# Simplified Description of Slow-in-the-Average Markov Walks 

J. T. Lim*, S. M. Meerkov, and Tie Zeng<br>Deparment of Electrical Engineering and Computer Science, The Universily of Michigan, Ann Arbor, Michigan 48109-2122<br>Submitted by G. Leitmann<br>Received February 5, 1990


#### Abstract

The averaging theory for the slow Markov walks is extended to the so called slow-in-the-average Markov processes where the jump vector takes arbitrarily large values with sufficiently small probabilities. The results obtained are important for applications, in particular, communication networks and manufacturing systems. (C) 1991 Academic Press, Inc.


## I. Introduction

A slow Markov walk process is defined as

$$
\begin{gathered}
x(n+1)=x(n)+\varepsilon \Phi(x(n), \xi(n)), \\
x \in R^{N}, \xi \in R^{w}, \Phi: R^{N} \times R^{W} \rightarrow R^{N}, 0<\varepsilon \ll 1,
\end{gathered}
$$

where $\xi(n), n=0,1, \ldots$, is a sequence of conditionally independent random variables and $\Phi(x(n), \xi(n))$ takes values of order 1 . There have been many results obtained [1-6], concerning deterministic approximations of such processes. Applications of these results have been reported in [7-12]. In some applications, however, the jump vector, $\Phi$, takes values of the order $1 / \varepsilon$ and therefore the results of [1-6] are not applicable. The purpose of this paper is to extend the method of [1] to the so called slow-in-theaverage Markov walks which admit $\Phi$ arbitrarily large but with sufficiently small probabilities.

The structure of this paper is as follows: In Section II, the notion of the slow-in-the-average Markov walk is introduced; in Section III, the main theorems are formulated; the proofs are given in the Appendices.

[^0]
## II. Slow-in-the-Average Markov Walks

Consider the Markov process defined by

$$
\begin{gather*}
x(n+1)=x(n)+\Phi(x(n), \ldots, x(n-r), \xi(n)),  \tag{1}\\
x \in R^{N}, \xi \in R^{W}, \Phi: \underbrace{R^{N} \times R^{N} \times \cdots \times R^{N}}_{(r+1)} \times R^{W} \rightarrow R^{N},
\end{gather*}
$$

where $\xi(n), n=0,1, \ldots$, is a sequence of conditionally independent random variables with the following conditional probability distribution:

$$
\begin{align*}
& f(\xi(n) \mid x(n), \ldots, x(n-r)) \\
& \quad=\left\{f_{1}\left(\xi_{1}(n) \mid x(n), \ldots,(n-r)\right), \ldots, f_{W^{\prime}}\left(\xi_{W}(n) \mid x(n), \ldots, x(n-r)\right)\right\} . \tag{2}
\end{align*}
$$

Assume that

$$
\begin{align*}
& E\left\{\Phi_{i}(x(n), \ldots, x(n-r), \xi(n)) \mid x(n), \ldots, x(n-r)\right\} \\
& \quad=\varepsilon \phi_{i}(x(n), \ldots, x(n-r)),  \tag{3}\\
& \operatorname{Var}\left\{\Phi_{i}(x(n), \ldots, x(n-r), \xi(n)) \mid x(n), \ldots, x(n-r)\right\} \\
& = \\
& =\varepsilon^{2} k_{i}(x(n), \ldots, x(n-r)), \\
& \quad i=1, \ldots, N, \quad 0<\varepsilon \ll 1,
\end{align*}
$$

where $\phi_{i}(\cdot), k_{i}(\cdot)$ are functions of order 1 , and, in addition,

$$
\begin{align*}
& \left|\phi_{i}(\cdot)\right| \leqslant R, \quad\left|k_{i}(\cdot)\right| \leqslant S, \quad \text { for all } i \in\{1, \ldots, N\}, \text { for all } \\
& x \in Q \subset R^{N}, \tag{4}
\end{align*}
$$

and $R$ and $S$ are independent of $\varepsilon$. Assume also that both $\phi(\cdot)=$ $\left[\phi_{1}(\cdot), \ldots, \phi_{N}(\cdot)\right]^{T}$ and $k(\cdot)=\left[k_{1}(\cdot), \ldots, k_{N}(\cdot)\right]^{T}$ are Lipschitz in $Q \subset R^{N}$,

$$
\begin{align*}
& \|\phi(x(n), \ldots, x(n-r))-\phi(x(m), \ldots, x(m-r))\| \\
& \quad \leqslant \lambda_{1}\{\|x(n)-x(m)\|+\cdots+\|x(n-r)-x(m-r)\|\} \\
& \|k(x(n), \ldots, x(n-r))-k(x(m), \ldots, x(m-r))\|  \tag{5}\\
& \quad \leqslant \lambda_{2}\{\|x(n)-x(m)\|+\cdots+\|x(n-r)-x(m-r)\|\}
\end{align*}
$$

where $\|Z\|=\sum_{i=1}^{N}\left|Z_{i}\right|$.
The process defined by (1)-(5) will be referred to as slow-in-the-average Markov walk. As it follows from (1), (3), the jump vector, $\Phi$, can take arbitrarily large values but with sufficiently small probabilities.

## III. Main Theorems

Along with (1) consider the following deterministic equation:

$$
\begin{gather*}
y(n+1)=y(n)+\varepsilon \phi(y(n), \ldots, y(n-r)), \\
y \in R^{N}, \quad y^{0}=\left[y\left(n_{0}\right), \ldots, y\left(n_{0}-r\right)\right]^{T}=\left[x\left(n_{0}\right), \ldots, x\left(n_{0}-r\right)\right]^{T}=x^{0} . \tag{6}
\end{gather*}
$$

Theorem 1. Under the assumptions (3)-(5), for any $\sigma>0$ and $\tau>0$ there exists $\varepsilon_{0}=\varepsilon_{0}(\sigma)$ and $F=F(\tau)$ such that for all $0<\varepsilon \leqslant \varepsilon_{0}$
$P\left\{\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\sigma\right\} \geqslant 1-\sigma F(\tau), \quad n \in\left[n_{0}, n_{0}+\tau / \varepsilon\right]$,
where $x\left(n, x^{0}, n_{0}\right)$, and $y\left(n, x^{0}, n_{0}\right)$, are solutions of (1) and (6) respectively which belong, together with their $\sigma$-vicinity, to $Q$.

Theorem 2. Assume that all trajectories of (1) are bounded a.s. and the equilibrium of (6) is globally asymptotically stable. Then, under the assumptions (3)-(5), for any $\delta>0$, there exists $\varepsilon_{0}>0$ such that for all $0<\varepsilon \leqslant \varepsilon_{0}$

$$
\begin{equation*}
P\left\{\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\delta\right\} \geqslant 1-\delta, \quad n \in\left[n_{0}, \infty\right) . \tag{8}
\end{equation*}
$$

The proofs of these theorems are given in the Appendices.

## Appendix I

The proof of Theorem 1 requires several auxiliary results:
Lemma 1. Under the assumptions of Theorem 1, there exist positive constants $T_{1}$ and $T_{2}$ such that the following inequality is true:

$$
\begin{equation*}
E\|x(l)-x(n)\| \leqslant \frac{N T_{1}}{T_{2}}\left\{\left(1+\varepsilon T_{2}\right)^{1-n}-1\right\}, \quad \text { for all } l>n \tag{9}
\end{equation*}
$$

Proof. From (3)-(5), we obtain

$$
\begin{aligned}
E \| x(l) & -x(n) \| \\
& \leqslant \sum_{s=n}^{\prime-1} E\|\Phi(x(s), \ldots, x(s-r), \xi(s))\| \\
& \leqslant \sum_{i=1}^{N} \sum_{s=n}^{1-1} E\left\{\frac{\varepsilon^{2}+\left|\Phi_{i}(x(s), \ldots, x(s-r), \xi(s))\right|^{2}}{2 \varepsilon}\right\} \\
& =\sum_{i=1}^{N} \sum_{i=1}^{l-1} E\left\{\left(\frac{\varepsilon}{2}\right)\left[1+k_{i}(x(s), \ldots, x(s-r))+\phi_{i}^{2}(x(s), \ldots, x(n-r))\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{\varepsilon}{2} N(l-n)+\frac{\varepsilon}{2} \sum_{i=1}^{N} \sum_{s=n}^{l-1} E\left|k_{i}(x(n), \ldots, x(n-r))+\phi_{i}^{2}(x(n), \ldots, x(n-r))\right| \\
& +\frac{\varepsilon}{2} \sum_{i=1}^{N} \sum_{s=n}^{l-1} E\left|k_{i}(x(s), \ldots, x(s-r))-k_{i}(x(n), \ldots, x(n-r))\right| \\
& +\frac{\varepsilon}{2} \sum_{i=1}^{N} \sum_{s=n}^{I-1} E\left|\phi_{i}^{2}(x(s), \ldots, x(s-r))-\phi_{i}^{2}(x(n), \ldots, x(n-r))\right| \\
& \leqslant \varepsilon N(l-n) \frac{\left(S+R^{2}+1\right)}{2} \\
& +\frac{\varepsilon}{2} \sum_{s=n}^{\prime-1}\left\{\lambda_{1} E\{\|x(s)-x(n)\|+\|x(s-1)-x(n)\|+\cdots\right. \\
& +\|x(s-r)-x(n)\|+\|x(n)-x(n-1)\| \\
& +\cdots+\|x(n)-x(n-r)\|\} \\
& +2 R \lambda_{2} E\{\|x(s)-x(n)\|+\|x(s-1)-x(n)\| \\
& +\cdots+\|x(s-r)-x(n)\| \\
& +\|x(n)-x(n-1)\|+\cdots+\|x(n)-x(n-r)\|\}\} \\
& \leqslant \varepsilon N(l-n) \frac{\left(S+R^{2}+1\right)}{2}+\frac{\varepsilon^{2} \lambda_{i}}{2} \sum_{i=1}^{r} \frac{i(i+1) N R}{2} \\
& +\frac{\varepsilon^{2}}{2} \lambda_{1} N R \frac{r(r+1)}{2}(l-n) \\
& +\varepsilon^{2} R \lambda_{2} \sum_{i=1}^{r} \frac{i(i+1) N R}{2}+\varepsilon^{2} R \lambda_{2} N R \frac{r(r+1)}{2}(l-n) \\
& +\frac{\varepsilon}{2} \sum_{s=n}^{l-1}\left[(r+1) \lambda_{1}+2 R \lambda_{2}(r+1)\right] E\|x(s)-x(n)\| \\
& \leqslant \frac{N T_{1}}{T_{2}}\left\{\left(1+\varepsilon T_{2}\right)^{l-n}-1\right\}, \quad \text { for all } l>n,
\end{aligned}
$$

where

$$
\begin{aligned}
T_{1}= & N \frac{\left(S+R^{2}+1\right)}{2}+\frac{\varepsilon N R}{2}\left(r^{2}+r\right) \frac{\left(\lambda_{1}+2 R \lambda_{2}\right)}{2} \\
& +\frac{\varepsilon N R r(r+1)(r+2)}{6} \frac{\left(\lambda_{1}+2 R \lambda_{2}\right)}{2}, \\
T_{2}= & \frac{(r+1)\left(\lambda_{1}+2 R \lambda_{2}\right)}{2} .
\end{aligned}
$$

To formulate the second lemma, introduce a random variable

$$
\begin{equation*}
\bar{x}(n)=\frac{1}{[\delta / \varepsilon]} \sum_{i=1}^{n+[\delta / \varepsilon]} 1 x(i) \tag{10}
\end{equation*}
$$

where $\delta$ is positive real to be chosen below.
Lemma 2. Under the assumptions of Theorem 1, there exists a positive real $S_{1}$ such that the following inequality is true:

$$
\begin{equation*}
E\{\|\bar{x}(n)-x(n)\|\}<\delta S_{1}, \quad n \in\left[n_{0}, \infty\right) \tag{11}
\end{equation*}
$$

Proof. From Lemma 1,

$$
\begin{aligned}
E\|\bar{x}(n)-x(n)\| & \leqslant \frac{1}{[\delta / \varepsilon]} \sum_{i=n}^{n+[\delta / \varepsilon]-1} E\|x(i)-x(n)\| \\
& \leqslant \frac{1}{[\delta / \varepsilon]} \sum_{i=n}^{n+[\delta / \varepsilon]-1} \frac{N T_{1}}{T_{2}}\left\{\left(1+\varepsilon T_{2}\right)^{[\delta / \varepsilon]}-1\right\} \\
& \leqslant \frac{N T_{1}}{T_{2}}\left\{e^{\varepsilon T_{2}[\delta / \varepsilon]}-1\right\} \\
& <\delta S_{1}
\end{aligned}
$$

where $S_{1}=N T_{1} e^{T_{2} \delta}$.
Q.E.D.

Lemma 3. Let

$$
\begin{align*}
& \Delta u(n+1)=\varepsilon \phi(u(n), \ldots, u(n-r)) \\
& \Delta v(n+1)=\varepsilon \phi(v(n), \ldots, v(n-r))+\varepsilon^{3 / 2} \xi(n)+\varepsilon^{5 / 4} \eta(n) \tag{12}
\end{align*}
$$

where $u, v, \xi, \eta \in R^{N}, u^{0}=\left[u\left(n_{0}\right), \ldots, u\left(n_{0}-r\right)\right]^{T}=\left[v\left(n_{0}\right), \ldots, v\left(n_{0}-r\right)\right]^{T}=v^{0}$, and $E\left|\xi_{i}(n)\right| \leqslant S_{2}, E\left|\eta_{i}(n)\right| \leqslant S_{3}$, for all $i \in\{1, \ldots, N\}$. Then there exists a positive real $F_{1}$ such that

$$
\begin{equation*}
E\|u(n)-v(n)\| \leqslant \varepsilon^{1 / 4} F_{1}\left\{e^{\varepsilon \lambda_{1}(r+1)\left(n \cdots n_{0}\right)}-1\right\} . \tag{13}
\end{equation*}
$$

Proof. From (12), we obtain

$$
\begin{aligned}
E \| u(n) & -v(n) \| \\
\leqslant & \varepsilon \sum_{s=n_{0}}^{n-1} E\|\phi(u(s), \ldots, u(s-r))-\phi(v(s), \ldots, v(s-r))\| \\
& +\varepsilon^{3 / 2} \sum_{s=n_{0}}^{n-1} E\|\xi(s)\|+\varepsilon^{5 / 4} \sum_{n=n_{0}}^{n-1} E\|\eta(s)\|
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \varepsilon \lambda_{1} \sum_{s=n_{0}}^{n-1} E\{\|u(s)-v(s)\|+\|u(s-1)-v(s-1)\| \\
& +\cdots+\|u(s-r)-v(s-r)\|\} \\
& +\varepsilon^{3 / 2} \sum_{s=n_{0}}^{n-1} E\|\xi(s)\|+\varepsilon^{5 / 4} \sum_{s=n_{0}}^{n-1} E\|\eta(s)\| \\
\leqslant & \varepsilon \hat{1}_{1}(r+1) \sum_{s=n_{0}}^{n-1} E\|u(s)-v(s)\| \\
& +\varepsilon^{3 / 2} \sum_{s=n_{0}}^{n-1} E\|\xi(s)\|+\varepsilon^{5 / 4} \sum_{s=n_{0}}^{n-1} E\|\eta(s)\| \\
\leqslant & \varepsilon \lambda_{1}(r+1) \sum_{s=n_{0}}^{n-1} E\|u(s)-v(s)\| \\
& +\varepsilon N\left(\varepsilon^{1 / 2} S_{2}+\varepsilon^{1 / 4} S_{3}\right)\left(n-n_{0}\right) .
\end{aligned}
$$

## By [1, Lemma 2] we find that

$$
E\|u(n)-v(n)\| \leqslant e^{1 / 4} F_{1}\left\{e^{\varepsilon \lambda_{1}(r+1)\left(n-n_{0}\right)}-1\right\}
$$

where $F_{1}=N / \lambda_{1}(r+1)\left(\varepsilon^{1 / 4} S_{2}+S_{3}\right)$.
Q.E.D.

Proof of Theorem 1. From (10),

$$
\begin{align*}
\Delta \bar{x}_{i}(n+1)= & \frac{1}{[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / \varepsilon]-1} \Phi_{i}(x(j), \ldots, x(j-r), \xi(j)) \\
= & \varepsilon \phi_{i}(x(n), \ldots, x(n \quad r)) \\
& +\frac{1}{[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / \varepsilon]-1}\left[\varepsilon \phi_{i}(x(j), \ldots, x(j-r))\right. \\
& \left.-\varepsilon \phi_{i}(x(n), \ldots, x(n-r))\right] \\
& +\frac{1}{[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / \varepsilon]-1}\left[\Phi_{i}(x(j), \ldots, x(j-r), \xi(j))\right. \\
& \left.-\varepsilon \phi_{i}(x(j), \ldots, x(j-r))\right] \\
= & \varepsilon \phi_{i}(x(n), \ldots, x(n-r))+\varepsilon^{3 / 2} \xi_{i}(n)+\varepsilon^{5 / 4} \eta_{i}(n), \tag{14}
\end{align*}
$$

where

$$
\xi_{i}=\frac{1}{\varepsilon^{1 / 2}[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / \varepsilon]-1}\left[\phi_{i}(x(j), \ldots, x(j-r))-\phi_{i}(x(n), \ldots, x(n-r))\right],
$$

$$
\begin{aligned}
\eta_{i}(n)= & \frac{1}{\varepsilon^{5 / 4}[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / n]} 1 \\
& \left.-\varepsilon \phi_{i}(x(j), \ldots, x(j-r))\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left|\xi_{i}(n)\right| \leqslant & \left.\frac{1}{\varepsilon^{1 / 2}[\delta / \varepsilon]} \sum_{i=n}^{n+[\delta, \ldots]-1} E \right\rvert\, \phi_{i}(x(j), \ldots, x(j-r)) \\
& -\phi_{i}(x(n), \ldots, x(n-r)) \mid \\
\leqslant & \frac{\lambda_{1}}{\varepsilon^{1 / 2}[\delta / \varepsilon]}{ }^{n}+\left[\sum_{j=n} E \| \phi(x(j), \ldots, x(j-r))\right. \\
& -\phi(x(n), \ldots, x(n-r)) \| \\
\leqslant & \frac{\lambda_{1}}{\varepsilon^{1 / 2}[\delta / \varepsilon]} \sum_{j=n}^{n+[\delta / \varepsilon]-1} E\{\|x(j)-x(n)\| \\
& +\cdots+\|x(j-r)-x(n-r)\|\} \\
\leqslant & \frac{\lambda_{1}}{\varepsilon^{1 / 2}[\delta / \varepsilon]}\left\{\sum_{j=n}^{n+[\delta / \varepsilon]-1}(r+1) E\|x(j)-x(n)\|\right. \\
& \left.+\varepsilon N R \frac{r(r+1)}{2}[\delta / \varepsilon]+\varepsilon N R \frac{r(r+1)(r+2)}{6}\right\} \\
\leqslant & \frac{\lambda_{1}(r+1)}{\varepsilon^{1 / 2}} \delta S_{1}+\frac{\lambda_{1} \varepsilon^{1 / 2} N R r(r+1)}{2} \\
& +\frac{\lambda_{1} \varepsilon^{1 / 2} N R r(r+1)(r+2)[\varepsilon / \delta]}{6} \\
\leqslant & \frac{\lambda_{1}(r+1)}{\varepsilon^{1 / 2}} \delta S_{1}+\frac{\lambda_{1} \varepsilon^{1 / 2} N R r(r+1)}{2}\left(1+\frac{(r+2)[\varepsilon / \delta]}{3}\right) .
\end{aligned}
$$

Let $\delta=\varepsilon^{1 / 2}$, then

$$
E\left|\xi_{i}(n)\right| \leqslant S_{2}^{\prime},
$$

where $S_{2}^{\prime}=\lambda_{1} S_{1}(r+1)+\lambda_{1} \varepsilon^{1 / 2} N \operatorname{Rr}(r+1)\left(\left(3+(r+2) \varepsilon^{1 / 2}\right) / 6\right)$.
From (14), we obtain the inequality

$$
\begin{aligned}
E\left|\eta_{i}(n)\right|^{2}= & \left.\frac{1}{\varepsilon^{5 / 2}[\delta / \varepsilon]^{2}} E\right|_{j=n} ^{n+[\delta / \varepsilon]-1}\left[\Phi_{i}(x(j), \ldots, x(j-r), \xi(j))\right. \\
& \left.-\varepsilon \phi_{i}(x(j), \ldots, x(j-r))\right]\left.\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\frac{1}{\varepsilon^{5 / 2}[\delta / \varepsilon]^{2}} \sum_{j=n}^{n+[\delta / \varepsilon]-1} E \right\rvert\, \Phi_{i}(x(j), \ldots, x(j-r), \xi(j)) \\
& -\left.\varepsilon \phi_{i}(x(j), \ldots, x(j-r))\right|^{2} \\
\leqslant & \frac{1}{\varepsilon^{5 / 2}[\delta / \varepsilon]^{2}}{ }_{j=n}^{n+[\delta / \varepsilon]-1} \varepsilon^{2} S .
\end{aligned}
$$

Since $\delta=\varepsilon^{1 / 2}$,

$$
E\left|\eta_{i}(n)\right|^{2} \leqslant S
$$

Then,

$$
E\left|\eta_{i}(n)\right| \leqslant \frac{1+E\left|\eta_{i}(n)\right|^{2}}{2} \leqslant \frac{1+S}{2}=S_{3}
$$

where $S_{3}=(1+S) / 2$.
In order to represent (14) in a closed form, we rewrite it as

$$
\begin{equation*}
\Delta \bar{x}_{i}(n+1)=\varepsilon \phi_{i}(x(n), \ldots, x(n-r))+\varepsilon^{3 / 2} \xi_{i}^{\prime}(n)+\varepsilon^{5 / 4} \eta_{i}(n), \tag{15}
\end{equation*}
$$

where $\quad \xi_{i}^{\prime}(n)=\left(1 / \varepsilon^{1 / 2}\right)\left[\phi_{i}(x(n), \ldots, x(n-r))-\phi_{i}(\bar{x}(n), \ldots, \bar{x}(n-r))\right]+\xi_{i}(n)$. Then,

$$
\begin{aligned}
E\left|\xi_{i}^{\prime}\right| \leqslant & \left.\frac{1}{\varepsilon^{1 / 2}} E \right\rvert\, \phi_{i}(x(n), \ldots, x(n-r)) \\
& -\phi_{i}(\bar{x}(n), \ldots, \bar{x}(n-r))|+E| \xi_{i}(n) \mid \\
\leqslant & \frac{1}{\varepsilon^{1 / 2}} \lambda_{1} E\{\|x(n)-\bar{x}(n)\| \\
& +\cdots+\|x(n-r)-\bar{x}(n-r)\|\}+S_{2}^{\prime} \\
\leqslant & \lambda_{1}(r+1) S_{1}+S_{2}^{\prime}=S_{2}
\end{aligned}
$$

Consider now a system of the form

$$
\begin{aligned}
\Delta y_{i}(n+1) & =\varepsilon \phi_{i}(y(n), \ldots, y(n-r)), \\
y_{i}^{0} & =\left[y_{i}\left(n_{0}\right), \ldots, y_{i}\left(n_{0}-r\right)\right]^{T}=\left[x_{i}\left(n_{0}\right), \ldots, x_{i}\left(n_{0}-r\right)\right]^{T}=x_{i}^{0} .
\end{aligned}
$$

Since the conditions of Lemma 3 are met, we have

$$
E\{\|\bar{x}(n)-y(n)\|\} \leqslant \varepsilon^{1 / 4} F_{1}\left\{e^{\varepsilon \lambda_{1}(r+1)\left(n-n_{0}\right)}-1\right\}
$$

Therefore,

$$
\begin{aligned}
E\{\|x(n)-y(n)\|\} & \leqslant E\{\|x(n)-\bar{x}(n)\|\}+E\{\|\bar{x}(n)-y(n)\|\} \\
& <\varepsilon^{1 / 2} S_{1}+\varepsilon^{1 / 4} F_{1}\left\{e^{1 / 2,(r+1)\left(n \cdots n_{0}\right)}-1\right\} \\
& =\varepsilon^{1 / 4} F(\tau), \quad \text { for all } n \in\left[n_{0}, n_{0}+\tau / \varepsilon\right]
\end{aligned}
$$

where $F(\tau)=\varepsilon^{1 / 4} S_{1}+F_{1}\left\{e^{j_{1}(r+1) \tau}-1\right\}$. Hence

$$
P\left\{\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\varepsilon^{1 / 8}\right\} \geqslant 1-\varepsilon^{1 / 8} F(\tau) .
$$

Let $\sigma=\varepsilon^{1 / 8}$, then

$$
P\left\{\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\sigma\right\} \geqslant 1-\sigma F(\tau) . \quad \text { Q.E.D. }
$$

## Appendix II

Proof of Theorem 2. Without loss of generality, assume that the origin is the equilibrium point of (6). Due to the global asymptotic stability of (6), for any $\mu>0$ there exists $\tau>0$, such that

$$
\|y(n)\| \leqslant \mu / 2, \quad \text { for all } \quad n \geqslant n_{0}+\tau / \varepsilon
$$

Then, from the following inequality

$$
\begin{aligned}
E\|x(n)\| & \leqslant E\|x(n)-y(n)\|+E\|y(n)\| \\
y^{0} & =\left[y\left(n_{0}\right), \ldots, y\left(n_{0}-r\right)\right]^{T}=\left[x\left(n_{0}\right), \ldots, x\left(n_{0}-r\right)\right]^{T}=x^{0}
\end{aligned}
$$

and the assumption that all trajectories of (1) are bounded a.s., when $n=n_{0}+N_{0}=n_{0}+\tau / \varepsilon$ we have

$$
\begin{align*}
E\left\|x\left(n_{0}+N_{0}\right)\right\| & \leqslant \varepsilon^{1 / 4} F(\tau)+\left\|y\left(n_{0}+N_{0}\right)\right\| \\
& \leqslant \varepsilon^{1 / 4} F(\tau)+\mu / 2 . \tag{16}
\end{align*}
$$

Choose number $\varepsilon_{0}$ such that, for all $\varepsilon \leqslant \varepsilon_{0}$,

$$
\varepsilon^{1 / 4} F(\tau)<\mu / 2
$$

Then we have

$$
\begin{equation*}
E\left\|x\left(n_{0}+N_{0}\right)\right\|<\mu, \quad N_{0}=\tau / \varepsilon \tag{17}
\end{equation*}
$$

Let $\zeta=x\left(x\left(n_{0}\right), n_{0}+N_{0}\right)$. For each realization of trajectory $y\left(\zeta, n_{0}+N+n\right)$, the following inequality holds:

$$
E\left\|x\left(\zeta, n_{0}+N_{0}+n\right)\right\| \leqslant \varepsilon^{1 / 4} F(\tau)+\left\|y\left(\zeta, n_{0}+N_{0}+n\right)\right\|, \quad n \in[0, \tau / \varepsilon] .
$$

Averaging this inequality over the distribution of $\zeta$ and taking into account that $E\left(E\left\|x\left(\zeta, n_{0}+N_{0}+n\right) \mid \zeta\right\|\right)=E\left\|x\left(x\left(n_{0}\right), n_{0}+N_{0}+n\right)\right\|$, we obtain

$$
\begin{equation*}
E \|\left(x\left(x\left(n_{0}\right), n\right)\left\|<\frac{\mu}{2}+E\right\| y(\zeta, n) \|, \quad n \in\left[n_{0}+N_{0}, n_{0}+2 N_{0}\right] .\right. \tag{18}
\end{equation*}
$$

As follows from (17), $P\left\{\|\zeta\|>\mu^{1 / 2}\right\} \leqslant \mu^{1 / 2}$. Hence, taking into account that all trajectories of system (1) are bounded a.s., we find that

$$
E\|y(\zeta, n)\| \leqslant \mu / 2+g \mu^{1 / 2}, \quad n \in\left[n_{0}+N_{0}, n_{0}+2 N_{0}\right]
$$

where $g$ is some constant. Thus from (18), we have

$$
\begin{equation*}
E\left\|x\left(x\left(n_{0}\right), n\right)\right\|<\mu+g \mu^{1 / 2}, \quad n \in\left[n_{0}+N_{0}, n_{0}+2 N_{0}\right] . \tag{19}
\end{equation*}
$$

Moreover, since, by construction, $E\left\|y\left(\zeta, n_{0}+2 N_{0}\right)\right\|<\mu / 2$, we find from (18),

$$
\begin{equation*}
E\left\|x\left(x\left(n_{0}\right), n_{0}+2 N\right)\right\|<\mu \tag{20}
\end{equation*}
$$

We now prove by induction that (19) holds for all $n \in\left[n_{0}, \infty\right)$. Let (19) hold on the interval $n \in\left[n_{0}+(l-1) N_{0}, n_{0}+l N_{0}\right]$. Then, when $n=n_{0}+l N_{0}$, (20) is true, and consequently (19) holds on the interval $\left[n_{0}+l N_{0}, n_{0}+(l+1) N_{0}\right]$. Thus (19) is valid for all $n \in\left[n_{0}+\tau / \varepsilon, \infty\right)$. On the other hand

$$
\left\|y\left(x\left(n_{0}\right), n\right)\right\| \leqslant \mu / 2, \quad n \in\left[n_{0}+\tau / \varepsilon, \infty\right) .
$$

Consequently, $E\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\frac{3}{2} \mu+g \mu^{1 / 2}, n \in\left[n_{0}+\tau / \varepsilon, \infty\right)$. Taking into account the inequality $\varepsilon^{1 / 4} F(\tau)<\mu / 2$, we have

$$
E\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\frac{3}{2} \mu+g \mu^{1 / 2}, \quad n \in\left[n_{0}, \infty\right) .
$$

Let $\delta^{2}=\frac{3}{2} \mu+g \mu^{1 / 2}$, then

$$
P\left\{\left\|x\left(n, x^{0}, n_{0}\right)-y\left(n, x^{0}, n_{0}\right)\right\|<\delta\right\} \geqslant 1-\delta .
$$

## References

1. S. M. Meerkov, Simplified description of slow Markov walks, Part I, Automat. Remote Control 33 (1972), 404-414.
2. M. F. Norman, "Markov Processes and Learning Models," Academic Press, New York, 1972.
3. D. P. Dersvitskil and A. L. Fradov, Two models for analyzing the dynamics of adaptive algorithms, Automat. Remote Control. 35 (1974), 59-67.
4. H. J. Kushner, Convergence of recursive adaptive and identification procedures via weak convergence theory, IEEE Trans. Automat. Control AC-22 (Dec. 1977), 921-930.
5. L. LJung, Analysis of recursive algorithms, IEEE Trans. Automat. Control AC-22 (Oct. 1977), 551-575.
6. A. Benveniste, M. Goursat, and G. Ruget, Analysis of stochastic approximation schemes with dependent and discontinuous forcing terms with applications to data communication systems, IEEE Trans. Automat. Control AC-25 (Dec. 1980), 1042-1058.
7. S. M. Meerkov and 1. Rubin, System-theoretic properties of large communication networks with Markovian multiaccess control disciplines, Systems Control Lett. 1, No. 5 (Mar. 1982), 340-346.
8. B. Hajek and T. van Loon, Decentralized dynamic control of a multiaccess broadcast channel, IEEE Trans. Automat. Control. AC-27 (1982), 559-569.
9. B. HAIEK, Hitting and occupation time bounds implied by drift analysis with applications, Adv. in Appl. Probab. (1982), 340-346.
10. P. R. S. Kumar and L. Merakos, Distributed control of broadcast channels with acknowledgment feedback: Stability and performance, in "Proceedings 23rd IEEE CDC," pp. 1143-1147, Las Vegas, NV, 1984.
11. L. Merakos and D. Kazakos, On retransmission control policies in multiaccess channels, IEEE Trans. Automat. Control AC-30 (1985), 109-117.
12. B. HАЈЕК, Stochastic approximation methods for decentralized control of multiaccess communications, IEEE Trans. Inform. Theory IT-31 (Mar. 1985), 176-184.

[^0]:    * Present address: Department of Electrical Engineering, Korean Advanced Institute of Science and Technology, Taejon, Korea. Rescarch sponsored by KOSEF under Grant 880115.

