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Abstract--A linear perturbation method is used to examine the stability of a unidirectional 
solidification problem in which a liquid, initially at the melting temperature, becomes solidified by 
heat transfer across a pressure-dependent thermal contact resistance to a plane mold. The contact 
pressure will be influenced by thermal distortion in response to the instantaneous temperature field 
in the solidified shell. The heat transfer and thermal stress problems are therefore coupled through 
the boundary conditions. 

The temperature and stress fields are assumed to consist of a unidirectional component and a 
small spatially-sinusoidal perturbation which can vary with time. Analysis of the thermoelastic 
problem for the solidified shell leads to an ordinary differential equation relating the perturbation in 
heat flux at the mold/casting interface and the corresponding perturbation in contact pressure. A 
second equation relating the same two variables is obtained by linear perturbation of the relation for 
heat conduction across the thermal contact resistance. These are then reduced to a single equation 
which is solved numerically. The results show that a small initial perturbation will grow substan- 
tially during the solidification process if the thermal contact resistance is very sensitive to pressure. 

1. I N T R O D U C T I O N  

During the casting process, an initially liquid mass of material is caused to solidify by 
reducing its temperature below the melting point by heat transfer from its surfaces, which 
are in contact with a surrounding mold. There will be some thermal contact resistance at the 
mold/solid interface, since the surfaces are rough on the microscopic scale and generally 
carry adherent contaminant and oxide films. This thermal contact resistance has formed the 
subject of many investigations, both experimental [1, 2] and theoretical [3, 4] and it is 
generally agreed that it is very sensitive to contact pressure, principally because, being 
rough, the surfaces make contact only at the peaks of microscopic asperities and the number 
and size of these "actual contact areas" increases with load [5]. 

Initially, the contact pressure at the mold/casting interface will be determined by the 
hydrostatic pressure in the liquid, but as solidification proceeds, the temperature gradient 
through the solidified shell will induce thermoelastic distortion and hence influence the 
contact pressure. Ho and Pehlke [6, 7] deduced values of thermal contact conductance 
from temperature measurements during solidification and found that the conductance falls 
during the process. This effect is most probably attributable to shrinkage of the casting, 
resulting in a reduced contact pressure at the casting mold interface. If the initial hydrostatic 
pressure is insufficiently high, an air gap may develop at this interface, causing a substantial 
reduction in interface conductance I-6, 8]. 

The heat transfer and thermal stress problems are therefore coupled through the 
boundary conditions. This coupled process is potentially unstable and is cited by Richmond 
and Huang [8] as a possible explanation for the long-wavelength perturbations which are 
sometimes observed in the nominally planar solidification front in unidirectional solidi- 
fication [9, 10]. Such perturbations are undesirable in the manufacturing process since the 
associated non-uniform thermal fields can cause cracks to develop during solidification 
[11]. 

Richmond et al. 1-12] recently developed an idealized analysis of this problem, in which a 
constant heat flux across the interface is taken to have a small prescribed spatially- 
sinusoidal perturbation. They found that the resulting thermal distortion increased the 
contact pressure in the regions where the heat flux is greatest. This indicates that the 
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FIG. 1. Geometry of the system. 

coupled problem has positive feedback, but it is not a conclusive demonstration of the 
plausibility of the proposed mechanism, since not all positive feedback systems are unstable. 

In the present paper, we shall develop a linear perturbation solution of the coupled 
problem of Fig. 1, in which the heat flux at the mold/casting interface, y = 0, is determined 
by a pressure-dependent contact resistance. In particular, we shall demonstrate that a range 
of long-wavelength perturbations are unstable if the contact resistance is sufficiently 
pressure-sensitive. We anticipate that those wavelengths with the greatest growth rate will 
dominate the behavior of the system if the initial perturbation is very small and spatially 
random. The analysis involves the solution of a heat-conduction problem with phase 
change, the determination of the instantaneous thermoelastic stress field associated with the 
resulting temperature field, and the coupling of these two calculations by perturbation of 
the heat flow across a pressure-dependent thermal contact resistance. Before formulating 
the problem, we first introduce some general concepts which will be needed in the solution 
of the thermoelastic problem. 

2. THE D E V E L O P M E N T  OF R E S I D U A L  STRESS 

The determination of the stress field is complicated by the fact that material is continually 
being solidified while the solid is in a deformed state, so that the final cast product exhibits 
residual stress, even after the temperature has been reduced to zero. The simplest constitu- 
tive model for the process assumes that the material behaves elastically after solidification. 
This assumption is clearly very idealized, particularly in view of the fact that the yield 
strength of most materials falls rapidly when the temperature approaches the melting point, 
but it is adopted in the present paper in order to expose qualitative features of the problem 
in the simplest form. However, we might note that the newly-solidified material is deposited 
in a state of hydrostatic compression and will only gradually deviate from this condition at 
any given point as solidification proceeds. It therefore follows that the material nearest the 
melting temperature--i.e, that near to the melt/solid boundary--will experience compara- 
tively little shearing stress. 

The thermoelastic solution of the solidification problem is conveniently formalized by 
writing 

a = a p + a H (1) 

where a p represents a suitable particular thermoelastic solution corresponding to the 
temperature distribution, but without regard to the boundary conditions, and aa is a 
solution of the "homogeneous" problem with no thermal strains which introduces addi- 
tional degrees of freedom to enable us to satisfy the mechanical boundary conditions. 

The particular solution can be represented in terms of a thermoelastic displacement 
potential q~ (see [13]) where 

E~ 
V 2 ~b = - -  T, (2) 

1 - - v  

T describes the temperature field, and E, ~, v are the Young's modulus, coefficient of thermal 
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expansion and Poisson's ratio of the material, respectively. We assume that all the material 
constants are independent of temperature. The stress and displacement components can 
then be expressed in terms of ~b using the relations 1-131 

~24~ ~2~ 
P 

tT xx = 8y2 ~Z 2 

P ~2d) 

cr,~, - 8 x S y  (3) 

~2~D d 2 ~  p 
O'yy = 8X 2 8Z 2 

E _ u p  = 8__~ 

(1 + v) ' 8y " 

The homogeneous solution can be represented by an Airy stress function, O, where 

82(I) 8 2 0  8 2 0  
• n _ _  . n ( 4 )  

trxltx = 8 y 2 ,  f ix ,  8 x 8 y '  o'yy = 8X 2 . 

This formulation ensures that the resulting stress field satisfies the equilibrium equations. 
During the process, material is continually being solidified while the solid is in a deformed 

state~ it therefore follows that there is no convenient initial condition to describe the 
displacement field and hence the strains. The strains are therefore not required to satisfy the 
compatibility equation and hence • does not have to be biharmonic. However, since no 
inelastic strains can occur at any point after it has solidified, we conclude that the 
incompatible strains must be independent of time and hence 

~ V40 = 0. (5) 

The general solution of Eqn (5) can be decomposed into two parts, i.e. • = • 1 + 02, 
where 

801 
- 0; WO2 = 0. (6) 

8t 

In physical terms, we can then interpret • 1 as representing the residual stress, i.e. the stress 
which remains when the fully-solidified casting has been cooled to a uniform temperature 
and has traction-free boundaries (which is time-independent but not necessarily bihar- 
monic) and • 2 as the instantaneous compatible response of the solid to the changing 
temperature field. * 

An additional condition, analogous to a flow rule, is needed to determine the function 01 . 
This is obtained from the assumption that there is no discontinuous change in the stress 
state of a particle as it passes from the liquid to the solid state. It therefore follows that the 
newly-solidified material is instantaneously in a state of hydrostatic compression [14]. 

3. F O R M U L A T I O N  O F  THE P R O B L E M  

We now return to the problem of Fig. 1. To develop a fully-coupled solution, we adopt 
the following procedure. First, we investigate the temperature field (Section 3.1) and the 
stress field (Section 3.2) due to a prescribed sinusoidal perturbation in the heat flux at the 
casting/mold interface• In particular, we determine the relation between the prescribed heat 
flux and the perturbation in contact pressure at the casting/mold interface. Richmond's 
solution 1-12] is shown to be a special case of this relation in Section 3.3. Then, in 
Section 3.4, we obtain a second relation between the heat flux at the interface and the 

t The decomposition of a general function satisfying Eqn (5) into O~, • 2 is not unique since an arbitrary time- 
independent biharmonic function can be subsumed under either part. 
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contact pressure by perturbing the relation for the heat flux across a pressure-dependent 
contact resistance. This leads to a pair of coupled ordinary differential equations, whose 
solution is discussed in Section 4. 

3.1. The heat conduction problem 
The temperature of the solid T(x, y, t) must satisfy the heat conduction equation: 

1 ~3T 
V 2 T = - - -  

k 0t 

and the boundary conditions 

(7) 

T(x,  s, t) = T.  (8) 

os 
K (x, s, t) = L p N ( x ,  t) (9) 

K ~--~(x, O, t) = Q(x, t) (10) 

where y = s(x, t) defines the instantaneous position of the solid/melt boundary and we 
assume that the thermal diffusivity k, conductivity K and density p of the solid phase are 
constant and independent of temperature. Note that L is the latent heat of fusion of the 
material. 

Equation (8) states that there must be continuity of temperature a t  the solid/melt 
interface, while (9) defines an energy balance between the heat conducted away from the 
moving interface into the solid and the latent heat released during solidification. The heat 
flux at the casting/mold interface is prescribed by (10). 

We consider the case in which the prescribed heat flux is of the form 

Q(x, t) = Qo(t) + Ql(t)cos(mx) 
(11) 

Qo(t) ~> Ql(t) 

where the second term defines a small sinusoidal perturbation on the uniform cooling rate, 
Qo(t). Since Ql(t) ~ Qo(t), we anticipate a corresponding small sinusoidal perturbation in 
the thickness of the solidified layer, i.e. 

s(x, t) = So(t) + sl(t)cos(mx) 
(12) 

So(t) >> sl(t). 

We also assume that the amplitude of this perturbation is small in comparison with its 
wavelength (i.e. slm ~ 1), in which case the slope of the moving front ~s/Sx ,~ 1. It then 
follows that the heat flux in the x-direction is negligible to first order. Finally, to simplify the 
analysis, we assume that the Stefan number e ,~ 1 1-15]. This is equivalent to the statement 
that the thermal capacity of the material is small in comparison with the latent heat. It then 
follows that Eqn (7) approximates Laplace's equation and in view of the condition, 
Os/Sx ,~ 1, that the temperature profile in the solid is linear in y. Using (8), (10), we then have 

T(x, y, t) =Tm + ~ ( Y  - s). (13) 

Substituting Eqn (13) into (9) we have 

Os(x, t) = Q(x, t) (14) 
~t pL 

and hence from (11), (12), (14), 

Qo(t) = Lpgo(t); Q,(t) = Lp~,(t) (15) 

where (') denotes differentiation with respect to time t. 
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Substituting (11), (12) into (13), we have 

T(x,y ,  t) = T~ + [Qo(t) + Ql( t )cos(mx)]  K [y - So(t) - s l ( t )cos(mx)] .  (16) 

Separating periodic and uniform terms, dropping the second-order term in the small 
quantities, Q1 (t), s~(t), and using (15), we can express the temperature field in the solid in 
the form 

where 
T(x,  y, t) = To(Y, t) + Tx(y, t )cos(mx)  (17) 

where 
Po(t) = " ayyo(0, t); Pl( t )cos (mx)  = - ayyt(x, O, t) 

Po(t) ~ Px(t). 

3.2.1. The zeroth-order solution. We first consider the zeroth-order field, corresponding 
to the temperature field To(y, t) defined by Eqn (18). An appropriate displacement potential 
satisfying (2) is 

dPo = 1-~--vvECt T~ Lp~o(t)~ So(t ) y2 + 6K (26) 

from which Eqns (3) define the stress components 

a ~ o =  1--~v --Tin+ [So(t)--y]  (27) 

P = 0 ;  v = 0 .  (28) O'xy 0 O'yy 0 

To complete the solution, we must superpose a homogeneous stress field and assign the 
arbitrary constants to satisfy the boundary conditions (20)-(22). It is easily verified that this 

(24) 

(25) 

To(Y, t) = Tm + ~ [ - Y  - So(t)] (18) 

- Lp 
Tl(y,  t) = ~ {~o(t)sl(t)  + ~l(t)[So(t) - y ] }  (19) 

T~(y, t) ~. To(y, t) - To(O, t). 

3.2. Determination o f  the stress field 
We now determine the stress field, using the technique outlined in Section 2 above. For 

this unidirectional solidification problem, the mechanical boundary conditions are 

a x x = a , = - P ,  axy=0;  y = s ( t )  (20) 

a~y=0 Vt; y = 0 ,  (21) 

t iy=0 Vt; y = 0 ,  (22) 

where (20) indicates that the stress state at the solid/liquid interface is one of hydrostatic 
compression (see Section 2) and (21), (22) define frictionless contact conditions at the 
casting/mold interface. Notice that condition (22) can only be stated in terms of a time 
derivative since there is no reference state for the displacement. 

In view of the form of the temperature field (17), we anticipate a stress field of the form 

a(x,  y, t) = ao(y, t) + a l (x ,  y, t) (23) 

where ao(y, t) >> at(x, y, t) and at(x, y, t) is a small perturbation on the stress field ao(y, t) 
of the unidirectional or zeroth-order problem. 

In particular, we anticipate that the contact pressure at the casting/mold interface, 
P(x ,  t ) [  ~ - a , (x ,  0, t)], will take the form 

P(x, t) = Po(t) + P t ( t ) cos (mx)  
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is achieved by the uniform biaxial field 

r~ E~Tm H = 0; a 
axxO -- 1 - v p; axyo ayyO = - p (29) 

so that the complete zeroth-order solution is 

E~tLpso( t ) r . . 
a~xo(Y, t) = -- p + -(i ~ v - ~  LSott) - y] (30) 

%to(Y, t) = -- p; tr~yo(y, t) = 0. (31) 

In particular, we have Po(t) = p from (25), (31). 

3.2.2. Thefirst-order solution. We now consider the thermoelastic problem corresponding 
to the temperature field T1 (y, t)cos(rex) [see Eqns (19), (21)]. A suitable particular solution 
can be obtained by assuming a potential in the form q~l = O(y)cos(mx) and using (2) to 
determine the function O(Y), with the result 

~b 1 = ~ In( t )  - gl( t )y]  cos(mx) (32) 

where E~Lp 
A = (33) 

( 1  - v)K 

n( t )  = go(t)s~(t) + g~(t)So(t ). (34) 

The corresponding stress components from (3), (32)-(34) are 

aP~l = 0 (35) 

P = A[B(t )  - gl(t)Y] cos(mx) (36) O'yy 1 

p A S l ( t )  
trxy 1 - sin(rex). (37) 

m 

Following Section 2, wc represent the homogeneous solution of the first-order problem in 
terms of an Airy stress function tI). In view of Eqns (5), (6), • will involve four linearly- 
independent biharmonic functions of the spatial coordinates with time-dependent coeffic- 
ients and one time-independent function. The appropriate form is 

q) -- {[a l ( t )  + a2(t)y] cos(my) + [a3(t) + a4(t)y ] sinh(my) + f ( y ) }  cos(mx) (38) 

in which the time-dependent coefficients a l ( t  ), a2(t), aa(t ), a4(t), and time-independent 
function f ( y )  (which corresponds to the residual stress) are to be determined from the 
mechanical boundary conditions corresponding to the first-order problem. 

Using Eqns (1), (4), (35)-(37), (38), we can construct the complete stress field of the first- 
order problem in the form 

trxxl(x, y, t) = al( t  ) + aa(t)y + cosh(my) 
m 

[ 1 , , + a3(t) + a4(t)Y + m sinh(my) + m2---~y2;m costmx) (39) 

Crx, l(x,  y, t ) =  ~Agl ( t )  [ a , ( t ) ]  m 3 + al(t)  + a2(t)Y + m sinh(my) 

+ a3(t) + a4(t)y + a2(t) cosh(my) + -- m 2sin(mx) (40) 
m m 

(x, y, t) = f ~ [B(t)  - gl ( t)y] - l-a 1 (t) + a2(t) y]  cosh(my) O'yy 1 

- [-aa(t) + a4(t)y] sinh(my) - f ( y )  ~ m 2 cos(rex). (41) 
) 
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As explained in Section 2 above, the strains due to these stress components are not 
required to be compatible, since there is no initial reference state, but the strain rates--  
obtained by substituting (39)-(41) into the thermoelastic constitutive relations and differ- 
entiating with respect to t ime--are compatible and can therefore be expressed as displace- 
ment derivatives and integrated to give the velocity components. 

In particular, we obtain 

- E  + Y, ~ - - ~ - -  ~Ag~(t) [ 1 v)tirt(x, t) = + tit(t) + t i 2 ( t )y -  (1 - 2v)ti4(t)m sinh(my) 
(1 

+[d3(t)+fi4( t )y-(1-2v) f i2( t ) lc°sh(my)}mc°s(mX)'m (42) 

We now consider the boundary conditions corresponding to the first-order problem. 
Since the perturbation on the stress field is small, we can expand the stress field in the 
vicinity of the mean solid/melt interface position, y = So(t), in the form of a Taylor series, in 
which case the first boundary condition in (20) can be written as 

&rxxo(S o, t) d2axxo(So, t) s2(t)cos2(mx) 
axxo(S o, t) + 8y st(t)c°s(mx) -~ t~y 2 2! ~- " " " 

[ &rxx'(x's°'t) s ' ( t ) c ° s ( m x ) + " ' ]  = - p "  (43) + a~t(X, So, t) + ~y 

Separating periodic and uniform terms, dropping second- and higher-order and product 
terms in the small quantities, axxl, s l, and using Eqn (30), we obtain the boundary condition 
for ax~ t at y = So(t ), i.e. 

a~l (x, So(t), t) = A~o(t)s 1 (t) cos(rex). (44) 

Applying the same procedure to the remaining boundary conditions in (20), we obtain 

trxrl(X, So(t ), t) = 0; ayyx(x, So(t), t) = 0. (45) 

Also from conditions (21), (22), we have 

trxrl(x, 0, t) = 0; tiyl(x, 0, t) = 0. (46) 

Applying the boundary conditions (46), using (40), (42), we can determine the time 
derivatives of the time-dependent coefficients, ~J2(t) and tis(t ), i.e. 

- A~' l ( t  ) 
ti2(t ) = 0; tia(t ) = mS (47) 

We can therefore write 
- A ~ a ( t  ) 

a2(t) = 0; as ( t )  = mS (48) 

without loss of generality, since constants of integration will lead to time-independent terms 
in • which can be subsumed underf (y) .  

Substituting for the stress components from Eqns (39)-(41) into the remaining boundary 
conditions (44), (45), we obtain the equations 

ax(t)cosh(mso(t))+a4(t)[2cosh(mso(t))+So(t)sinh(mso(t))] 

1 _ ~ [  sinh(mso(t)) 1 + -~f"(So(t)  ) = ~o(t)sl(t) + ~l(t) (49) 
m 

al(t)sinh(mso(t))+a4(t)[lsinh(mso(t))+So(t)cosh(mso(t)) 1 

1 - A~t(t) [1 - cosh(mso(t)) ] (50) + --f'(s°(t))m = m 3 



952 NAI-YI LI and J. R. BARBER 

a I (t) cosh (mso(t)) + a4(t)So(t) sinh(mso(t)) + f (so( t ) )  

[ sinh(mso(t)) ] 
= A io( t )s l ( t )  + ix(t  ) (51) 

m 2 m 

where we have used (48) to eliminate a2(t), a3(t). These three equations must be satisfied 
for all values of t and hence we can use them to eliminate ax(t), a4(t). Defining 
w = tanh(mso(t)), we obtain 

1 
[mso(t)w 2 - w - mso(t)] f"(So(t))  + I f ' ( so( t ) )  

2m 2 m 

1 
2[mso(t)w2 + w - mso( t )] f (so( t ) )  

_ A_A_i(t)[ 1 1 1 A 
m s x cosh(mso(t)) - ~-£io( t)sx( t )w (52) 

which serves to determine the unknown residual stress functionf(y).  Once f (y )  is known, 
we can recover ax(t ), a4(t) from Eqns (49), (51) in the form 

l 1 io(t)sx(t) q ix(t) 
ax(t) = cosh(mso(t)) m 

It is convenient to recast Eqn (52) in the y domain by defining the function to(y) such that 
t = to(Y) is the solution of the equation y = so(t), i.e. t = to(so(t)) or y = So(to(y)). In effect, 
to(y) is the time at which the mean melt front reaches the location y. 

Using this notation, Eqn (52) takes the form 

1 ( m y w 2 _ w _ m y ) f , , ( y ) +  i f ( y ) - ~ ( m y w  + w - m y ) f  (y) 
2m 2 

= -  mA~ ~x(t0(y)) [ 1 c o s l - ( m y ) l - ~ o ( t o ( y ) ) s x ( t o ( Y ) ) W  (55) 

where w = tanh(mso(to(y))) = tanh(my), and io(to(y)), gl(to(y)), st(to(y)) are the values of 
the respective quantities at the instant when the mean melt front reaches the location y. 

Finally, we determine P1 (t)cos(mx), the perturbation in contact pressure about its mean 
value at the casting/mold interface, from Eqns (25), (41), (48) with the result 

Px(t) = - A [ s o ( t ) s x ( t )  + sx(t)So(t)] + m2ax(t) (56) 

where A, al (t) can be found from (33), (53) and we have imposed the condition f(0) = 0. This 
can be done without loss of generality since the solution of Eqn (55) includes constants 
which govern the apportionment of a time-independent biharmonic term between O1, O2 
(see Section 2) and which can be assigned arbitrarily. 

3.3. Richmond's problem 
The problem considered by Richmond et al. [12] is a special case of the above analysis in 

which the prescribed heat flux is constant, i.e. 

Q(x, t) = Qo + Q1 cos(mx) (57) 

where Qo and Qx are time-independent constants. From Eqns (15), we then have 

So(t ) = Qo t . Qx t (58) L p '  s x ( t ) -  Lp 
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where we have used the initial condition s(x, O) = 0 to determine the constants of integra- 
tion. 

These results can be used to simplify the right-hand side of Eqn (55), but the resulting 
equation cannot be solved in closed form because of the hyperbolic functions in the 
coefficients. However, an approximate solution is possible for the early stages of 
solidification for which mSo(t ) g 1. It then follows that my ~ 1 and we can approximate 
w[ = tanh(my)] and cosh(my) as power series truncated to terms in (my) 3 and below. 

With this simplification, Eqn (55) reduces to 

3 AQ1 y2 (59) Yf"(Y) - f'(Y) - 2 

which has the solution 

1/IQ1 3 
f(Y) = -2 ~ y " (60) 

Using the same approximation in Eqn (53), we obtain 

AQ1Qot [ l~mQot ~2] (61) 
ax(t)= (mLp)~ 2 + 6 \  Lp ] 

and hence, from (33), (56), (61), 

m zE~tQ1 ~ Qot'~3 (62) 
Pl ( t ) = 6-O : -~K \ - ~  ,] " 

This result is identical with that obtained by Richmond et al. [12] using a simple beam 
theory to describe the stresses in the solidified shell. In effect, truncation of the power series 
for the stress function • to four terms is equivalent to a derivation based on equilibrium 
alone (since no compatibility relations are then involved) and hence to a beam theory. 
Equation (62) indicates that the contact pressure increases from the onset of solidification in 
regions where the heat flux at the casting/mold interface is greatest, i.e. near x = 2n~. In the 
presence of a contact resistance which falls with pressure, this constitutes a system with 
positive feedback, which therefore has the potential for being unstable. 

To examine the range of validity of Eqn (62) and hence of Richmond's beam solution, we 
have solved Eqn (55) numerically using the Runge-Kutta fourth-order method, without 
truncation of the hyperbolic series. The results are presented in Fig. 2 and show that the 
approximate result (62) is acceptable in the range 0 < raso(t) < 0.5. 

ralfT. 
~aCl~ P~( t) 

1 . 0 -  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 . 0  
0.0 

v'qa'( °2 ) I 

I 
0.5 LO 1.5 2.0 2.5 3.0 

raQ~0 t 
pL  

FIG. 2. Perturbation in contact pressure with time for constant heat flux at the mold. 
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3.4. Heat transfer across a thermal contact resistance 
We now consider the case in which the heat flux at the casting/mold interface is 

determined by conduction across a thermal contact resistance, R(x, t), at the interface, 
which is assumed to be a continuous and differentiable function of the contact pressure, 
P(x, t). We also assume that the temperature of the rigid plane mold at this interface is a 
constant which can be taken as zero without loss of generality. 

From the definition of thermal resistance, the heat flux Q(x, t) at the interface can 
therefore be written 

T(x, 0, t) 
Q(x, t) - (63) 

g(P(x, t)) 

where T(x, 0, t) is the temperature of the solidified layer adjacent to the mold. 

3.4.1. The zeroth-order solution. The unperturbed or zeroth-order form of this relation is 

To(O, t) 
(20(0 - - -  (64) 

Ro 

where the unperturbed contact resistance Ro - R(Po) is independent of time, since the 
unperturbed contact pressure is always equal to the constant hydrostatic pressure p, as 
shown in Section 3.2.1 above. 

Substituting for Qo(t), To(0, t) from Eqns (15), (18), respectively, and rearranging the 
terms, we obtain the equation 

T .  
Lp~o(t ) = (65) 

(Ro + So(t)/K) 

from which 

and hence 

= ( 2KT" ) ~/2 So(t ) - K R  o + K2R 2 + t (66) 
Lp 

KTm . [ y + KR° 1 (67) 
Qo(t)=so(t )+ KR o, T o ( y , t ) = T ,  So(t )+ KR ° 

from Eqns (15), (18). 
This completes the solution of the unperturbed problem, for which the stress components 

can be recovered using (30), (31). 

3.4.2. Perturbation of the resistance equation. We now use the technique developed in 
[16, 17] to obtain a relationship between the small perturbations AQ = Ql(t)cos(mx), 
A T =  Tl(O,t)cos(mx), AP = Pl(t)cos(mx) from the zeroth-order values Qo, To, Ro. 
Differentiating Eqn (63), we find 

AQ AT R'(Po)AP 
- -  = ( 6 8 )  
(20 To g o  

where R' = dR/dP. 
Each of the perturbed quantities varies with x only through the multiplier cos(rex), and 

hence Eqn (68) reduces to 

Qx(t) = TI(0 , t) R'(Po)P~(t ) 
(69) 

Qo To(O, t) R o 

Substituting for Qo(t), To(0, t), Q1 (t),/'1 (0, t) from (15), (19), (67) and rearranging the terms, 
we obtain 

L p [So(t) + KRo]Zkl(t) + sl(t ) + KR,(Po)Pl(t) = 0 (70) 
f T .  

where we have used Eqn (65) for So(t). 
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Finally, substituting for Pl(t) from Eqn (56), and using the notation y = So(to(y)) 
introduced in Section 3.2.2, we have 

my tanh(my) . . . . .  K R ' ( P o ) [ ]  
KR'(Po) ~ ~ J  [YJ cosh(my) 1 + - ~ t a n h ( m y )  f (y )  

={KR,(Po)A[y t a n ~ m y )  ] _ (y 

( , KT,,, [ 1  
+ ~KR (Po)ALp(y ~ -Kgo) 

i _  

Equations (55), (71) then constitute a pair of coupled ordinary differential equations to 
determine the unknown quantities f (y) ,  st(t). 

+ KRo) 2 ~ gl(to(y)) 

1 
c o s h - ( m y ) ] - i  }st( to(y)) .  (71) 

Before proceeding to the 
dimensionless variables 

4. SOLUTION AND RESULTS 

solution for f(y),st(t), it is convenient to introduce the 

m2 KTm t (72) 
z= Lp 

rl = my = mso(to(y)) (73) 

2(z) = mst(t) (74) 

m2(1 - v)~, , 
F(~l)- -ffa~ J[YJ (75) 

/~ = (1 - v) p (76) 
EaTm 

Ro = mKg( Po) = mKRo. (77) 

Following the notat ion to(y) introduced in Section 3.2.2, we define Zo(~/) as the dimen- 
sionless time at which the mean melt front reaches the location ~/. We also define 
/~' = R'(Po) where Po is the dimensionless unperturbed contact pressure. 

Equations (55), (71) then become 

1 
= [ t / t anh2( t / ) -  tanh(~/) - r/] F"0/)  + F'(r/) 
2 

and 

1 - : [~/tanh20/) + tanh0/) - ~/] F0/)  
2 

I ] tanh0/) . . . . .  
1 2'(z°(r/)) ( ~ + ~ o )  'qT°tr/H (78) 

= - 1 cosh(t/) 

/~, r/tanh0l) /~' [ 2 ] 
2cosh(r/------) F"(rl) cosh(~  1 + tanh(r/) F(r/) 

= { /~ ' [r / -  tanh0/)] - (r/+/~o)2},V(%0/)) 

+ 1 cosh(r/) - 1 2(To(~/)). (79) 

These two coupled equations serve to determine the functions F(t/), 2(T), given suitable 
initial conditions at ~/= 0. They are both second-order ordinary differential equations with 
variable coefficients, but they can be reduced to a single differential equation as shown in 
the next section. 
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4.1. Reduction to a sinole equation 
We first consider the simpler case of a pair of first order equations with variable 

coefficients in the form 

bo(y)G°(y) + bl(y)Gl(y) = co(y)H°(y) + c~(y)H~(y) + h~(y) (80) 

do(y)G°(Y) + dt(y)GX(y) = eo(y)H°(y) + e~(y)H~(y) + h2(y) (81) 

where G~(y) -= diG/dy ~, Hi(y) = d'H/dy i, G, H are two unknown functions of y and the 
lower-case symbols denote known functions of y. 

Treating y as a parameter and G °, G 1 as independent functions, we can solve (80), (81) as 
a pair of simultaneous equations whose solution gives G o, G 1 as linear functions of H o, H ~ 
with y-dependent coefficients. Substituting this solution into the so far unused relation 
G ~ = dG°/dy  then yields a single second-order ordinary differential equation for H with 
variable coefficients. 

The same technique can be adapted to the more general equations 

b~(y)G'(y) = ~ c,(y)H~(y) + hi(y) (82) 
i=O i=O 

di(y)Gi(y) = ~ ei(y)Hi(y) + h2(y ). (83) 
i=0 i=0  

For example, if we carry all terms i ~< 2 to the right-hand side of the equations, we can 
solve for G", G"-~ and obtain an equation of order n - 1 in G by substituting into the 
relation G" = dG"-~/dy. The resulting equation and the solution for G"-~ now constitute 
a new pair of equations of degree (n - 1) in G and (m + 1) in H. The procedure can 
therefore be used recursively until a single equation of degree (m + n) in H only is obtained. 

This procedure was used to eliminate the residual stress function t F(q) from Eqns (78), 
(79). In principle this gives a third-order equation for 2, but in the event the coefficient of 
2'" proved to be identically zero leaving a second-order ordinary differential equation 
which was solved by the Runge-Kutta fourth-order method. 

The initial value 2(0) must be taken as zero to satisfy (12), since s0(0 ) = 0. An initial 
perturbation of the system can then be introduced by giving a small initial value to 2'(0). 
Once 2 has been determined, the residual stress function F(r/) can be recovered by 
numerical solution of Eqn (78) and the perturbation in contact pressure Px(t) is given 
by (56). 

4.2. Numerical results 
The governing second-order differential equation is linear and homogeneous and has 

only one non-zero initial condition--the value of 2'(0). It follows that for given values of the 
dimensionless parameters Ro, R', the solution for 2 is linearly proportional to 2'(0). In all 
the following results, the initial value, 2'(0), was taken as 0.1. 

Figure 3 shows the development of the perturbation in the solidification front with time 
for Ro = 0.3 and various values of/~'. Notice that we anticipate that the resistance will fall 
with increasing contact pressure and hence that realistic values of aft' are negative. As we 
would expect, the perturbation levels off to a constant value when/~' is small--i.e, when the 
resistance is relatively insensitive to pressure. However, for large values of/~', indicating a 
significant pressure dependence, the perturbation grows in a quasi-exponential fashion. 

To examine the effect of the mean value of contact resistance/~o, and hence of the mean 
contact pressure, p, we plot the development of 2(z) for /~ '  = - 3 0 0  and various afr o in 
Fig. 4. Generally, low values of/~o conduce to more rapid growth of the perturbation, 
though this behavior only becomes apparent after an initial period. We should note that a 
low value of 'fro will also increase the velocity of the unperturbed unidirectional process as 
indicated by Eqn (65), so that a more meaningful measure of the severity of the instability is 
obtained by eliminating • and plotting 2 = ms 1 as a function of ms o. This is shown in Fig. 5 

t It might seem more efficient to eliminate 2, since Eqns (78), (79) are only of first order in this function. However, 
it is then difficult to decide on appropriate initial conditions for F(q), whereas the initial conditions for the 
perturbation in the solidification front, 2, can be determined from physical considerations. 
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FIG. 3. Perturbation in solidification front with time for ,fro = 0.3 and various values of/~'. 
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FIG. 4. Perturbation in solidification front with time for/~' --- - 300 and various values of ,fro. 

for /~ '  = - 300 and various values of/~o- The various curves in this figure are plotted for a 
constant  initial value of ~1/~o(=0.01). This would be the case if, for example, the mold  
temperature  had a small spatially-sinusoidal per turbat ion of  given amplitude. The results 
confirm that  low values of  'fro favor the growth of  the perturbation.  

Finally, we investigate the effect of  wavelength on the growth rate of the per turbat ion for 
fixed values of  Ro, R'.  Fo r  this purpose it is convenient  to define the new dimensionless 
parameters  

1 - ,Z(z)  s l ( t )  
Ro KRo 

~(~) r. 

` f .  =-=-`f' = ~ T .  R'(Po) 
R o (1 - v)Ro 



958 NAI-Y] L] and J. R. BARBER 

0 . 0 5  / /  
O. 04 0.1 

0.3 

O. 03 0.5 

m s l  0.8 l 

0 . 0 2  

0 .01  

0 . 0 0  
' 's '8 0.0 0.2 0.4 O. O. 1.0 

T/2s 0 

FIG. 5. Perturbation in solidification front as a function of mean front position for/~'  = - 3 0 0  and 
various values of/~o- 
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FIO. 6. Effect of wavelength on the growth of the perturbation f o r /~ ,  = - 300. 

which are chosen to be independent of m when the other physical parameters are held 
constant. The effect of varying m will appear through the variation in the parameter 
Ro = mKRo, which we here rename M to highlight its present function of characterizing 
the wavenumber of the perturbation. 

Figure 6 shows the variation of the perturbation amplitude l(O) as a function of time, 0, 
for R~, = -300, l '(0)= 0.1, and various wavenumbers M. In general, large values of M, 
corresponding to short wavelengths, peak early and then level out, whereas the longer 
wavelengths (small M) peak later and reach larger amplitudes. Assuming a random 
distribution of wavelengths in the initial perturbation, we should therefore anticipate larger 
wavelengths coming to dominate the instability as solidification proceeds. 

5. CONCLUSIONS 

The above results demonstrate that a small spatially-sinusoidal perturbation in nominal- 
ly unidirectional solidification can grow rapidly as a result of interaction between thermo- 
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elastically-induced variations in contact pressure and the thermal contact resistance at the 
mold/casting interface if this resistance is sufficiently pressure-sensitive. This mechanism 
therefore provides a plausible explanation of non-uniformities observed in some interrupted 
solidification experiments. 

The assumptions made in the analysis are dearly very restrictive--notably the small 
Stefan number approximation and the assumptions that the mold is rigid and that the 
constitutive behavior of the solidified material is elastic. Previous analyses of the stability of 
thermoelastic contact between two solids [17] suggest that the thermoelastic distortion of 
the mold would be conducive to greater instability of the process. On the other hand, plastic 
deformation of the solidified shell will tend to relax the thermoelastic stresses and may have 
a stabilizing effect. These topics require a more sophisticated model of the process and will 
be addressed in future investigations. 
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