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Abstract--In this paper, the authors combine two algorithms for application to the recognition of 
unconstrained isolated handwritten numerals. The first algorithm employs a modified quadratic dis- 
criminant function utilizing direction sensitive spatial features of the numeral image. The second 
algorithm utilizes features derived from the profile of the character in a structural configuration to 
recognize the numerals. While both algorithms yield very low error rates, the authors combine the two 
algorithms in different ways to study the best polling strategy and realize very low error rates (0.2% or 
less) and rejection rates below 4%. 

Character recognition Statistical pattern recognition Bayes classifier 
Quadratic discriminant function Structural pattern recognition 
Combined character recognition algorithm 

I. INTRODUCTION 

In the last decade, significant advances have been 
made in machine recognition of shapes, patterns and 
characters. Of particular interest to many inves- 
tigators is the recognition of handwritten characters, 
both isolated and cursive. In this paper, the authors 
focus their attention on the recognition of isolated 
handwritten numerals, such as those encountered in 
Zip codes, bank checks, etc. It suffices to mention 
that such systems are also capable of recognizing 
machine printed numerals. 

Typical requirements of a commercial numeral 
recognition system (for example Zip code reading in 
an address block) can be summarized as follows: 

(a) the recognition system is writer-independent, 
(b) the recognition system can handle numerals of 

arbitrary size, 
(c) the recognition system is robust in the presence 

of noise or varying background, 
(d) the recognition system will have very low error 

rates and low rejection rates, 
(e) the system can operate at high speeds for com- 

mercial application. 

It is generally agreed that such stringent require- 
ments on the recognition system would require the 
use of multiple recognition algorithms and a polling 
strategy to determine the identity of the unknown 
sample. Further, it would be desirable to control 
the error rates for a specific application, by simply 
adjusting the rejection thresholds. 

* On leave from the Department of Electronics, Mie 
University, Kamihama-cho 1515, Tsu 514, Japan. 
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Several high accuracy algorithms have recently 
been proposed for recognition of handwritten 
numerals.O-12) Among the many techniques that 
have been proposed the authors would like to men- 
tion the works of Shridhar et al. ,(5,6) Kimura et al. ,(7,8) 

Lam and Suen, (9) Suen et al. 0°) and Srihari et al. ~u'12) 
In an interesting paper, O) Lam and Suen describe 

a recognition system that consists of a sequential 
combination of a fast structural classifier and a robust 
relaxation algorithm. The classification is based on 
the configuration of a set of primitives derived from 
the image of the numeral. Although very low error 
rates are realized, the method is relatively slow, 
owing to an extensive preprocessing of the numeral 
image prior to feature extraction and the complexity 
of the relaxation algorithm. 

Srihari et al. proposed a recognition system cu) that 
utilizes three algorithms: (1) a template matching 
algorithm, (2) a mixed statistical and structural clas- 
sifier utilizing features derived from the contours, 
and (3) a structural classifier utilizing features such 
as size and stroke placement, etc. The results derived 
from the three algorithms are combined in a logical 
manner to arrive at the final decision on the identity 
of the test numeral. The final accuracies were 
reported to be significantly higher than those 
achieved with the individual algorithms. 

Kimura and his co-workers had developed a stat- 
istical classification technique 17'8) that utilized the 
histogram of the direction vector derived from the 
contours of the character. Although the technique 
was developed for recognition of Chinese characters, 
the method could easily have been adapted for 
numeral recognition. 

Shridhar et ai. had reported a high speed accuracy 
structural recognition algorithm that utilized features 
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derived primarily from the left and right profiles 
of the numeral images. (5.6) High speed and good 
accuracies were reported; however, this algorithm as 
well as the statistical classifier did not provide for the 
rejection of bad samples. 

In this paper the authors further develop the stat- 
istical classification technique of Kimura et al. and 
the profile analysis technique of Shridhar and Bad- 
reldin to realize a fast, very low error rate recognition 
algorithm. This algorithm allows the user to adjust 
the error rate by simply adjusting the rejection 
threshold. 

At the time of writing this paper, the authors had 
achieved the following error and rejection rates: 

(1) error 0.07%, rejection 10.38% 
(2) error 0.13%, rejection 4.79% 
(3) error 0.25%, rejection 3.52%. 

The above results were based on a study with 
20,394 samples (including 3000 design samples) of 
handwritten numerals supplied to the authors by 
CGA-Alcatel, France. Three thousand samples were 
used to train the classifier and the remaining 17,394 
samples were used to test the classifier. The classifier 
implemented on a 25 MHz 80386 IBM compatible 
computer operated at three numerals per second. 

The paper is laid out as follows: Section 2 describes 
the data collection, processing and feature extrac- 
tion; Section 3 describes the recognition algorithms; 
Section 4 describes the test results with the two 
algorithms; Section 5 describes the improvement in 
performance when the two algorithms were com- 
bined in different ways; Section 6 outlines the con- 
clusions of this study. 

2. DATA COLLECTION AND PROCESSING 

The numeral samples used in this study were sup- 
plied to the authors by a French company. The 
numeral samples were specifically collected for this 
test study. Each participant was asked to enter a 
random sequence of digits in a specially designed 
form. All of the digits used in this study were dis- 
connected. A sample is shown in Fig. l(a). A total 
of 225 participants contributed 50-80 samples each 
over a period of eight months. The form was pro- 
cessed by a scanner at 300 dpi, that yielded a binary 
image which was subsequently stored in a com- 
pressed format on a computer. Each numeral occu- 
pied a field that measured 64 W x 80 H pixel units. 
The actual height of the character varied from a low 
of 25 pixels to a high of 80 pixels. The width varied 
from 6 pixels (for the numeral "1") to 64 pixels. 
Figure l(b) shows examples of digitized numeric 
data. 

2.1. Data processing for feature extraction 

Since two classifiers were developed for this study, 
the data processing consisted of contour extraction 
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Fig 1. (a) Samples of the numeric data; (b) a digitized 
image. 

and normalization for extracting a set of features as 
well as profile extraction directly from the unpacked 
image of the numeral. It is interesting to observe 
that the profile features could also have been derived 
from the normalized contours of the image. 

An eight-neighbor boundary extraction algorithm 
was applied to the binary image of the numeral to 
extract all the closed contours. As an example, the 
image of the numeral 8 yielded generally three sets 
of border elements--the outer boundary and the two 
inner boundaries. A scale normalization was applied 
to the extracted boundaries so that the rectangular 
frame enclosing the scaled contours measured 
64 W x 80 H in pixel units. It is worth observing that 
gaps between pixels in this scaling process were filled 
according to a minimum error criterion. A further 
operation that would have been needed for the struc- 
tural classifier would be the filling operation to yield 
a new normalized binary image of the numeral for 
profile extraction and the derivation of other 
features. 

2.2. Feature extraction 

In this subsection, the authors will describe the two 
sets of features that were used in the two recognition 
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(a) (b) 

direction 
o o (-) 

45 ° (/) 
90 °(1) 

135 ° (\) 

(c) 

number 
2 2  

2 
7 
5 

Fig. 2. Feature extraction for statistical classifier: (a) normalized numeral; (b) chain codes in a zone; (c) 
direction histogram in a zone. 

algorithms. The first set of features is the histograms 
of the chain codes of the contour elements.  The 
second set of features is evaluated from the profiles 
of the binary image of the numeral.  

2.2.1. Direction vector features. In this process 
the rectangular frame enclosing the normalized con- 
tours is divided into 4 x 4 rectangular zones. In each 
zone, a local histogram of the chain codes is cal- 
culated (Fig. 2). The feature vector is composed of 

these local histograms. Since contour direction is 
quantized to one of four possible values (0 ° or "-", 
45 ° or "/", 90 ° or "1", or 135 ° or "V') a histogram in 
each zone has four components. Thus the feature 
vector has 64 components when all the 16 zones are 
included. Figure 2 illustrates the procedure for the 
numeral 4. 

There were many samples that had broken com- 
ponents. The broken components were the result of 
the writing style (e.g. ~', 2)  of the participants as 
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Fig. 3. (a) Right and left profiles of the character 3; (b) right and left profiles of the character 5. 
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well as the binarization technique used on the digit 
images. Although broken components affected the 
histogram of the direction vectors, their statistical 
properties were quite robust: the recognition accu- 
racies for broken numerals were not noticeably worse 
than those of the unbroken numerals. 

2.2.2. Profile features. In a structural classifier all 
of the features associated with the numerals are 
derived from profiles of their external contours. 
These are character widths, ratio, location of 
extrema, and discontinuities in character profiles. 
Each numeral and its subclasses are described in 
terms of these features. 

The profiles are described by: 
(a) left profiles {LP(k), k = 1,2 . . . . .  NP} which 

is a collection of the distances of the left profiles 
from the left edge; 

(b) right profiles {RP(k), k = 1,2 . . . . .  NP} which 
is a collection of the distances of the right profile 
from the left edge. 

The left and right profiles of the numerals 3 and 5 
are shown in Fig. 3. The left and right profiles are 
used as global features. In addition, another set of 
global features is defined as the set of first differences 
of the left and right profiles: 

(c) LDIF(k) = LP(k) - LP(k - 1), k = 2,3 . . . . .  
NP, 

(d) RDIF(k) = RP(k) - RP(k - 1), k = 2,3 . . . . .  
NP. 

A fifth global feature that pertains to the width is 
defined as: 

(e) W(k) = RP(k) - LV(k), k = 1,2 . . . . .  NP. 

Local features are then defined for obtaining 
specific characterization of the different numerals. 
These are: 

(a) The ratio is defined as: 

Ratio = NP/MAX{W(k)}. 
k 

(b) Location of maxima and minima: 

LMX = location of MAX{LP(k)} 
Ri 

RMX = location of MAX{RP(k)}, 
RI 

where R1 is a specified range within which LMX 
and RMX are evaluated. In a similar manner, LMIN 
and RMIN are also defined. 

qq G/q 
(a) (b) 

Fig. 4. An example involving the numerals, 4, 9 and 0, 1. 

(c) Left and right peaks: the values of peaks in 
the first differences are very important local features 
in the characterization of numerals. These are: 

LPEAK + -- MAX{LDIF(k)} 
R2 

L P E A K -  = MIN{LDIF(k)} 
R2 

RPEAK + = MAX{RDIF(k)} 
R2 

R P E A K -  = MIN{RDIF(k)} 
R2 

LPEAK -- f LPEAK+ I + ILPEAK- t  

RPEAK = I RPEAK+ I + t R P E A K - I ,  

where R2 is a specified range on LDIF(k) or 
RDIF(k). 

In addition to the features described above, the 
locations of the peaks of the first differences are used 
to resolve conflicts. The bottom and top profiles 
are also used as local features to resolve conflicts 
between similarly shaped numerals. An example 
involving the numerals 4, 9 and 0, 1 is shown in Fig. 
4. 

The profile features can be affected by the pres- 
ence of noise pixels and other spurious line segments. 
In this work, a preprocessing algorithm was used to 
eliminate many spurious features caused by noise 
pixels or breaks in the digit image. In the pre- 
processing stage, the profiles that exhibit transient 
discontinuities were subjected to a verification test 
that would confirm the validity of the profile features. 
This is illustrated in Fig. 5 for the digits 7, 6, 5 
and 4. However, the preprocessing stage did not 
eliminate all the errors in the profile evaluator. The 
"reject" option of the recognition algorithm elim- 
inated many of these problem digits. 

validity ~ O ~  
' '  

validity test scan 

(a) (b) 

validity test scan validity test scan 

(c) (d) 

Fig. 5. Profiles with transient discontinuity: valid features 
(a), (d); spurious features (b), (c). 
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3. RECOGNITION ALGORITHMS 

In this section, detailed descriptions of the stat- 
istical and structural classifiers are provided. 

3.1. Statistical classifier (K-algorithm) 

The K-algorithm implements a statistical classifier 
employing the direction vector defined in 2.2.1. The 
discriminant function is a modified quadratic dis- 
criminant function (MQDF) which is less sensitive 
to the estimation error of the covariance matrix and 
requires less computation time and storage than the 
ordinary quadratic discriminant function (QDF). (7.8) 
It is given as follows. 

g(x) = / I x  1~112 I 

/ 

i=l]l,i + h 
k 

+ In [h2(n'k)l'- I (~'i + h2)] ,  (1) 
i=l 

where X denotes the feature vector for an input 
numeral, 1~1 denotes the maximum likelihood esti- 
mate of the mean vector for each numeral class, and 
;t~ and @i denote the eigenvalues and eigenvectors of 
the maximum likelihood estimate of the covariance 
matrix. 

Values of constants h e and k are selected experi- 
mentally to achieve the best performance. In the 
following experiments, k and h 2 are set to 12 and 
0.2, respectively. 

Given a test sample, g(X) is calculated for all 
numeral classes and the class achieving the minimum 
value is selected as the identity of the test sample. 

The MQDF is derived from the Bayes decision 
rule for unknown Gaussian distribution under some 
assumption for simplification. The rest of this sub- 
section briefly describes the derivation. 

(1) The Bayes discriminant function for known 
Gaussian distribution. The Bayes decision rule for 
a multi-category case is represented as follows. 

Select class i such that 

P(wi I X) > e(toj ] X) for all j except i--* XE toi, (2) 

where X denotes the feature vector of a given sample, 
to i (i = 1,2 . . . .  ) denotes ith class, and P(toilX) 
denotes the a posteriori probability of wi given X. 

The Bayes decision rule is optimal in the sense 
that minimum error is achieved. The decision rule 
of (2) leads to several equivalent discriminant func- 
tions in different forms: 

gi(X) = P(wi IX) (3) 

gi(X) = p(Xlwi)P(~oi) (4) 

gi(X) = 2{- lnp(Xlwi)  - In e(o~i)}, (5) 

where p(XI to,-) denotes the conditional density func- 
tion of X given to,, and P(coi) denotes the a priori 
probability of o9i. 

The discriminant function (4) is derived from (3) 
using Bayes theorem and neglecting the denominator 
p(X), which is not dependent on class i. Given a 
feature vector X, the value of gi(X) of either (3) or 
(4) is calculated for all classes and the class achieving 
the maximum value is selected as the identity of X. 
The discriminant function (5) is derived from (4) by 
taking the negative logarithm ofg/(X). Because of the 
negative logarithm, the class achieving the minimum 
value is selected as the identity. 

When the conditional distribution of X given wi is 
assumed to be Gaussian with known mean vector Mi 
and covariance matrix El, the conditional density 
function P(XI oO is given by: 

P(X I ~o3 = (2at) -'/2 I Zil -'/2 

x exp{ - (X - M i ) r Z f  (X - Mi)/2}, (6) 

where Mi denotes the mean vector for class i, Zi 
denotes the covariance matrix for class i, and n 
denotes the dimensionality of the feature vector. 

Substituting (6) into (5), and neglecting the con- 
stant common to all classes, a discriminant function 
for known Gaussian distribution is obtained: 

gi(X) ----" 2{-lnp(Xl wi) - I n  P(Wi)}  

= ( X -  Mi)TZ/- '  (X - Mi) 

+ lnlXi I - 2In P(wi). (7) 

The discriminant function (7) is Bayes (optimal) 
discriminant function for known Gaussian distri- 
bution. 

(2) The Bayes discriminant function for unknown 
Gaussian distribution. If the mean vector Mi and the 
covariance matrix Zi are not known a priori, they 
have to be estimated by using a set of training samples 
Zi. The role of training samples can be explicitly 
denoted by the density function P(XIw i, Zi). Since 
each class can be treated independently, the class 
distinction i and w i will be omitted in subsequent 
expressions. The density function is then given by 

p (X]Z) = fp(X[O, Z)p(O]Z)dO 

= fp(XlO)P(OlZ)dO, (8) 

where O denotes the parameter vector of the dis- 
tribution. (13) The condition Z in the conditional 
density p(XlO,Z) can be eliminated because the 
distribution of X is known completely once we know 
the value of the parameter vector O. The dis- 
criminant function can be re-evaluated from (8) when 
Mi and Zi are unknown. However, for the sake of 
simplicity, only the case where Zi is unknown but Mi 
is known will be considered. Under these conditions, 
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the density function is given by 

p(XlZ) = Ip(XlK)p(K] Z)dK 

p(XlK) = (2~t)-"/21K 11/2 

x exp{-(X - M)rK(X - M)/2} 

p(K I Z) = W(K,57 N,NN) 

= c(n,NN)INN57 N/21(NN- 1)/21KI (NN- ~ - 2) 

X exp[tr(--NN57NK)/2] 

n -1 

i=1 
N 

{ ( 1 / N ) i E = l ( X i - M ) ( X i - M ) T } + ( N o / N ) 5 7 o  

XN-- 1 + No /N  

N N  = No + N, (9) 

where K denotes the inverse of the covariance 
matrix, N denotes the number of training samples, 
57o denotes the initial guess of the true covariance 
matrix, No denotes the confidence constant about the 
initial guess Y0, and F denotes the Gamma function. 

The conditional density of the inverse covariance 
matrix p ( K I Z  ) is known as the Wishart 
distribution. 04) By performing the integral of (9), 
the conditional density p (XlZ) leads to the multi- 
variate t-distribution with N N -  1 degrees of freedom. 

p(XlZ) = (N N --  l)~r] -"/2 

x F[(NN + n - 1)/2] 
F[(NN - ~ 7 ~  IXNI '/211 + (X - M) r 

X 57~/1 (X -- M ) / ( N  N - 1)]-(NN+n-1)/2 (10) 

Taking a negative logarithm and neglecting the con- 
stant common to all classes, a discriminant function 
for unknown covariance case is obtained: 

g(X) = (N N + n - 1)ln[1 + (X - M)r57~ 1 (X - M)/ 

(NN -- 1)] + InlXN I -- 2 ln{P(co)}. (11) 

The discriminant function (11) is Bayes (optimal) 
discriminant function for the Gaussian distribution 
with unknown covariance matrix. 

(3) Modified quadratic discriminant function. 
When NN is much larger than n, (11) reduces to 

g(X) = (X - M) rXg, l(X - M) 

+ ln157N l-- 21n[P(w)], (12) 

which has the same form as the quadratic dis- 
criminant function in (7) except for the covariance 
matrix. This result is due to the fact that the t- 
distribution approaches the normal distribution 
when the degree of freedom of the t-distribution 
approaches infinity. 

The covariance matrix 57N given in (9) is a Bayes 

estimate of the true covariance matrix. It is a 
weighted sum of an initial guess and the maximum 
likelihood estimate of the true covariance matrix: 

'Y~N = (1 - c~)5~ + 0:570, 

where 
N 

5~ -- ( 1 / N ) ~ ( X i  - M)(Xi - M) r 
/=1 

0: = N o / ( N  + No). (13) 

Usually we have very little knowledge about the 
initial guess of the covariance matrix. We can assume 

Y0 = o21 (14) 

without much loss of significance. With the assump- 
tion (14) and No ~ N, we get a pseudo Bayes estimate 

57N = ~ + 0:ty2l = ~ + h2I, 

where 

h 2 = 0:0 2 = [Noo2/(N + No) ]. (15) 

From (12) and (15), 

[O/T (X - M)] 2 
g(X) i=--I ~'i + h 2 + ln lS"N I - 21n[P(w)]. 

(16) 

where ~.~ and cb i denote the ith eigenvalue and eig- 
envectors of the maximum likelihood estimate of the 
true covariance matrix. 

It should be noted that the following equations 
were used to derive (16): 

57N¢~i = (~" +h2l)tYPi =~Li~i +h2tfpi = (~i + h 2)tI~i 

•N = ~ (~Li "+" h2)¢])i dpT. (17) 
i=1 

Assuming h 2 >> ~.i for i > k, (16) is approximated by 

k [*/(X - M)] 2 x~, [*/r( x - M)] 2 

g(X) = ~ h2 + z.a h2 
i=1 ~i + i f k + l  

+ ln[XN I - 21n[P(w)]. (18) 

Using the relation 

n 

E [OT(X - M)] 2 
i f k + l  

k 
= IX - MI 2 - ~ [~/r(X - M)] 2, (19) 

iffil 

(18) is represented by 

g(X)  = {IX - MI ~ - A' ,=, ~/-_____~ [ o r ( x  - M)12}/h 2 

k 

+ ln[h2(n - k) I I  (~., + h2)] - 21n[P(oJ)]. (20) 
iffil 

By assuming equal class a priori probably to neglect 
the last term of (20), and replacing the mean vector 
M by the maximum likel ihood estimate 1(4, we can get 
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the discriminant function given in (1). The modified 
discriminant function has the following advantages 
when compared with the quadratic discriminant func- 
tion given by (7): 

(1) the MQDF is less sensitive to the estimation 
error in the covariance matrix than the QDF 
employing the maximum likelihood estimate and can 
achieve better performance; 

(2) the computation time and storage required by 
the MQDF are considerably smaller than those of 
the QDF (about k/n = 12/64 times); 

(3) it is reasonably used in the case that a sufficient 
number of samples is not available (even in the case 
where the number of the training samples is smaller 
than the dimensionality); and 

(4) the MQDF is suitable for implementation by 
hardware. 

3.2. Structural classifier (S-algorithm) 

In this section, we provide a brief description of 
the structural classifier. This classifier utilizes a group 
made up of Boolean expressions involving the primi- 
tives, for each numeral subclass. Groups are then 
combined to form a chain for each numeral. In the 
recognition procedure a tree structure is utilized to 
determine the specific group to which a given test 
numeral belongs. The algorithm also has provision 
for rejecting a test numeral or yielding multiple 
membership to the test numeral (example 1 or 7). 
The structural classifier is an extension of the pro- 
cedure developed in an earlier phase by Shridhar. (61 

(1) Determination of groups. A group, Grl, is 
defined as a set of primitives characterizing a specific 
subclass of numeral i. The subclasses are determined 
by the similarity of their right and left profiles. As 
an example, a subclass of the numeral 5 can be 
represented by the following descriptors: 

RPEAK > 10~ 
L P E A K >  J f o r 2 ~ R 2 ~ < 5 0  

LMX > LMIN; for 10 ~ R~ ~< 40. 

Thus, the group in this case consists of the above 
descriptors as its elements. 

A group table is constructed for each subclass and 
stored for use in recognition tests. The Appendix 
lists the Boolean expressions for all the groups in 
terms of the logical predicates. 

(2) Derivation of chains. A chain, Ch(i), is either 
a single group or a union of groups all identifying a 
specific numeral i. Thus, the chain for a numeral i is 
defined as 

K 
Ch(il = ~.J Gr~, (22/ 

k = l  

where K is the number of subclasses for numeral i 
and Gr~ is the group defined for the kth subclass of 
numeral i. 

PR 2 4 : 1 0 - E  

For example, the chains for the numerals 0, 6 and 
8 will be represented as a concatenation of groups 
as follows: 

3 
(1) Ch(0) = U Gr0 k, 

k=l 

where 

Gro 1 = d l  A/~1 A (/~7 A a12) A a 8 A (d 1 V d2)  

Aft4 A a l  6 Ag4 

Gr 2 = a 1 A / ~ 1 A / ~ A  (g2 Ag3)  Ae3 AA 

Grg = al A bl A d4 A (d12 V/~s) Ae3 A l l .  

3 
(2) Ch(6) = U Gr6 k, 

k~l 

where 

Gr~ = al A bx A a3 A (a13 V b8) A a14 A/~10 

Gr~ = dl A bl A/~3 A (alsV b9) A a7 A/~7 A 

Ab5 A/~2 

Gr36= al Aba A h A  (~2 V ~,3)Ah Ae 3 A f l  

A/~4 A a9 A gl. 

3 
(3) Ch(8) = U G ~ ,  

k=l 

where 

Gr~ =til  A/~l A b 3 A (a15 A/~91 A a6 A c3 A e5 

Gr 2 = a 1 A b l A / ~ A i A (  3 

Gr 3 = a I A b 1 A a3 A (a13 A 68) A e3, 

where 'V' ,  'A ' ,  and ' - '  are the logical OR,  logical 
AND and negation, respectively, and a,b, . . .are 
the primitives defined in the Appendix. 

A verbal description of the group G~,  as an 
example, is as follows: 

(1) the left and right profiles are relatively smooth, 
i.e. LPEAK and RPEAK are less than 10 in the 
range 2 ~< R2 ~< 50; 

(2) the ratio of height to maximum width is less 
than 2.5; 

(3) the widths at the upper and lower halves are 
larger than in the middle; 

(4) the left profile attains its minimum value before 
it attains its maximum value in the range 10 to 30, 
i.e. LMX > LMIN for 10 ~< R~ ~< 30. 

The recognition algorithm utilizes a tree structure 
to identify the unknown numeral specimens. A fea- 
ture is evaluated and compared with the feature 
description of numerals to determine the appropriate 
subgroups to which the unknown numeral belongs. 
Other features are then evaluated and the algorithm 
proceeds down the tree until an identity is estab- 
lished. The flow chart for identifying the numerals 
0, 6 and 8 is shown in Fig. 6. 
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ll3Vb g~i l ~ 2  "a12 1151 al,l 
a13vbS" a,:  g3 ¢ ~3T g~ a2 bgr ~ -  

e3~ r , ' 

blC e 3 8 f2 v d, a .~ 

'0' 

'0' '6' ft e 3 

"ft 

a4 c3,. b7 

a16 e5 gs~ 

,8, g4 b5 

'0' b2 

'6'  

'6' 

Fig. 6. Flow chart for identifying the numerals 0, 6 and 8. 

4. TEST RESULTS 

4.1. K-algorithm 

The K-algorithm has two thresholds RJ1 and RJ2 
to control error-rejection rate. If the minimum value 
of (1) achieved by a numeral class is greater than the 
RJ1, the sample is rejected. Also, if the difference 
between the minimum value and the second mini- 
mum value of (1) is less than RJ2, the sample is 
rejected with a pair of numeral classes (multiple 
membership) achieving these two minimum values. 

The performance of K-algorithm was evaluated 
for various combinations of the RJ1 and ILl2. To 
calculate the mean vector and the eigen properties 
necessary for discriminant function calculation, 300 
samples were used as design samples for each 
numeral class. A total of 17,394 test samples were 
used to evaluate the performance of the recognition 
algorithms. The results are given in Table 1. This 
table shows, for example, the minimum error rate 

0.0% with minimum reject rate 34.16% achieved 
for RJ1 = 0 and RJ2 = 50. The maximum correct 
recognition rate 97.58% is achieved for RJ1 = 100 
and RJ2 = 0 with 2.05% error and 0.37% rejection 
(not in Table 1). 

The total processing time of the K-algorithm was 
300 ms/numeral on a 25 MHz 80386 IBM compatible 
computer. The processing time for the feature extrac- 
tion (including preprocessing) and the classification 
were 200 ms/numeral and 100 ms/numeral,  respect- 
ively. 

4.2. S-algorithm 

The tests samples were applied to the structural 
classifier in a two-pass procedure with the peak 
thresholds adjusted for each pass. The results 
obtained in each pass were combined logically as 
follows, to determine the final decision: 

(1) accept identity if both passes yield the same 
result; 

(2) reject sample if both passes reject the sample; 
(3) determine a subclass (multiple membership) if 

the two passes yield different results (e.g. 1 or 7); 
(4) determine a fuzzy class if one pass yields a 

recognition while the other pass rejects the sample 
(e.g. "may be 1"). 

The results obtained with the structural classifier 
are shown in Table 2. The error rate was 0.17% with 
3.22% rejection and 19.21% multiple membership 
(e.g. 7 or 2). The total processing time of the S- 
algorithm was 125 ms/numeral.  

5. IMPROVEMENT IN PERFORMANCE 

We consider two parallel and four sequential com- 
binations of the two recognition algorithms. In the 
parallel combinations, both recognition algorithms 
are applied to the input numeral and the results are 
combined in the following way to decide the numeral 
class of the input numeral. 

Table 2. Error and rejection rates (%) of S-algorithm 

Error Rejection Multiple membership Correct 

0.17 3.22 19.21 77.40 

Table 1. Error-rejection rates (%) of K-algorithm 

RJ 1 \R J2 10 20 30 40 50 

0 
20 
40 
60 
80 

0.09/18.55 0.03/19.66 0.01/22.28 0.01/26.78 0.00/34.16 
0.30/8.29 0.14/10.16 0.07/13.77 0.04/19.33 0.02/27.92 
0.51/4.81 0.24/7.15 0.12/11.27 0.06/17.25 0.02/26.30 
0.72/3.60 0.34/6.16 0.18/10.44 0.09/16.62 0.04/25.85 
0.89/3.09 0.45/5.78 0.25/10.16 0.11/16.44 0.05/25.72 
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Table 3. Combination matrix for Parallel-1 combination 

SkK Rejection Error Correct 

Rejection R E C 
Error E R or E R 
Correct C R C 

R: rejection; E: error; C: correct; S: S-algorithm; K: K- 
algorithm 

Table 5. Combination matrix for Sequential-1 combination 

Sq( Rejection Error Correct 

Rejection R E C 
Error E E E 
Correct C C C 

R: rejection; E: error; C: correct; S: S-algorithm; K: K- 
algorithm 

(1) Parallel-1 

If the input numeral is rejected by both algorithms, 
the numeral is rejected. If both algorithms accept 
the input numeral with the same result, or if only 
one algorithm yields a rejection, the numeral class 
is accepted. If both algorithms accept the input 
numeral with different results, the numeral is 
rejected. The method of Parallel-1 combination is 
represented in a matrix form as shown in Table 3. 
In this table, E and C correspond to the acceptance. 

(2) Parallel-2 

When one algorithm yields multiple membership, 
it is exploited in the following way. If the other 
algorithm accepts the input numeral with an identity, 
the identity is accepted if it is included in the multiple 
membership, and rejected otherwise. If the other 
algorithm yields multiple membership or rejects the 
input numeral, the numeral is rejected. In all other 
cases irrelevant to the multiple membership, the 
results are combined in the same way as in the 
Parallel-1. Table 4 shows the combination matrix for 
the Parallel-2 combination. In sequential com- 
binations, the second recognition algorithm is 
applied only when the first algorithm rejects an input 
numeral. There are four sequential combinations. 

(3) Sequential-1 

The S-algorithm is applied first. The K-algorithm 
is applied only to those numerals rejected by the 
S-algorithm. The multiple membership yielded by 
either algorithm is not exploited. The combination 
matrix for Sequential-1 combination is given in Table 
5. 

(4) Sequential-2 

The S-algorithm is applied first. The K-algorithm 
is applied only to those numerals rejected by the S- 
algorithm. The multiple membership yielded by the 
S-algorithm is exploited in the same way as in the 
Parallel-2 combination. The combination matrix for 
the Sequential-2 combination is given in the Table 
6. 

(5) Sequential-3 

The K-algorithm is applied first. The S-algorithm 
is applied only to those numerals rejected by the 
K-algorithm. The multiple membership yielded by 
either algorithm is not exploited. The combination 
matrix for the Sequential-3 combination is easily 
obtained from the matrix for Sequential-1 com- 
bination by changing the role of the rows and 
columns. 

(6) Sequential-4 

The K-algorithm is applied first. The S-algorithm 
is applied only to those numerals rejected by the K- 
algorithm. The multiple membership yielded by the 
K-algorithm is exploited in the same way as in the 
Parallel-2 combination. The combination matrix for 
the Sequential-4 combination is easily obtained from 
the matrix for the Sequential-2 combination by 
changing the role of the rows and columns. 

The performance of combined algorithms was 
evaluated for various rejection thresholds RJ1 and 
RJ2. The results are given in Tables 7-12. Figure 7 
shows the error-rejection relationships obtained by 
changing the rejection thresholds for the Parallel-1 
combination. Each curve corresponds to each row 

Table 4. Combination matrix for Parallel-2 combination 

S\K Rejection Multiple mem. Error Correct 

Rejection R R E C 
Multiple mem. R R R or E R or C 
Error E R or E R or E R 
Correct C R or C R C 

R: rejection; E: error; C: correct; S: S-algorithm; K: K-algorithm 
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Table 6. Combination matrix for Sequential-2 combination 

Shr( Rejection Multiple Mem. Error Correct 

Rejection R R E C 
Multiple Mem. R R R or E R or C 
Error E E E E 
Correct C C C C 

R: rejection; E: error; C: correct; S: S-algorithm; K: K-algorithm 
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Fig. 7. Error-rejection relationships for the Parallel-1 combination. 

14 

of Table 7. The overall error-reject ion relation for 
the Parallel-1 combination is obtained from these 
curves as the envelope connecting the lower convex 
points. These convex points are underscored in Table 
7. Figure 8 shows the error-reject ion relationship 
thus obtained for each combined algorithm and the 
K-algorithm. 

In order to reduce the error rate the Parallel-2 
combination is the best because it always gives the 
least error rate in the low error region, which is 
defined to be the region with the error rate less 
than 0.3%. Typical error and rejection rates of this 
combination are 0.07% error with 10.38% rejection, 
0.13% error with 4.79% rejection, and 0.25% error 
with 3.52% rejection. In the region with the higher 
error rate (greater than 0.3%), the Sequential-1 or 
the Parallel-1 combination achieve less error rate 
than the Parallel-2 combination; however, the fol- 
lowing considerations are limited to the low error 
region since our main concern is in the low error 
region. 
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Fig. 8. Error-rejection relationships for each combined 
algorithm and the K-algorithm. 
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Table 7. Error-rejection rates (%) of Parallel-I combination 

RJ1LILI2 10 20 30 40 50 

0 0.16/7.99 0.15/8.37 ~ 0.16/10.55 0.15/12.34 
20 0.24/4.38 ~ 0.16/6.39 0.17/8.08 0.16/10.37 
40 ~ ~ 0 .19 /5 .41  0.18/7.24 0.16/9.75 
60 ~ 0.32/3.35 0.24/5.00 0.20/6.96 0.17/9.56 
80 0.60/2.16 0 .39 /3 .21  0.28/4.90 0.21/6.92 0.18/9.53 

Table 8. Error-rejection rates (%) of Parallel-2 combination 

RJlk_RJ2 10 20 30 40 50 

0 0.15/8.51 0.14/8.86 0.13/9.75 0 .13/10.95 0.13/12.67 
20 0.14/5.19 0.13/5.83 0 .12 /7 .05  0.12/8.66 0.10/10.87 
40 0.16/4.00 0.13/4.79 0.11/6.23 0.10/7.97 0.07/10.38 
60 0.25/3.52 0.18/4.39 0.13/5.89 0.10/7.76 0.08/10.24 
80 0.33/3.38 0.22/4.30 0.16/5.85 0.10/7.77 0.08/10.27 

Table 9. Error-rejection rates (%) of Sequential-1 combination 

RJILRJ2 10 20 30 40 50 

0 0.22/7.89 0 .20/8 .31  0.18/9.26 0 .18 /10 .52  0.18/12.31 
20 0.34/4.15 0.26/4.98 0.22/6.32 0 . 2 1 / 8 . 0 3  0.19/10.34 
40 0.47/2.61 0.34/3.69 0 .25 /5 .31  0.22/7.19 0.20/9.71 
60 0.63/1.97 0.42/3.17 0.30/4.89 0.25/6.90 0.21/9.52 
80 0.74/1.72 0.49/2.99 0.34/4.77 0 . 2 5 / 6 . 8 5  0.22/9.48 

Table 10. Error-rejection rates (%) of Sequential-2 combination 

RJlXRJ2 10 20 30 40 50 

0 0.21/8.41 0.20/8.80 0.18/9.69 0 .18 /10 .89  0.17/12.62 
20 0.25/4.93 0.23/5.65 0.21/6.90 0.20/8.53 0.18/10.75 
40 0.29/3.60 0 .26/4 .51  0.22/5.98 0.21/7.74 0.18/10.16 
60 0.39/3.05 0.31/4.05 0 .25 /5 .61  0.21/7.49 0.19/9.99 
80 0.47/2.84 0.36/3.90 0.28/5.50 0 . 2 1 / 7 . 4 5  0.19/9.96 

Table 11. Error-rejection rates (%) of Sequential-3 combination 

RJI\RJ2 10 20 30 40 50 

0 0.21/7.89 0 .16/8 .31  0.14/9.26 0 .16 /10 .52  0.15/12.31 
20 0.36/4.15 0.23/4.98 0.18/6.32 0.17/8.03 0.16/10.34 
40 0.55/2.61 0.32/3.69 0 .22 /5 .31  0.19/7.19 0.16/9.71 
60 0.75/1.97 0.41/3.17 0.28/4.89 0.21/6.90 0.17/9.52 
80 0.92/1.72 0.52/2.99 0.35/4.77 0.24/6.85 0.18/9.48 

Table 12. Error-rejection rates (%) of Sequential-4 combination 

RJlklLI2 10 20 30 40 50 

0 0.21/7.89 0.16/8.32 0.13/9.27 0 .14 /10 .54  0.13/12.34 
20 0.36/4.17 0.21/5.03 0.15/6.39 0 . 1 3 / 8 . 1 1  0.11/10.42 
40 0.54/2.67 0.28/3.82 0.17/5.46 0.13/7.36 0.09/9.89 
60 0.74/2.05 0.37/3.33 0.23/5.08 0 . 1 5 / 7 . 1 1  0.10/9.73 
80 0.91/1.82 0.49/3.17 0.30/4.98 0.17/7.09 0.11/9.74 
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The exploitation of the multiple membership is 
effective in reducing the error rate in the low error 
region except for the Sequential-2 combination. The 
Parallel-2 and the Sequential-4 combinations 
exploiting the multiple membership give better 
results than corresponding Parallel-1 and Sequential- 
3 combinations, respectively, which do not exploit 
the multiple membership. The error rate of the 
Sequential-1 combination is not improved noticeably 
by the exploitation of the multiple membership 
because of the 0.17% fixed error rate of the first 
algorithm (S-algorithm), which cannot be reduced 
by the multiple membership exploitation. 

For the sequential combinations, applying the rec- 
ognition algorithm with lower error rate first and the 
higher one later is better than applying them in the 
reverse order. In the low error region, the Sequen- 
tial-3 and the Sequential-4 combinations applying 
the recognition algorithm with lower error rate first 
achieve lower error rates than the Sequential-1 and 
the Sequential-2 combinations. In the higher error 
region, the Sequential-1 combination, for example, 
achieves lower error rate than the Sequential-3 and 
the Sequential-4 combinations because in this region 
the first algorithm (K-algorithm) yields more error 
than the second algorithm. 

The performance of the sequential combinations 
approaches the performance of the parallel com- 
binations when (and only when) the error rate of the 
first algorithm approaches zero. The performance of 
the Sequential-3 and the Sequential-4 combinations 
approaches the performance of the Parallel-1 and 
the Parallel-2 combinations, respectively, when the 
rejection thresholds of the K-algorithm are set so 
that the error rate of the first algorithm is nearly 
equal to zero (0.02% or less). In this case, there is 
no need to rely on the second algorithm to verify the 
result once the samples are accepted by the first 
algorithm. This fact suggests the effectiveness of the 
sequential combination of multiple (more than two) 
recognition algorithms each of which except the final 
one is tuned to achieve almost no error. The total 
error-rejection relationship for this sequential com- 
bination is controlled by adjusting the final algor- 
ithm. 

The Parallel-2 and Sequential-4 combinations give 
less error than K-algorithm for any rejection rate 
(their error-rejection curves are always under the 
curve for the K-algorithm). This result shows the 
effectiveness of the exploitation of the multiple mem- 
bership, parallel combination strategy, and the 
importance of the first recognition algorithm with 
lower error rate in the sequential combination 
strategy. 

The best performance (minimum error) for each 
combination is achieved when the rejection par- 
ameters of the K-algorithm are selected so that the 
classifier achieves a very low error rate. This result 
shows that the flexible error-rejection adjustability 
is very important in deriving an effective combined 

recognition algorithm. The primary requirement for 
each classifier is not a reduction in both error and 
rejection rates but a reduction in the error rate by 
adjusting the rejection rate. 

6. DISCUSSION AND CONCLUSION 

In this paper, the authors developed two algor- 
ithms for application to recognition of unconstrained 
isolated handwritten numerals. While both algor- 
ithms yielded very low error rates, the authors com- 
bined the two algorithms in different ways to study 
the best polling strategy and realized significant 
improvement in performance. The results of the 
experiments are summarized as follows. 

(1) The best performance was achieved by the 
Parallel-2 combination, which realized very low error 
rates (0.2% or less) and rejection rates below 4%. 

(2) The parallel combinations usually achieve less 
error than the corresponding sequential combi- 
nation. 

(3) The exploitation of the multiple membership 
is effective in reducing the error rate. 

(4) For the sequential combinations, applying the 
recognition algorithm with lower error rate first and 
the higher one later is better than applying them in 
the reverse order. 

(5) The performance of the sequential com- 
binations approaches the performance of the parallel 
combinations when the error rate of the first algor- 
ithm approaches zero. 

Although the recognition rates of handwritten 
numeral recognition are highly dependent on the test 
data, and it is difficult to compare the results with 
other works, the authors believe that the result 
obtained in this paper is one of the best results 
reported so far. The authors used a fairly large test 
database to obtain a statistically meaningful per- 
formance evaluation. For example, one of the 
authors also developed a numeral recognition tech- 
nique based on multiple recognition algorithms 
including the relaxation matching technique (9) 
instead of the K-algorithm. The result for the same 
test data was 0.6% error with 3.1% rejection, which 
is worse than the result for any combination strategy 
discussed in this paper. Also, the authors have 
applied their algorithm to recognition of digit 
samples obtained from USPS Zip codes. The Zip 
codes contained both isolated and connected digits. 
The accuracies obtained with isolated Zip code digits 
were comparable to those reported here. Seg- 
mentation and recognition of connected numerals is 
currently under investigation. The results of this 
study will be reported at a future time. 

From the standpoint of computation time, the 
Sequential-1 and the Sequential-2 combinations are 
better than other sequential and parallel algorithms. 
However, the increased error rate that results is 
not acceptable for many practical applications. By a 
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proper choice of hardware and a careful design of 
the software for implementing the recognition algor- 
ithms, an accepted speed can be realized. 

Further improvements on the performance can 
be achieved by reducing the error rate of the S- 
algorithm. The authors are currently studying the 
improvement of the S-algorithm, including the 
readjustment of the error-rejection rate of the algor- 
ithm. Combinations of more than two algorithms 
also appear to be effective. Combinations of the 
statistical classifiers utilizing different features are 
also easily implemented and are promising due to 
the error-rejection adjustability. All these are topics 
of further study. 
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APPENDIX 
GROUP TABLE FOR EACH SUBCLASS 

Table A1. Groups of the numerals 0 to 9 

Subclass Boolean Expression 

G4 
Gr 2 
G4 
Grl 
G~ 
O~ 
Gr~ 
G~ 
G~ 
Gr 4 
Gr~ 
G4 
Grl 
G~ 
Gr~ 
G~ 
G~ 
Gr~ 
G4 
G4 
Gr7 ~ 
Gr~ 
Gr~ 
G4 
G4 
Gr~9 
G~ 

a~ A ~ 
a, Ab l  
a~ A b_l 
a~ A b_, 
~ A _b~ 
a~Ab~ 
~ A b~ 
a~Ab~ 
a~ A b~ 
a~Ab~ 

A (b7 A ~2) A a8 A (d,V de) A a~A a,GAg ~ 
A hA (g: A g3) A e3A f~ 
A ~4A (a~3V b~) A e3Afl 
Ah 
A (la 7 A a12 ) A as A_ (d I V d2) A a4 A a16 A "~1, A g4 
A h A (~2Ag3) A fzAa: A (alTAbu) A ~s 
A b 3 A as A (b 9 V a15) A f3 
A aTA (a~3Vb~) A at4AbloA~: 
A b~ A ~ A ~(~ A (au V bs) A ~ 
A (b_7 A ~tz) A a8 A (d~ V d2) A at3 A f3 

al A b_~ A (b_7 V a~2) A a8 A (d 1 V d2) A a4 A al6 V ~ V f3 
al A b_l A (b7 V_a12) A a8 A (d I V d2) A a4 A al3 A f3 
al A b 1 A a_.12 V bT) A a8 
81 A bl A b3 A (b 9 V als) A 87 A _b7 A ,~ A 65 
al A bl A b_3 A (b9 V als) A 57 A b7 
81Ab_l A b3A (bgV als ) _A avAal3A elAe6 
~Ab~ A e4Ab9 A f3Ab6 A cl _ 
al A bl A fi_3 A (a13 V bs) A a14 Ab_l 0 
al A_bl A _b3A (a15 Vbg) A aTAb7 _A as_A b5 A 1~2 
alAb_! A hA (~2V g3 ) A f2Ae3 A f~ Ab4 A a~Ag 1 
81 A bl A_(a12 A b7) A_ a4 
a A b_l A b3 A (als A _b9) A a6 A c3 
al A b_l A b_3 A (al5 A bg) A a6 A c3 A es 
a l A b l A h A i A ~ 3  _ 
al A _bl A a3 A (al3 A bs) A e3 
al A b_1 A (a12 A b2) A 84 
~ A b~ A (~2 V b7) A as A (d, V dz) A ~4 A a~6 A ~ 
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Table A2. Predicates used in the recognition of the numerals 0,1 . . . . .  9 

Number Primitive Semantic rule (predicate) 

1 a l  

2 a2 
3 a3 
4 a4 
5 a5 
6 a6 
7 a7 
8 as 
9 a9 

10 alo 
11 an 
12 a~2 
13 a13 
14 al4 
15 a~5 
16 a16 
17 a17 
18 bt 
19 b2 
20 b3 
21 b4 
22 b5 
23 b6 
24 b7 
25 b8 
26 b9 
27 bl0 
28 btt 
29 c~ 

30 c2 

31 c3 

32 dl 

33 d2 

34 el 

35 e2 

36 e3 

37 e4 

38 e5 

39 e6 

40 f~ 

41 f2 

42 f3 

43 gl 
44 g~ 
45 g3 
46 g4 
47 h 
48 i 

True if L P E A K  < 10; 2 ~< R2 ~< 50 
True if L P E A K  < 5; 2 ~< R2 ~< 10 
True if L P E A K  > 5; 2 ~< R2 <~ 15 
True if L P E A K  > 10; 2 ~< R2 ~< 15 
True if L P E A K  > 10; 2 <~ R2 ~< 20 
True if L P E A K  > 5; 2 ~< R2 <~ 25 
True if L P E A K  > 5; 5 ~< R2 ~< 15 
True if L P E A K  > 5; 5 ~< R2 ~< 35 
True if L P E A K  > 10; 5 ~< R2 ~< 40 
True if L P E A K  > 10; 10 ~< R2 ~< 30 
True if L P E A K  > 10; 15 ~< R2 ~< 40 
True if L P E A K  < 5; 25 ~< R2 ~< 50 
True if L P E A K  > 10; 30 ~< R2 ~< 50 
True if L P E A K <  5; 30 ~< R2 ~< 50 
True if L P E A K  < 5; 35 ~< R2 ~< 50 
True if LPEAK > 10; 35 ~< R2 ~< 50 
True if L P E A K  > 5; 40 ~< R2 ~< 50 
True if R P E A K  > 10; 2 ~< R2 ~< 50 
True if R P E A K  > 10; 2 ~< R2 ~< 15 
True if R P E A K  < 10; 2 <~ R2 ~< 30 
True if R P E A K  < 5; 2 ~< R2 ~< 45 
True if R P E A K  < 10; 25 ~< R2 ~< 45 
True if R P E A K  > 10; 25 ~< R2 ~< 50 
True if R P E A K  < 5; 25 ~< R2 ~< 50 
True if R P E A K  > 10; 30 <~ R2 ~< 50 
True if R P E A K  > 5; 35 ~< R2 <~ 50 
True if R P E A K  > 10; 35 ~< R2 ~< 50 
True if R P E A K  > 5; 40 ~< R2 ~< 50 
True if RMIN(1 ~< Rl ~ 30) is less than RMX2(RMIN ~< Rt ~< 30) 
and greater than RMXI(1 ~< Ri ~< RMIN) 
True if RMIN (10 ~< R~ ~< 40) is less than RMX2(RMIN <~ R~ ~< 40) 
and greater than RMXI(1 ~< R~ ~< RMIN) 
True if RMIN(10 ~< R~ ~< 45) is less than RMX2(RMIN <~ Rt ~< 45) 
and greater than RMXI(1 ~< Ri ~< RMIN) 
True if RP(RMIN) = RP(RMX) where RMIN is in the range 
5 ~< R~ ~< 25, and RMX in the range 1 ~< R~ <~ RMIN 
True if RP(RMIN) = RP(RMX) where RMIN is in the range 
5 ~< Ri ~< 25, and RMX is in the range RMIN ~< R~ ~< 40 
True if LMX < LMIN; where LMX and LMIN are in the range 
I~<RI~<10 
True if LMX < LMIN; where LMX in the range 1 <~ R1 ~< 30, and 
LMIN in the range 1 ~< R~ ~< LMX 
True if LMX < LMIN; where LMX in the range 10 ~< R~ ~< 40, 
and LMIN in the range 10 ~< R~ ~< LMX 
True if LMX < LMIN; where LMX and LMIN are in the range 
15 ~< R~ ~< 45 
True if LMX < LMIN; where LMX and LMIN are in the range 
20 ~< Rt ~< 50 
True if LMX < LMIN; where LMX and LMIN are in the range 
40 ~< R~ ~< 50 
True if RMIN < RMX; where RMIN is in the range 1 ~< Rt ~< 30, 
and RMX in the range 1 ~< Ri ~< RMIN 
True if RMIN < RMX; were RMIN and RMX are in the range 
20 ~< R1 ~< 35 
True if RMIN < RMX; where RMIN and RMX are in the range 
35 ~< R~ ~< 50 
True if W(20) ~> W(40) 
True if W(25) ~> W(10) 
True if W(25) ~> W(40) 
True if W(25) ~> W(45) 
True if Ratio > 2.5 
True if WMIN < WMX1 and WMIN < WMX2; where 
WMIN = min {W(J)} = {W(LMN)} 

10<J <40 

WMX1 = max {W(J)} 
I < J < L M N  

W M X 2 =  max {W(J)} 
LMN < J < 5 0  
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