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The averaging theory for the slow Markov walks is extended to the so called
slow-in-the-average Markov processes where the jump vector takes arbitrarily large
values with sufficiently small probabilities. The results obtained are important for
applications, in particular, communication networks and manufacturing systems.
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I. INTRODUCTION
A slow Markov walk process is defined as

x(n+1)=x(n) + e®(x(n), {(n)),
xeRY EeRY, @: R¥xR" - RN, 0<e«]l,

where £(n), n=0, 1, ..., is a sequence of conditionally independent random
variables and @(x(n), &(n)) takes values of order 1. There have been many
results obtained [1-6], concerning deterministic approximations of such
processes. Applications of these results have been reported in [7-12]. In
some applications, however, the jump vector, @, takes values of the order
1/e and therefore the results of [1-6] are not applicable. The purpose of
this paper is to extend the method of [1] to the so called slow-in-the-
average Markov walks which admit @ arbitrarily large but with sufficiently
small probabilities.

The structure of this paper is as follows: In Section II, the notion of the
slow-in-the-average Markov walk is introduced; in Section III, the main
theorems are formulated; the proofs are given in the Appendices.
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II. SLOW-IN-THE-AVERAGE MARKOV WALKS

Consider the Markov process defined by

x(n+1)=x(n)+ @(x(n), ..., x(n —r), &(n)), (N
xeRM, EeRY, d: R¥x RV x .- x R¥x R" > RY,
\,\/‘_/‘
(r+1)

where &(n), n=0, 1, ..., is a sequence of conditionally independent random
variables with the following conditional probability distribution:

JE(@)|x(n), .., x(n—r))
= {fx(él(n)lx(n)’ s (n —r))s sees fW(éW(”)lx(n)s b .X(l’l —I‘))} (2)

Assume that

E{D(x(n), .., x(n—r), &(m)) | x(n), .., x(n—r)}
= e (x(n), ..., x(n—r)), (3)
Var{®(x(n), .., x(n—r), E(n))| x(n), .., x(n—7r)}
=%k, (x(n), .., x(n—r)),
i=1,.,N, O0<e<l,

where ¢,(-), k,;(-) are functions of order 1, and, in addition,

16:(1) <R, k() <S8, forallie{l,.. N}, for all
xeQc R, 4)

and R and S are independent of & Assume also that both ¢(-)=
{6.(:)s s dn ()17 and k()= [k,(-), ..., ky(-)]7 are Lipschitz in Q = R,

lg(x(n), ..., x(n — 1)} — §(x(m), ..., x(m—~r))|
<A{llx(n) = x(m)| + - +|Ix(n—r)—x(m—r)|i}
lk(x(n), ..., x(n—r)) — k(x(m), .., x(m — )|
< Aa{llx(r) =~ x(m)l + -+ + | x(n—r)—x(m—r)|},

(5)

where |Z| =3, |Z)].

The process defined by (1)-(5) will be referred to as slow-in-the-average
Markov walk. As it follows from (1), (3), the jump vector, @, can take
arbitrarily large values but with sufficiently small probabilities.
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I11. MaIN THEOREMS

Along with (1) consider the following deterministic equation:
v+ 1)=y(n)+edly(n), .., yin—r)), ©)
yeRY,  yP=[yng) s y(ng—r)1" = [x(ng), .y x(ng—r)]" = x".

THEOREM 1.  Under the assumptions (3)-(5), for any ¢>0 and 1>0
there exists ey =¢q(0) and F= F(t) such that for all 0 <e< g,

P{|x(n, x° ng)— y(n, x°% ny)| <o} >1—0F(z), nelng, ng+1t/e], (7)

where x(n, x°, ny), and y(n, x°, ny), are solutions of (1) and (6) respectively
which belong, together with their o-vicinity, to Q.

THEOREM 2. Assume that all trajectories of (1) are bounded a.s. and the

equilibrium of (6) is globally asymptotically stable. Then, under the assump-
tions (3)-(5), for any 0 >0, there exists ¢,> 0 such that for all 0 <e<¢g,

P{|x(n, x° ny)— y(n, x°% ny)l| <3} =1—39, ne[ny, ). (8)

The proofs of these theorems are given in the Appendices.

APPENDIX |
The proof of Theorem 1 requires several auxiliary results:

LEMMA 1. Under the assumptions of Theorem 1, there exist positive
constants T, and T, such that the following inequality is true:

E[|x(1)—x(n)n<NTT‘{(1+'3T2)'~"4}, forall I>n  (9)

2

Proof. From (3)-(5), we obtain
El|x(1) — x(n)||

~

N

Ingl
&
S

(x(8), .oy x(s = 1), E(s)I

v

itz 1Mz 0
~
-3

/AN

! {82 +|D,(x(s), ..., x(s — ), é(s))|2}

2¢ -

e
try
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N -1

%N(l n)+= ,leZnElk (1), ooy X(1— 1))+ H(x(R), ..., X(m—1))|
+ i‘ Ig El,(x(5), s (5 1)) — Ky (3(1), oo x(1—1)]
. ﬁ "1 EI$2((5), v x(5 — 1)) — $2(x(n), o X(n = 1)

(;_ S)_(;+ R*+1)

+ Z{) E{lx(s) = x(n)]| + lx(s — 1) = x(m)|| + -

+ [x(s = r) = x(m)] + llx(n) — x(n — 1|

+ o A lx(m) —x(n—r)ll}

+ 2R, E{|x(s) — x(n)]| + [x(s — 1) — x(n)|

+ ot x(s—r)—x(n)]|

+lx(n)—x(n— D) + - +llx(n) —x(n—r)ll } }
(S+R*+1) 2/1 d 1(1+1)NR

SaN(l—n)—z— Z
2 +1
+%/11NRr(r )(1—)
" i(i+1)NR
+e2Ri, ¥ WA DNR oy nRTEED
i=1
8[ 1
+§ [(r+1) 4, +2RA(r+ 1)] Elix(s) — x(n)||
< NT —1}, forall I>n,
where - 2R
R
r_ySHRAD oNR (G + 2R
2 2 2
eNRr(r+1)(r+2) (A, + 2R%,)
+ >
6 2
_(r+ 1)(4, +2RA,)
2= 2 .

The last inequality follows from Lemma 2 in [1]. Q.ED.
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To formulate the second lemma, introduce a random variable

1 n+ o] 1
“e L

where J is positive real to be chosen below.

x(i), (10)

x(n)

LEMMA 2. Under the assumptions of Theorem 1, there exists a positive
real S, such that the following inequality is true:

E{“x_(n)~x(n)”}<5sl7 ne[nO’w)' (11)
Proof. From Lemma 1,
n+ [d/e]—1
E!Iﬂﬂ)-X(ﬂ)le ; E|lx(i) — x(n)]|

< 1 "‘”[‘SZ/C]“]NTl
\[5/5] T,

NT y
<7_1 {eeTz[o/e] -1 }

2

(1 +eTy) 1}

<6S,,
where S, = NT,e?°, Q.ED.

LEMMA 3. Let

Au(n+ 1) =c¢ed(u(n), ..., u(n —r)),

12
Av(n + 1) =eg(v(n), ..., v(n—r)) +e**&(n) + e*n(n), (12)

where u, v, £, 1€ R", u® = [u(ng), .., u(no—r)1" = [v(ny), .., v(no—r)]" =",
and E|¢,(n)) £8S,, Eln,(n)| <S5, for all ie {1,..,N}. Then there exists a
positive real F, such that

Ellu(n)—o(n)|| <eV*F {e Dm0 — 1} (13)
Proof. From (12), we obtain

El|lu(n) —v(n)|
<& Y Elf(u(s), o uls — ) — (0(s), s v(s — 1))
+82 Y EIE@] +6% L Eln(s)l

s=ng n=ng
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el i E{{lu(s) = v(s)[| + llu(s — 1) —v(s — 1)

s=ng

+ oo+ u(s—r)—v(s—r)|}

n—1 n—1
+8¥2 Y EJEs)) +e7 Y Eln(s))

<eh(r+1) Y Eluts)—o(s)]

s =np

1

n—1 n-
+e¥2 Y E[Es)| +7 Y Eln(s)l

s=ng s=ng

n—1
Sedy(r+1) ) Elu(s)—o(s)
+eN(e'28, + €"4S;)(n — ny).

By [1, Lemma 2] we find that

Elu(n) = o(n)]| <s'4F, e+ om0 1,

where F| = N/A,(r + 1)(e'*S, + S3). Q.ED.
Proof of Theorem 1. From (10),

n+fé/e]—1
Ax;(n+1)= o/l Z D,(x()), - x(—1), £(J))

=ed;(x(n), .., x(n—r))

1 n+(8/e]—-1

T Z Legi(x()), - X(j = 7))
—ed (x(n), ..., x(n—r))]
1 n+[6/e]1—1 ) )
A L U )
—&6,(x(j), ., x(j— )]
= &g, (x(n), .., x(n—r)) + &2 (n) + £y, (n), (14)
where
1 n+[8/e]1—1
£i= Y [9i(x(), s X = 1)) — Gi(x(n), o, x(n—r))],

e [5/e]

j=n

409/158/2-13
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0= s H L5y X ) D)
~ e (), o X )]
Then
[ et
B S gy L AGUat=1))

—$:(x(n), ... x(n—r))
/J~1 n+[dic] 1
<gatgey L EIGO) . x(i=r)

i=n

= $(x(n), .. x(n = 1))
,11 n+[o/e]—1 .
SiPrsey L BRG]

j=n

4+ o +“x(jgr)—x(n—r)|1}

/1“1 n+[8/e]—-1
{ Y (r+ 1) Elx(j)—x(n)]

<—~_—
“e'2[o/e]

r{r;—1)[5/E]+8NRr(r+lé(r+2)}

j=n

+eNR

A(r+1)

1/2
Ll 5S1+).1e NRr(r+1)
€

2
A &Y2NRr(r+1)(r + 2)[ /6]
* 6
Ar+1) . +/113”2N122r(r+ 1)<1 N (r-+-23)[£/5]>.

Let 6§ =¢'?, then
ElE;(m)] <55,
where S5=4,8,(r + 1)+ 4, &"2NRr(r + 1)((3 + (r + 2) £"?)/6).
From (14), we obtain the inequality

n+ [8/e]—1

Yo @A), s xUi— 1), E))

j=n

Eln(n)}?

RO
2

- 8¢,-(X(j), ey X(]-— r))]
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1 n+ [6/e]—1
= L B e xi =) E0))
- 8¢,~(X(j), ) X(]'— r))lz
1 n+[d/e]1—1

S<5 5 ’S.
85/2[5/8]2 jgn e S

Since 8 =¢!?
Eln(n)|*< 8.

Then,

2
L+ Elng(n)> 145

Eln;(n)I < ) ST =S,

where S;=(1+ .5)/2.
In order to represent (14) in a closed form, we rewrite it as

A%,(n+ 1) =eg;(x(n), ..., x(n—r)) + 72 (n) + ¥y, (n), (15)

where  &j(n) = (1/e'?)[¢,(x(n), ..., x(n — 1)) — $,(X(n), ..., X(n —r))] + &,(n).
Then,

EIZ1 < 13 EIf,(x(n), .. x(n —1))
— Bu(E (), oy S — 1) + EIE, ()
<33 E{x(n)— X(n)]
oo xln—r) = 5= )} + S
KA (r+1)S,+85,=8,.
Consider now a system of the form

Ay (n+1)=e¢;(y(n), .., y(n—r)),

y?=[yilho), .y i(no—r)17 = [x,(n0), . X, (o~ 1)1 = x7.

Since the conditions of Lemma 3 are met, we have

E{I1%(n) — y(n)]}} £4F, [t D) 1,
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Therefore,

E{||x(n)— y(m)ll} < E{lx(n) = x(n)| } + E{|%(n) — y(n)] }
< &3S, g UF, e e o )
=¢'F(1), for all ne[ng, ny+1/e],

where F(1)=¢"%S, + F,{e”"*1*—1}. Hence
P{x(n, x° ng) — y(n, x°% ng)l <e'®} =1 —¢'*F(z).
Let ¢ =¢'%, then

P{|ix(n, x°, ng) — y(n, x°% ny)ll <o} =1-—0F(t). Q.E.D.

AprPENDIX 11

Proof of Theorem 2. Without loss of generality, assume that the origin
is the equilibrium point of (6). Due to the global asymptotic stability of
{6), for any p > 0 there exists t >0, such that

| y(r)ll < u/2, for all nzny,+t/e.
Then, from the following inequality

E|x(n)ll < Elx(n) - p(m)ll + E[ y(n)l,
¥0=[p(no), s ¥(no—r)1" = [x(ng), .o X(mo—1)]" = x°

and the assumption that all trajectories of (1) are bounded a.s., when
n=ny+ Ny=ny+ t/e we have

Ellx{(ng + No)ll <& F(t) + || p(ng + No)|
< eF(t)+ p/2. (16)
Choose number ¢, such that, for all £ <g,,

e F(1) < /2.
Then we have
Ellx(nog+ No)l < p, No=1/e. (17)

Let { = x(x(ny), no + Ny). For each realization of trajectory y({, no + N + n),
the following inequality holds:

Ellx(L, ng+ No+n)l <e*F(z)+ [ y({, ng+ No+n)ll,  ne[0, t/e].
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Averaging this inequality over the distribution of { and taking into account
that E(E|x({, ng+ No+n) | {|}) = E||lx(x(ng), ng+ Ny + n)|l, we obtain

Ell(x(x(n,), n)|| <g+E||y(C, n)l,  nelno+ No, no+2N,].  (18)

As follows from (17), P{||{|| > u'*} < u'* Hence, taking into account that
all trajectories of system (1) are bounded a.s., we find that

Ely(, m <2+ gu'?,  nel[ng+ No, no+2N,],
where g is some constant. Thus from (18), we have
Ellx(x(no), m)|| < p + gu'?, ne [no+ Ny, no+2N,]. (19)
Moreover, since, by construction, E| y({, no+ 2Nyl < p/2, we find from
(18),
Ellx(x(ng), no+2N)|| < p. (20)
We now prove by induction that (19) holds for all ne [ng, o). Let
(19) hold on the interval ne[ny+ (I—1) Ny, ny+IN,]. Then, when
n=ny+INy, (20) is true, and consequently (19) holds on the interval

fno+ 1INy, ng+(I+1)Ny]. Thus(19) is valid for all ne [ny+ /g, o0). On
the other hand

Iy(e(no), Ml <w/2,  ne[ng+1/e, ).

Consequently, E|x(n, x° no) — y(n, x°, no)l| <3pu+ gu'?, ne[no+1/e, ).
Taking into account the inequality &'/*F(t) < u/2, we have

E||x(n, x°, ng) = y(n, x°, no)ll <3u+ gu'?,  ne[ng, ).
Let 6°=3u+ gu'?, then

P{|x(n, x° ng)— y(n, x% ng)| <8} =1-46. Q.ED.
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