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AESTRACT 

A MICROMECHANICAL model has been formulated for the post-cracking behavior of a brittle matrix 
composite reinforced with randomly distributed short fibers. This model incorporates the mechanics of 
pull-out of fibers which are inclined at an angle to the matrix crack plane and which undergo slip-weakening 
or slip-hardening during the pull-out process. In addition, the random location and orientation of libers 
are accounted for. Comparisons of model predictions of post-cracking tension-softening behavior with 
experimental data appear to support the validity of the model. The model is used to examine the effects of 
fiber length, snubbing friction coefficient and interfacial bond behavior on composite post-cracking tensile 
properties. The scaling of the bridging fracture toughening with material parameters is discussed. 
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NOMENCLATURE 

fiber cross-sectional area 
fiber diameter 
fiber elastic modulus 
snubbing friction coefficient 
composite fracture energy 
short embedded length of fiber 
critical fiber embedded length of pull-out 
fiber length 
force in fiber segment bridging across matrix crack 
local slippage on fiber-matrix interface 
fiber volume fraction 
distance of centroid of fiber from crack plane 
matrix crack opening 
orientation of fiber with respect to tensile loading direction 
fiber strength 
bond strength of fiber-matrix interface, can be made a function of J 
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INTRODUCTION 

IN QUASI-BRITTLE materials such as concrete and rock, and certain brittle matrix 
composites reinforced with short fibers or whiskers, the tensile behavior after peak 
strength may be represented by a tension-softening curve. This curve describes the 
decreasing traction versus crack-opening relationship and the area under it has been 
related to the material critical fracture energy release rate (RICE, 1968). Develop~nen t 
of the fracture process zone and hence the R-curve behavior have been shown to be 
controlled by the tension-softening curve (LI and LIANG, 1986). Further, the tension- 
softening curve has been related to structural properties such as modulus of rupture 
(MOR) values and shear strength of beams (HILLERBORG, I989 : WARD and Lr, 1990 ; 
Lr and WAIU~, 1990). 

In recent experimental studies, WANG Pf ul. (1990a. b) found that the tension- 

softening curve of cement mortar can be significantly enhanced by the inclusion of a 
small volume percentage of synthetic fibers. Different fiber types (aratnids. poly- 
ethylene, polypropylene) induce different failure mechanisms (WANG et ul.. 199Oc), 
leading to different shapes of the tension-softening curve. In composites with good 
fiber dispersion, the failure mechanism is controlled by fiber pull-out or rupture, 
depending on fiber geometry and interfacia1 bond strength. Such behavior is exhibited 
by low volume fraction reinforcement (< 2%) of Spectra 900 (an ultrastrength poly- 
ethylene fiber), polypropylene fibers, and steel fibers. 

There are two major motivations for the development of constitutive models relating 

the microstructural parameters to the mechanical behavior of fiber composites. One 

is to guide the optimization of material behavior by tailoring the types and forms of 

the constituent components, and the other is to predict the mechanical response of 

end products made of such materials. While pre-peak stress--strain behavior and 

associated mechanical properties of fiber composites (particularly those with con- 

tinuous aligned fiber reinforcement) have been extensively studied (e.g. Av~:.s~oN cl 

ul., 1971; RUIXANSKY et al., 1986; GOPALARATNAM and SHAH, 1987). the post-peak 

tension-softening behavior of fiber-reinforce~i composites has not been adequateIy 

investigated. However, the work of fracture due to bridging of discontinuous but 
aligned fibers in brittle matrix composites was studied by COTTRELL (I 964), C’OOP~K 
and KEI.LY (1970) and KELLY and MACMILLAN (1986), and that ofdiscontinuous and 
random fibers was studied by WETWERHOI.D (1989). In this paper, a statistical 
micromechanical model of the tension-softening behavior of short fiber-reinforced 
composites is constructed based on the random nature of fiber distribution and 
accounting for dominant features of the composite failure mechanisms. These features 
include fibers pulled out at an angle to the matrix crack plane as well as slip-weakening 
or hardening of the fiber interface during the pull-out process. The composite bridging 
toughness may be obtained from the area under the tension-softening curve. In the 
following the model assumptions are given first. Then development of the model is 
presented. Certain characteristics of predicted tension-softening curves and fracture 
energy are examined in the light of fiber length optimization. Finally, model-predicted 
tension-softening curves as a function of microstructural parameters are compared 
with experimental data from Spectra fiber-reinforced mortar. 
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Model assumptions 

The following assumptions are adopted : (1) the matrix crack is planar, (2) the 
matrix deformation is negligible during fiber pull-out, (3) the fibers have 3-D random 
distribution in location and orientation, (4) the fibers are straight with cylindrical 
geometry, (5) the fibers behave linear elastically, (6) the fibers rupture when their 
axial stress reaches the fiber strength a;, (7) the Poisson effect of the fiber on pull-out 
is neglected, (8) the fiber-matrix bond is frictional and the elastic bond strength is 
neglected. The frictional bond strength may exhibit slip-hardening or weakening 
behavior. In addition, the model assumes that the effect of fiber pull-out from matrix 
at an oblique angle can be characterized by a snubbing friction coefficient, f. These 
last two assumptions are based on recent experimental observations. Since this model 
only predicts the tensile stress vs crack separation (a-6) curve, no assumptions regard- 
ing matrix bulk properties are made. 

It should be noted that some of the above assumptions hold true only for certain 
fiber types, while others, at best, approximate the real behavior. For example, the 
model should not be used for fibers which undergo extensive yielding prior to fiber 
rupture, such as undrawn polypropylene fibers. Also, for some composites, the pres- 
ence of fibers lying at a high angle to the tensile loading axis may lead to crack plane 
deflection parallel to the fiber-matrix interface. These aspects are not accounted for 
in the present work. In addition, when the fiber stiffness is high and when large fiber 
volume fraction is used, the elasticity of the matrix material must be taken into 
account, even in the post-cracking stage, such as in shear lag models (see e.g. GOPA- 

LARATNAM and SHAH, 1987; GAO et al., 1988). However, as will become clear later, 
the modular nature of the model development does allow the flexibility of relaxing 
some of these assumptions if necessary. 

Bridging ,fihers 

Figure 1 shows a fiber of length Lr arbitrarily located with its centroid at a distance 
z from the matrix crack plane, and with an orientation angle 4 to the tensile loading 
axis. Only fibers with a positive embedded length 8, defined by 

FIG. 1. A fiber crossing a matrix crack. 
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FIG. 2. 3-D randomly orientated fibers with embedded length / have their fiber ends lying on the 
hemispherical surface. Also shown is the corresponding probability density function p(4). 
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(1) 

would cross the crack plane and provide the bridging action. This implies the crack 
interception condition 

2z 
yi ,< arccos . 

LC 
(2) 

The number of fibers bridging across a given matrix crack plane clearly depends 
on the distribution of z and C#I, For a uniform random distribution, the probability 
density function p(z) of the centroidal distance z is simply 

p(z) = g for 0 < z < L42. (3) 
r 

The statement of three-dimensional random orientation of fibers in the matrix is 
equivalent to saying that a fiber end has an equal likelihood of being located at any 
point on a hemisphere, as shown in Fig. 2. According to that figure, the probability 
density function, p(4): of the inclining angle # is given by 
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p(q5) = sin 4 for 0 Z$ 4 d 1r/2. (4) 

Thus, the number of fibers dN with orientation angle 4 to 4 + dqb and located at z 
to z + dz bridging across the crack may be calculated from 

dN = N&4) d# p(z) dz for 0 < # < arccos (22/L,) and 0 < z < Lr/2, (5) 

where N, is the total number of fibers in the matrix of volume A,Lr which contains 
fibers bridging the matrix crack plane of area A,. Thus, 

total fiber volume 
Nt = 

A,L,Vr A 

volume per fiber LIAr 
= 2; vr, (6) 

where Ar is the fiber cross-sectional area and l’r is the fiber volume fraction in the 
composite. 

Equation (5) already implicitly assumed that the fiber location z and the fiber angle 
4 are independent variables. In order to calculate the total force transmission across 
the matrix crack, it would be necessary to analyse the bridging force P carried by a 
single fiber with an embedded length e and fiber angle 4. It should be noted that the 
value of G is implied once z and d, are specified (see Eq. 1). Clearly, the fiber force 
first increases as the interfa~-debonded zone extends towards the embedded end, and 
then decreases as the fiber slips out in association with an increasing matrix crack 
width 6. Hence, for given fiber geometry and property, P = P(P, 4,s). 

The problem of fiber pull-out at (p = 0 is illustrated in Fig. 3(a). To include the 
possibility of fiber abrasion (WANG et al., 1988a) or interface smoothing (as may 
occur in strong fiber-weak matrix composite systems) we shall adopt the Wang-Li- 
Backer model of two-sided fiber pull-out (WANG ez al., 1988b). This model assumes 
a frictional bond at the fiber~matrix interface, neglecting any effect of an elastic bond. 

However, the frictional resistance is made to depend on the amount of slip so that 
either interface slip-weakening or hardening phenomenon can be incorporated. 

The solution procedure is illustrated in Fig. 4 for the case of slip-hardening frictional 
bond. In this case, the short embedded end will be completely pulled out, whereas the 
long embedded end may have had some slippage. Thus, the total crack opening 
6 = 6, +6, at the end of the ioading process may exceed the length of the short 
embedded end & , . 

The 6, and SZ may be regarded as load point displacement of loads P, and Pz 
directly applied to the ends of the two embedded lengths of fiber. In reality, the two 
fiber segments are connected and equilibrium enforces the condition that P, must 
always equal PI. This implies that, once the short fiber segment load PI reaches a 
maximum P,,,,,, the long fiber segment must also unload with partial retrieval of the 
fiber segment bridging the matrix crack back into the matrix, rather than following 
the complete direct pull-out curve indicated by the dashed line in Fig. 4. 

The result of this analysis is a P-d relationship which depends on fiber length Lf, 
diameter dr and elastic modulus Er, as well as on the embedded length /, or e,, and 
the slip-dependent frictional resistance r(s). WANG et al. (1988b) found that the model 
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FIG. 3. Two-sided pull out for a fiber with length L, and short embedded length /. and with end slippages 
s,(O) and sz(0), for fibers (a) aligned in the direction of the tensile loading axis and (b) oriented at an 

arbitrary angle I$ to the loading axis. In both cases, the axial force along the fiber length is shown. 

requires a slip-hardening z-s relationship in order to match data of certain synthetic 
fibers, while a slip-weakening r~-s relationship is required to match data from steel 
fibers. Figure 5(a,b) shows the experimentally determined P-6 curves for a synthetic 
(nylon) fiber and for a steel fiber pulled out from a cement matrix, and the cor- 
responding model r--s and predicted P-8 curves. The steel fiber pull-out data is from 
NAAMAN and SHAH (1976). 

The composite crack opening 6 may be divided into three contributions : 

6 = A, +Az+A,, (7) 

where A, = s,(O) +s2(0) is the slipping of the fiber ends, A2 is the (non-uniform) 
elastic stretching of the embedded length of the fiber, and A, is the elastic stretching 
of the slipped out length bridging across the crack. Because of the frictional slip 
resistance, the fiber axial force varies along the embedded fiber length from zero at 
the fiber end to a maximum at the matrix crack where the fiber exits. If the fiber 
stress here reaches the fiber strength, then fiber rupture will occur and the slippage 
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FIG. 4. Schematics of the modeling procedure by first envisioning the direct pull-out of each of the short 
and long embedded fiber segments and then combining them, based on compatibility and equilibrium 

considerations to calculate the P-d curve. 

process terminates. Naturally, that fiber will no longer contribute to the bridging stress 
in the composite. The fiber bridging force as a function of crack opening is illustrated 
schematically in Fig. 6, for fibers of different lengths at an inclining angle q5 = 0. 

For a fiber with the same embedded length L and with the same end-slippage distance 
(f(O)), but with a non-zero inclining angle d, (Fig. 3b), the bridging force will be 
increased. This so-called “snubbing effect” has been demonstrated with a set of 
experiments of angle pull-out of synthetic fibers embedded in a cement matrix (LI et 
al., 1990). Figure 7 summarizes test results of normalized load as a function of 
inclining angle, for nylon and polypropylene fibers. These experimental data suggest 
that the snubbing effect may be modeled as if the fiber were pulled around a friction 
pulley, so that the bridging force for angle pull-out (PI@) to that for (p = O(Pl,+,,,) 

will be related by : 

PI, = ef9 PI,,,), (8) 

where the snubbing friction coefhcient f is an interface material parameter which 
must be determined experimentally for each fiber/matrix combination. The snubbing 
friction coefficients for nylon and polypropylene in normal strength mortar have been 
determined to be 0.99 and 0.70 respectively (LI et al., 1990). These values have been 
used to compute the two exponential curves shown in Fig. 7, which show reasonable 
agreement with the experimental data. However, for high angle pull-out (c# > 60 
degrees), data scatter becomes significant due to sporadic matrix spalling. It should 
be noted that the distribution of the fiber axial force inside the matrix will still be the 
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FIG. 5. Force displacement relationship of single fiber pulled out from a cement matrix with test con- 
figurations shown. (a) Experimental data (4 sets) of nylon fibers fall in shaded area. Thick solid line is 
model prediction based on the slip-hardening curve shown in inset on left. (b) Experimental data for steel 
fiber is shown as dotted line. Solid line is model prediction based on the slip-hardening curve shown in 

insert on left. 

+ Increasing fiber length 

aking load 

Displacement 6 

FIG. 6. Fiber bridging force shown schematically as a function of crack opening displacement for the 
problem defined in Fig. 3(a) (4 = 0). Longer fib ers contribute to a rising energy absorption. However, if 
the force rises too high, causing fiber stress to reach fiber strength, rupture of fiber occurs (indicated by 

“X”), reducing the reinforcement effectiveness. 
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FIG. 7. Effect of inclining angle and snubbing friction on the fiber pull-out force. Averaged experimental 
data for nylon (square points) and polypropylene (circular points) are indicated. The normalized load is 
defined as the ratio of the maximum pull-out load to the embedded fiber length at arbitrary inclining angles 
4, normalized by the same ratio at C$ = 0. The curves are simulations based on the friction pulley model. 

See text for more details. 

same for fibers of the same embedded length, irrespective of their inclining angles C#I 
(Fig. 3b). 

During the loading phase (dP/da 3 0), the crack separation for inclined fibers can 
be calculated from that of C$ = 0 (as per Eq. 7) using superposition to account for the 
snubbing-induced tensile stress increment in the bridging fiber segment : 

where Ef is the fiber elastic modulus. During unloading after reaching the peak load, 
part of the elastic elongation of the longer fiber embedded segment is recovered. The 
amount of the recovery depends on the snubbing friction force. Since the recovery 
occurs only after the shorter fiber segment has begun to slip out (i.e. when s,(O) > 0), 
and the magnitude of this recovery is, in general, much smaller than the slippage 
distance, the recovery during unloading is neglected for simplicity. By so doing, 61, 
can always be determined from 61,=, for the same / from Eq. (9), without the need 
to calculate the pull-out response directly for each L and 4. Equations (8) and (9) 
provide the P-6 relation (for any 4) sought for. 

Composite tension-softening curve o,(6) 

To deduce the tension-softening curve for the composite, we may compute the 
traction transmitted across the matrix crack by integrating the force contributions 
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FIG. 8. Effect of interface bond type: model predicted tension-softening curves for composites with 
slip-hardening interfaces, represented by 7 = I .02 +0.2.~+0.2s’: slip-weakening interfaces, represented by 
t = 1.02-0.2s+O.Ols’; and constant strength interfaces, represented by 5 = 1.02 (z in MPa, s in mm). 
The dashed line is also for the constant strength case but assuming an averaged embedded length of pull- 
out instead of the present model formulation. See text for more details. Other parameters used in this 

calculation : d,. = 38 pm, L, = 12.7 mm, V, = I “h, Er = I 17 GPa, j = 0.7, 0,: = 2.6 GPa. 

from those fibers which are active in the bridging action. Thus, for each crack opening 
6, the composite stress cc may be obtained from : 

The constituent parameters needed for Eq. (10) are (1) fiber geometry-diameter 
df and length Lr, (2) fiber properties-elastic modulus Ef and fiber strength o;, (3) 
fiber volume fraction Vr, and (4) properties of fiber--matrix interface-bond strength 
z or slip-weakening/hardening law z--s, and snubbing friction coefficient.5 The fracture 
energy of the composite may be obtained by integration of (10) with respect to the 
crack opening. Equation (10) suggests that the o,(6) scales with fiber volume fraction, 
and inversely with fiber diameter (since P varies linearly with fiber diameter). 

PREDICTED TENSION-SOFTENING CURVES 

The predicted tension-softening curves based on Eq. (10) are shown in Fig. 8, 
for the cases of a constant bond strength, slip-hardening and slip-weakening. The 
composite with a slip-hardening interface shows good retention of strength with a 
moderate amount ofcrack opening, prior to a more-or-less linear drop-off. In contrast, 
the composite with constant bond strength and that with slip-weakening show a rapid 
decay in strength with crack opening. This aspect of strength retention is important in 
considering composite post-cracking ductility. The critical opening when the tensile 
load-bearing capacity falls to zero is larger for the case of slip-hardening than for the 
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other cases because some fibers can be pulled out from both sides. Thus, for composites 
with slip-hardening interfaces, the critical opening exceeds half the fiber length. 

The tension-softening curve for a composite with fiber-matrix interface of constant 
bond strength may be expected to be approximately linear, indicated by the dashed 
line in Fig. 8, if it is assumed that all the fibers are pulled out with an expected 
embedment length of L,/4 (e.g. MORTON, 1979; GOPALARATNAM and SHAH, 1987). In 
a randomly distributed fiber composite, the fibers are pulled out with varying amount 
of embedment length so that those with short embedment length will stop contributing 
at small crack openings and the composite load has to be assumed by the remaining 
bridging fibers. This results in the predicted nonlinear, decaying curve, as was first 
suggested qualitatively by ARGON et al. (1979). For the specific case shown in Fig. 8. 
the fiber length is relatively short so that only about 3% of fibers are broken (see 
discussion to follow). For composites with longer fibers, more fibers are expected to 
be broken and the deviation of the tension-softening curve from a linear drop will be 
even more significant. 

EFFECT OF FIBER LENGTH ON THE POST-PEAK TENSILE PROPERTIES 

For an aligned fiber-reinforced composite system, the optimal fiber length should 
be close to, but not more than, twice the critical fiber embedded length L,, defined as 

so as to ensure that all fibers are pulled out with the maximum amount of frictional 
work and yet do not rupture. For the case of 3-D random distribution where the 
snubbing effect induces greater load on fibers pulled out at an angle, the optimal fiber 
length may be expected to be less than 2L,, depending on the magnitude of j’Y Figure 
9 shows the calculated fracture energy by integrating cc in (10) with respect to the 
crack opening 6 and expressed as a function of the normalized fiber length for the 
two cases of f = 0.7 and 1 .O, and for a fixed fiber volume fraction of 1%. This 
calculation assumes a constant frictional bond strength z. The percentages of ruptured 
fibers corresponding to each fiber length are also shown. As expected, fibers are 
completely pulled out when their lengths are short. As the fiber length approaches L,, 
the amount of ruptured fibers increases and eventually reaches 2&27% when the fiber 
length is twice L,. Fiber rupture reduces the number of contributing fibers and their 
corresponding frictional work to the composite fracture energy. On the other hand, 
increased length enhances the bridging forces (see Fig. 6) and hence the composite 
fracture energy. These competing effects result in a maximum in the composite fracture 
energy G. For f = 0.7, G peaks at Lf z 1.4L,, whereas for f = 1.0, G peaks at 
Lf z 1.2L,. 

Because of fiber rupture, the composite tension-softening behavior can be sub- 
stantially altered. Figure 10 shows that a significant drop in load may occur for small 
crack opening in the case where the fiber length approaches or exceeds twice the 
critical length. This rapid load drop explains the reduction in G, even though the 
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FIG. 9. Model-predicted fracture energy and percentage of fiber broken as a function of fiber length for 
(a) ,/ = I .O and (b) f = 0.7. Other parameters used in this calculation : d, = 38 pm, L, = 12.7 mm, V, = I “/I. 

Ef = 117 GPa. 0: = 2.6 Gfi, T = 2 MPa. 

initial post-crack strength is higher than those composites with shorter fibers, despite 
the fact that complete fiber pull-out always occurs at larger crack opening when the 
fibers are longer. 

We now turn our attention to a systematic study of the effect of fiber length on the 
fracture energy associated with fiber bridging. This effect was studied by COTTRIM 
(1964) and COOPER and KELLY (1970), for the case of aligned, rigid and discontinuous 
fibers. They showed that when the fiber length is less than twice the critical embedded 
length, all fibers will be pulled out and the fracture energy will increase as the square 
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Crack width/Lx 

FIG. IO. Effect of fiber length : model-predicted tension-softening curves for composites with different fiber 
length but the same fiber volume fraction and diameter. This calculation is done for di = 38 pm ; Vr = 19/o, 

Er = 117 GPa, .f = 1.0, gf = 2.6 CPa, z = 2 MPa. 

of the fiber length. However, when the fiber length exceeds twice the critical embedded 
length, some fibers will be ruptured and do not contribute to the work of fracture, 
such that the fracture energy will decrease as the inverse of the fiber length. 

To facilitate the formulation of this problem in the case of random fibers which 
pull out with exit forces controlled by a snubbing friction, we have adopted in this 
section (specifically in reIation to Fig. 11) the same assumption of fiber rigidity (in 
axial elongation but flexible in bending) and a constant (slip-independent) interfacial 
bond strength in the calculation of the composite bridging fracture energy. In this 
case, the energy absorption for a single fiber of embedded length L pulled out at an 
angle C#J can be shown to be equal to 

G, = ; dftb”ef4. (12) 

Hence, analogous to the derivation of Eq. (lo), the composite fracture energy could 
be computed from 

Vf Lf! 2 J il 
aicms WLl) G = 2, z=Q Gs@-xL 4, #> W.&z> Lr> L ~~~~t#) drb (13) 

l#J=O 

where U(g) is the step function such that 

U(9) = 
i 

1 g>o 

0 gd0’ 
04) 

g is defined as follows : 

g=z-(+-L,e r4)cos~ (15) 

and p(z) and p(4) are given in (3) and (4) for a uniformly random distribution of 
fiber location and orientation. The step function U has been included in the integrand 
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in (13) in order to discount those fibers which will be broken instead of pull-out 
(equivalent to stating that y in (I 5) becomes negative). Equation (I 3) can be nor- 
malized to the following form : 

where 

c? = 2L;F(&. ,f ), (16) 

(17) 

(18) 

and the non-dimensional function F is 

It can be shown that for aligned fiber systems, (16) reduces to (by setting ~(4) to 
be the Dirac delta function) the simple expressions 

(4 0.8 

- aligned 
- to 

2 3 4 5 

Normalized Fiber Length 

FIG. I I. Dependence of normalized fracture energy on normalized fiber length and snubbing friction. (a) 
Comparison between aligned case and random but no snubbing friction case. (b) Effect of snubbing friction 

coefficient on fracture energy. 
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FIG. 11. Continued. 

6 

which were discussed by COTTRELL (1964) and COOPER and KELLY (1970). Equation 
(16) generalizes the aligned cases to the random distribution case. The limiting case 
of no snubbing may be obtained by setting f = 0, corresponding to a recent result of 
a study by WETHERHOLD (1989). 

Figure 11 shows the normalized fracture energy G as a function of z,, for a range 
of snubbing friction coefficients. The randomness of the fiber clearly reduces the 
fracture energy from that of the aligned case (Fig. 1 la). However, for very short fibers 
(Lf < L,), the fracture energy is slightly improved by the snubbing effect. For longer 
fibers, the snubbing effect further reduces the fracture energy by causing a larger 
amount of fiber rupture, and causes the maximum fracture energy peaks to shift 
towards the shorter fiber lengths (Fig. 11 b). Equations (16) and (17) reveal that for 
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a given snubbing friction coefficient and fiber length, the fracture energy G is directly 
proportional to Vf, z, and Lz and inversely proportional to the fiber diameter. This 
shows the importance of ensuring large values of L, for fracture energy optimization. 
In addition, comparison with the specific cases shown in Fig. 9 suggest that f 16) gives 
G within 10% error, despite the simplifying assunlptions of fiber rigidity and the 
ignoring of the pre-peak (frictional debonding) energy absorption in the fiber pull- 
out process in arriving at (12) and ( 16). 

COMPARISONS OF MODEL PREDICTIONS WITH EXP~R[MENTAL OBSERVATI~~NS 

The model parameters used for predicting the tension-softening curve of two mixes 
of Spectra 900 fiber-reinforced mortar are given in Table 1. Both the model-predicted 
curve and the experimentally determined curve based on specially devised uniaxial 
testing technique (WANG t’r al., 1990a, b) are presented in Fig. 12. In Mix SI the 
matrix material is a normal strength mortar with tensile strength of ~~pproximate~y 
2.5 MPa. From SEM studies of the fracture surface, a large amount of surface spa11 
was observed, while the Spectra fibers do not appear to be abraded (WANG et ul., 

Parameters Mix SI Mix SH 

4 (pm) 
4 (mm) 
Er (GPaf 
of! (GPa) 
K 1%) 
z (MPa) 
f 

38 38 
12.7 6.3 

130 120 
2.6 2.6 
I 0.6 
I .02 I .02 
0.7 0.7 

i 
Crack Width Cm& 

6 

FK;. 12. Comparisons o~mode~-predicted tension-softening curves for two mixes of Spectra ember-rein~orccd 
mortar. Mix Sf uses a normal strength matrix. Mix SW uses a high strength matrix. Other paramctcrs can 

be found in Table I. 
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1990~). In contrast, GREEN (1989) observed no spalling in the high strength mortar 
matrix Mix SH with a tensile strength of approximately 3.4 MPa. Although abrasion 

of Spectra 900 fibers has been observed under the SEM (GREEN, 1989) in a similar 
mix, we have used the same constant bond strength as for Mix Sl on account of the 
short length of the fiber used in the Mix SH. The experimental testing technique and 
data on bond strength of various synthetic fibers can be found in WANG et al. (1987, 
1988a) and LX et al. (1990). For the snubbing friction coefficient f, angle pull-out data 
for the olefin (polypropylene) from a cement matrix was used, although a direct 
measurement off of Spectra fiber embedded in both types of mortar matrix would 
have been preferred. 

The comparisons shown in Fig. 12 suggest that the model predictions are reasonable, 
with the exception of the initial part of the curve for Mix SI, which may reflect matrix 
spalling effects not accounted for in the model. The bridging fracture energy, which is 
simply the area under the tension-softening curves, also appears to be well predicted. 
The agreement between experimental results and theoretical predictions, however, 
should be interpreted with caution, due to model assumptions mentioned earlier and 
the use of a snubbing coefficient measured from a pull-out test of polypropylene rather 
than polyethylene. 

FURTHER DIXXJSSION 

It is a general notion that an aligned fiber composite system loaded in the direction 
of alignment is more efficient in terms of post-cracking tensile load capacity than a 
random fiber composite system, because of an expected larger amount of fiber crossing 
the matrix crack. However, it appears possible that this loss of reinforcement efficiency 
in a randomly distributed fiber composite could be partially made up by means of the 
snubbing effect described in this paper. In terms of composite fracture energy due to 
fiber bridging, the snubbing effect contributes positively only in the case of very short 
fibers (typically Lr < L,). This implies that increasing L, in random fiber composites 
(for all j) becomes even more important than for aligned fiber composites for which 
maximum fracture energy can be achieved by ensuring Lf z 2L,. 

The snubbing effect in synthetic fiber-reinforced mortar composites is analogous to 
the plastic bending effect in steel fiber-reinforced mortar in which fibers must bend 
and deform plastically as they exit at an angle to the matrix crack. However, there is 
a distinctive difference between this bending effect and the snubbing effect regarding 
their contribution to the composite strength : nd fracture energy. Because plastic 
bending can be considered a property of the fiber yield strength only and is independent 
of the interface strength, this bending effect contributes additively to composite 
strength and fracture energy in addition to the interface frictional effect. In contrast, 
the snubbing friction effect depends directly on the interface property and must 
contribute multiplicatively to the composite properties, as implied by Eqs (8) and 
(I 0). This difference is particularly interesting in light of the fiber abrasion contribution 
to the interface slip-hardening phenomenon found in some synthetic fibers/mortar 
matrix systems ~WA~~ et al., 1988b). These aspects have yet to be fully exploited in 
composite design. 



This paper presents a theoretical model of post-peak behavior of short fiber- 
reinforced brittle matrix composites with particular attention to the tension-softening 
behavior of synthetic fiber-reinforced mortars, for which comparisons were made 
between experimental data and theoretical predictions. The model accounts for several 
physical processes related to the material structure and which appear to govern the 
tensile properties in such composites. These physical processes include the effect of 
fiber abrasion during fiber pull-out and result in a slip-hardening interfacial bond 
strength, as well as a snubbing effect exhibited during fiber withdrawal inclined to the 
matrix crack. The randomness of the fiber location and orientation is accounted for 
statistically. 

It is found that the composite post-crack tension-softening curve and fracture 
energy are strongly influenced by the snubbing efrect of inclined fiber pull-out. The 
composite fracture energy first increases with fiber length then decreases due to fiber 
rupture. The maximum fracture energy (peaks in Fig. I I b) tends to shift from Lf -= 2L, 
to Lf = L, as ,f’ increases from 0 to 1. The amount of fiber rupture depends on the 
bond strength, fiber length and on the snubbing coefficient. While predictions made 
by the present composite model are encouraging, this model must be applied with 

care for material systems for which the model assumptions are grossly violated 
such as in the case where fiber dispersion is inadeyuate. However, the systematic 
formulation of the probiem should allow flexibility in relaxing certain restrictive 
assumptions so that the model may be expected to have broader implications other 
than those discussed in this paper. 
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