ks(a& l)+ 2K,,E]} 

11-f KS(a2 - 1) + kir,(a; - 1) e 2~~~ - ~2 1 - dh 

Pm dR 

2K,+- K&a;-- 1)f Ke(j22- 1)+2K&-1)+ 2K14--- 

We define the non-dimensional quantities 

4 =p1 
* PlO’ 

&& 
, 

P20 
p__k. 

P20 ’ 

and introduce them into (80) to obtain 
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and 

p=oF 
KPifo’ 

The second equation can be obtained from (52),. In nondimensional form, it is 

(84) 

(85) 

Now we turn to our attention of boundary conditions. In virtue of (44), for the problem 
under consideration, it follows that 

From (43), (47) and (54), we have 

r 
(87) 

6m = pm(AoA SA, + &A &A0 + AJo M). 

Also, it is easy to see that for the problem under consideration 

SW = TA,A. 6A, + Tee&A Me + T&An, &I. 

(88) 

(8% 

It follows from (41)-(43) and (86)-(89) that 

T,=P~w~+P(P~o-P~)~+~+ 
n 

&,=P~~+P(P~-P,)~+P~;#, 
2 BB 

r,,=P~+P(P,-P*)~+Pa2~* 
2 I.2 

wo 

(91) 

Substituting (48) into (90) and considering the inner and outer surfaces of the cylinder, 
respectively, we have 

- 9f = {p&+Kpf’(l-~)+fpl:[ZK,+K&‘.-1) 

+ K,(A” - 1) + 2K,(A’5 - 1) + K13 E]} 1 
&I’ 

and 

-4o= [p& + Kpf’(l-2) +fpA$[2K,+ K,(A’,- 1) 

+ K5(A2 - 1) + 2K,(A; - 1) + K13 -@ 
III P20 it==.’ 

(93) 

(94) 

where a = RJR, and qi and go denote the pressures on the inner and outer surfaces of the 
cylindrical mixture region, respectively. 

The numerical solution procedure is as follows. Since r. is specified, &(a) is known from 
(52)2. For a specified value of o, &(a) can be solved from (94). The system (82) and (85) is 
then integrated from & = a to w = 1, giving n,(l) and il,( 1). These values are then substituted 
into (93) to determine qt. This gives the pressure difference qi - go for a specified value of mass 
flux F. The quantities of interest can then be computed from the appropriate equations, e.g. 
r = R&(R) from (52),. An ordinary differential equation solver called DVERK from the 
~ntemation~ Mathemati~l and Statistical Library (IMSL) has been used to nume~~lly 
integrate (82) and (85). This subroutine is based on Runge-Kutta-Vemer method. The error 
tolerance of the numerical solution is of the order of lo- *. Some of the parameters used in our 
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d 
s -j, 300 
C 

E .- 

P 

z” 
200 

100 

Isotropic _-_-- 

Orthotropic - 

800 1200 1600 

Pressure difference 

2000 24 )O 

Fig. 2. Effect of the cylinder thickness on the flux for inward diffusion. 

numerical simulation are the same as those used in [9} and 1141. Set 

plo = 0.862 g/cc = 0.0311 Ib/in3, 

p20 = 0.869 g/cc = 0.0314 lb/in3, 

K3= &= K,= K,= Kg=415 

Klo = K,, = K12 = K13 = K,4 = K15 = 0, 

K = 415, 

x = 0.5, 

Set KE = K2 = 830, K, = K8 = 415 for isotropic case and Kl = K, = 1245, K2 = Ks = 415 for 
orthotropic case. The dimension of Ki, i = 1, 2, . . . , 15, and K is in2/s2. 

We use the term “inward-diffusion” to mean the difision of a fluid through the cylinder 
from the outside to the inside and the term “outward-diffusion” to mean the diffusion from 
inside to the outside. The effects of deformations, elastic moduh and the structure of the 
Helmholtz free energy on fluxes have been studied for a number of different parameters for 

0 = 1.01 0 =I10 
25 

0 100 200 300 400 

Pressure difference 

500 60’ 0 

Fig. 3. Effect of the cylinder thickness on the flux for outward ditision. 
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200 - (I = 1.1 

Isotropic _____ 

Orthotropic - 

I 
0 400 800 1200 1600 2000 24 ‘0 

Pressure difference 

Fig. 4. Effect of the axial deformation on the flux for inward diffusion. 

both the inward and outward-diffusions. The results for orthotropic case have been compared 
with those for isotropic case in figures. 

fi) Effect of deformation on flux 

Figures 2-7 show the influence of the cylinder thickness, the axial deformation and the radial 
expansion on flux. The results shown in Figs 2 and 3 are for the case in which there is no axial 
stretch and the cylinder is not radially expanded before the outer surface is bonded to the rigid 
porous support for the inward and outward-diffusions, respectively. It is found that the mass 
flux through a thin-walled cylinder is greater than that through a thick-walled cylinder for both 
inward and outward-diffusions. Figures 4 and 5 show the results for the case in which the axial 
stretch ratio is increased, and then the cylinder outer surface is restored to its original radius. 
This results in an increase in the mass flux. A similar increase occurs when there is no axial 
stretch, but the outer radius is increased before bonding, as shown in Figs 6 and 7 for the 
inward and outward-diffusions, respectively. 

A, = 1.1 A, =l.O 

r. = R, 

0 = 1.1 

Isotropic _____ 

Orthotropic - 

350 ‘ 

Pressure difference 

Fig. 5. Effect of the axial deformation on the flux for outward diffusion. 
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600- 

a =1.1 

Isotropic _____ 

Orthotropic - 

600 1200 1600 

Pressure difference 

‘0 

Fig. 6. Effect of the radial deformation on the flux for inward diffusion. 

(ii) Effect of the orthotropy of the cylinder on flux 

In Figs 8 and 9, different values are assigned to K1 (= 2K,) and other coefficients being held 
constant. It can be seen from these figures that the flux is strongly affected by Ki (= 2K,) in 
both the inward and outward-dilfusions. An increase in K1 (= 2K,) results in the decrease of 
the flux. & (= 2K,) and K3 (=2&J have relatively weak effect on the inward-diffusion but 
somewhat stronger influence on the outward-diffusion. Figures 10-13 depict these results. 

(iii) Effect of the Helmholtz free energy on j?ux 
Three different structures of the Helmholtz free energy have been used to study the influence 

of the structure of the free energy on the diffusion process, as shown in Figs 14 and 15, 
respectively. One form corresponds to the constitutive expression (48). The other two 
correspond to subcases which have no linear terms, and only linear terms. The pure linear term 
case predicts the largest flux and the full-term case expects the smallest flux for both the inward 
and outward-diffusions. 
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(iv) Variation of the stretch ratios 

Figures 16 and Fig. 17 show how the stretch ratios vary through the cylinder, when the 
cylinder is thick. The values of A, are less than one due to the inward motion of the cylinder 
caused by swelling. The corresponding values of J., are relatively large. Figure 18 shows how 
the radius of the deformed inner surface of the cylinder varies as a function of mass flux for the 
inward-diffusion. As the flux increases, the amount of swelling increases and the surface moves 
further inward. A similar conclusion can be made from Fig. 19 for the outward diffusion, but 
the mount of swelling decreases and the surface moves outward as the fhtx increases. The 
influences of the orthotropy of the mixture on the flux P and stretch ratios, lo and 3c,, can be 
seen from the above figures. 

5. DIFFUSION OF A FLUID THROUGH A SHEARED AND STRETCHED 
HOLLOW ELASTIC ORTHOTROPIC CYLINDER 

We shall assume the cylinder has undergone a deformation of the following form in a 
cylindrical coordinate system: 

r = r(R), (95) 

e=cp, (96) 

z = AZ + g(R), (97) 

as shown in Fig. 20. The flow is assumed to take place in the radial direction only. Then, 

w, = w(r) and w, = w, = 0. (98) 

The gradient of deformation is 

& 0 0 

F= [ 0 A6 g’ 0 0 1 A 
where 

1 
dr A r 

,=z, ds e=g and g’=;i;ii. 

The Green-St. Venant strain tensor is 

E ’ 
A;+g’*-l 0 Ag’ 

=- 

2 

0 

A”,-1 

0 
%zP 0 n*- 1 I 

--- 
iiiiiiiii 

A 

WI 

w-9 

(101) 

Un~f~~ State Defotmul Stafe 

Fig. 20. Dilfusion through a shear& cylinder. 
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The only non-zero physical components of the gradient of the deformation gradient are 

dg’ &e;,=$ F,,;,=dr, Fze;e= -g. 
r VW 

The conservation of mass for the solid and fluid are, respectively 

and 
PA&~ = PlO, 

5: (rpzw) = 0. 

(103) 

(1~) 

Equation (104) can be integrated to yield 

rp,w = F = constant, (105) 

where F is the mass flux. It follows from (36) and (37) that the partial stresses are given by 

a,, = -p 2 + ; pil; 2K1+ K& - 1) + K&2 - 1) + 2K,(A,2 + g’2 - 1) + 2K13 2 [ 1 ) (19 
a&J = -p f. + ; pnz, 2K2 + K4(A; + g’2 - 

[ 
1) + K&2 - 1) + 2K& - 1) + 2Ki4 k5 

I 
, 

P20 
(107) 

u L,? = -P k +; p(g”[ZK, + K&2, - 1) + KS(A2 - 1) + 2K,(AF +g’2 - 1) + 2K*+] 

2K3 + K,(AP + g’2 - 1) + K& - 1) + 2K9(A2 - 1) + 2Kllg’2 + 2K15 E II , WW 
a,, = ; p&g 2K1 + K4(A; - 

[ 
1) + K5(A2 - 1) + 2K,(A; + g’? - 1) + KJ2 + 2K,,P2 

P20 1 , VW 
a#+ = a& = 0, (W 

n,, = Jr@@ = n*,, = -p ff-;p[K&:- 1) + K& - 1) + K15(L2 - 1) + 2Kf’] E , (111) 

and 
l&J = 3rrz = Jr& = 0. (112) 

From (38) the components of the diffusive body force are 

b r=- - aI _@L w + ; pl[KLJ(Af - 1) + K&f, - 1) + K1s()r2 - 1) + 2Kf'] z (E) 
PlOP20 

+ g’ $$ 
N 

2K, f K&z, - 1) + K5(A2 - 1) + 2K,(A,2 + g” - 1) + 2K13 E 
I 

and 

2K,+ K,(Af+f2- 1) + K6(A2 - 1) + 2K&; - 1) + 2K1_, pz 
P20 1 + 2KlJ2g z}, 

(113) 

6, = 6, = 0. (114) 
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It follows, from (106)-(HO), (113), (114) and (8) on ignoring the inertial terms, that 

Pl %J + ar PlP2 
p10 3 

- w +&(A; - 1) + K&: - 1) + KIS(i12 - 1) + 2Kf’lZ (2) 
PioPm 

Id 
+ s;i; 

i [ 
pA$ 21yr+ &(a$ - 1) + Ks(A2 - 1) + %,(A: + g*” - 1) + 2K,3 E 

1) 

+~[~;[2K,+K,(AZ,-1)+K,(L2-1)+2K,(A~+g’2-1)+2K1~~] 
Pm 

- a; 2k; f 2K4(a; + g’2 - 1) + Kfj(A2 - 1) + 2K~(a~ - 1) + 2K$& 
I 1) 

K 
W 

+;p2 ar$+g’x 
>[ 

2x’i + &(a$ - 1) f K&2 - 1) -t 2K,(AI + g’2 - 1) “I” 2K13 -@& 1 
+ ,3,2 

[ 
21y;+ Ka(a;+g’“- 1) + K&P-- 1) + K&-- 1) + 2K,$ 

Pzo I 
+ 2KJ2g T 

1 
= 0, (115) 

k-$ 
{ I 
r pa,gf 2K, + lu,(a”, - 1) + lu,(a2 - 1) 

+ 2K,(a: + g’2 - 1) + Klla2 + 2K13 f]]+;(-p;)=O, (116) 

and 
Id -- 
rd6 ( ) 

-pzo =o. (117) 

We add (8) and (9), make use of (21) and neglect the inertia of the fluid. The resulting 
equations are 

8p Id 
- dr - 2% PIK1O; - 1) + K& - 1) + K# - 1) + 2&i-f’] -3 

+~%[Pa~[~~,i~,fal,-i)+~,(a2-i)+~~,(a:+g’2-i)+~~~~~]] 

+~{a~[2~1+~,(a~-i)+~~(a~-i)+21~?(a~+g’2-1)+2~~~P2] 
Pm 

- a”, 2& + K,(iEF + g’2 - 1) + Kh(a2 - 1) + 2Ks(a% - 1) + 2X1,$ 
[ 

= 0, 
Pm II 

;; 
I [ 
rpa,g’ 2K1 + K.+(12$ - 1) + K5(AZ - 1) 

+ 2K,(a; + g’2 - 1) + ,kri*a2 + ZK,,E 1) + p (--p) = 0, 

and 

$&J)=O. 

Notice that (116) and (119) imply 

(118) 

(119) 

(120) 

(121) 
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By (21), if there is some fluid content in the mixture, i.e. p2 # 0, then (121) results in 

aP - 0. 
z- (122) 

It follows from (120) and (122) that 

P = p(r). (123) 
Then, it follows from (119) and (122), after integration, that 

p&g’[2K1 + K&z, - 1) + KS@’ - 1) + 2K,(A: + g2 - 1) + K11A2 + 2Kr3 p2 1 = =. 
P20 r (124) 

From (115) and (118), we have 

- ; pl[K& - 1) + Ki‘& - 1) + K*5(A2 - 1) + 2Kf’] ; (E) 

+ap'p-w+~~[ 2[ 
PlOP20 

PA, 2K1 + K& - 1) + K5(A2 - 1) + 2K,(A5 + g’2 - 1) + 2Ki3 -!!A 
20 P20 II 

+;-_ A,2 2K1+K4(12;-l)+Kg(A2-l)+2K7(Af+g’2-1)+2K13PZ 
i [ P20 1 

- A’, 2K2 + K&f + g’2 - 1) + 2K6(A2 - 1) + 2K&, - 1) + 2K14 E]} 
[ 

+ p 
i( 

A, $ + g’ z 
)[ 

2K1 + K,& - 1) + KS(A2 - 1) + 2K,(A9 + gf2 - 1) + 2K13 “1 
P20 

+A,$ 2K2+K,(A;+g’2- 
[ 

1) + K6(A2 - 1) + 2K,(A.2, - 1) + 2K14 E 1 + 2KIIA2g’ $$ I = 0. 

Regarding all quantities as functions of the reference coordinate R, we have 
(125) 

- ; p1[K13(3L; - 1) + K&, - 1) + K15(A2 - 1) + 2Kf’] & (2) 

+ +,o dR 
Pld [ ,o[K&; - 1) + K14(A; - 1) + K15(k2 - 1) + 2Kf’] E} + a= A,w 

+ e& 
( [ 

pA; 2K1 + K&2, - 1) + K5(A2 - 1) + 2K,(A; + g’2 - 1) + 2K,3 p2 
P20 II 

+$$ A; 2K,+K,(A2,-1)+K,(A2-1)+2K,(A:+g’Z-1)+2K,,P2 
r 20 i [ P20 1 

-A; 2K2+K,(A:+g’2-l)+K,(1’-1)+2K,(A~-1)+2K,,~]] 
[ 

+ ; p2 
I( 

A,; + g’ g 
>[ 

2K1 + K&i - 1) + KS(A2 - 1) + 2K,(A; + g’2 - 1) + 2K13 E 1 
+ A, 2 [ 2K2 + K&f + gr2 - 1) + K6(A2 - 1) + 2Ks(A; - 1) + 2K1, fi 

P20 1 
+ 2KIIA2g’ g = 0. 

I (126) 
where 

“I,, _ d d 
YE’ 

except f’ = 
dWp,o) ’ 

(127) 
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Introducing the following non-dimensional qualities 

we have 
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w3) 

+ ; p2{(n3: + gtg”)[2R, f &(a; - 1) + &(a” - 1) + at,@; + g’* - 1) + 2&3b21 

+ A&[2& + &(A; f g’2 - 1) + &(A2 - 1) + &(122, - 1) f 2R,‘&,] + 2Rt112g’g”} = 0, (129) 

where 

and 

@IF p=-.-.- df 
JGPzo ’ 

except f’ = : , 
dp2 

030) 

R K1 1=--p k2-K -- 

K Iit 

Differentiating (124) with respect to R, we obtain the second governing equation in 
non-dimensional form 

(&%J(+g’)‘[2& + &(A”, - 1) + &(A’ - 1) + 2zQn: + g’* - 1) f &IA2 + 2&,&] 

+ fi&A,g’[2& + &(A”, - 1) + &(A’ - 1) + 2&(A; + g’2 - 1) + &,A* + 2&p,] = 0, (132) 

where the prime means d/d. Now we have two governing equations, (129) and (132) for two 
variables i and & 

Once again, we determine the ad~tional Sunday conditions that are necessary for 
determining the solution to the boundary value problem under consideration. Since there is 
shearing in this problem, we would have to compute the virtual work due to the shear force 
and the virtual displacement. Let us denote by s&lx 1, 2, 3, quantities in the r, 8 and z 
direction, respectively. In addition to giving virtual displacements 6A1, Sh, and &, we will 
also have to allow for a virtual angular displacement 6a to the angle of shear LY. Unlike the 
previous problem, the basic deformation under consideration also involves shearing. For this 
problem 

(133) 

with 
hEI1 = hl iSA + g’ 6g’, 

SE* = A2 6A2, 8E33 = A3 &, 

6E,3 =; (g’ 6A3 + A3 6g’). (134) 
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Thus, 

It can be seen from Fig. 21 that 

6W = Tll(A2 + dA2)(A3 + 6A3)[(Aq + d&)COS(CY + &Y) - Al COS Ly] 

+ G2(A1 + &)(A3 + dA3)cos (Y 6A2 + T33& + &)(A, + 6A2) dA3 

+ Tl3(A2 + bA2)(A3 + dA3)[(Al + &t,)sin(cu + SCY) - rZ sin (Y]. (136) 

Here G3 is not the normal stress acting on the face z = constant but the component of the 
traction in the z-direction on the surface at an angle a such that tan CY = g’. For the problem 
where g’ = 0, T33 does become the normal stress. We shall assume that 6a is small enough so 
that 

sin 6a = 6a and cos 6a = 1. 
Also, since 

(137) 

tan ff =g’, 
it follows that 

(138) 

g 
I2 

&x=cos2&dg’, 

1 -_ sin2c+l+g,2, cos2 Ly = I + g,2. 

Substituting (137)-(139), into (136), we find 

6W = (Tl, cos LY + & sin ~t)A2A3 6A1+ G2A1A.3 cos (Y 6A2 

+ T33&ii2 6A3 + (Tl3 COS Cy - Tll SiIl (Y)t%lh2)c3 COS2 (Y 6g’. 

A lengthy but straightforward computation yields 

T,, = 

dA 
~20A + ~(~20 - ~2) = + PA: - I 1 

ap2 d&l m 

/ 

El / 
Undeformed State Deformed State 

Fig. 21. Variation in the work done due to the variations 61,. M,, 61, and 6~ 
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Fig. 22. Effect of shearing on the flux for inward diffusion. 

Notice that when g’ = 0, the above equations reduce to the additional boundary conditions for 
the problem studied in the last section. Thus, 

/%oA+P(P2*-P2)-g+pl:- a& dA 1 VW 1 
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Fig. 23. Effect of shearing on the flux for outward diffusion. 
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Fig. 24. Variation of the shear displacement along the cylinder thickness for inward diffusion. 

-6 n h 

E 
0.12 r0 = R, 

:: T, =400 
0 

% 
0 0.09 

& 

E 

Nondlmenslonal coordinate ii 

Fig. 25. Variation of the shear displacement along the cylinder thickness for outward diffusion. 
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Fig. 26. Variation of the fluid density along the cylinder thickness for inward diffusion. 
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Fig. 27. Variation of the fluid density along the cylinder thickness for outward diffusion. 

047) 

when a = R,/Ri and qi, q. and to denote the pressure on the inner and outer surfaces of the 
cylinder and the shear stress on the outer surface of the cylinder, respectively. 

The method of solving this boundary value problem is essentially the same as was used in the 
previous section. The values of the material parameters used here are the same as those used in 
the previous section except K r1 = 830. The subroutine and error tolerance are also the same. 
We discuss the effect of shearing on the diffusions. Figures 22 and 23 show that the shear 
displacement of the cylinder decreases the mass flux for any value of the pressure difference for 
both of the inward and outward-diffusions. Shearing tends to decrease the mass flux. The 
variation of the shear displacement 2 through the cylinder with the mass flux under the tixed 
shear stress, r, = 400, are depicted in Figs 24 and 25, respectively. Note that the deformation of 
the mixture is highly non-homogeneous. Under a fixed shear stress on boundary, increasing the 
mass flux decreases shear displacement for the inward-diffusion and increases the displacement 
for the outward-diffusion. Figures 26 and 27 show how the fluid dispersed through the cylinder 
for the inward and the outward-diffusion, respectively. 
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