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Since the q or dielectric breakdown model was proposed, it has been generally accepted 
that the fractal characteristics of the so-grown clusters have a smooth behavior as 7) increases 
from 0 to infinity. On the basis of recent theoretical calculations on a related model, we 
conjecture that the aggregate can become effectively branchless for 7 larger than a critical 
value q. A related possibility is that the value 1 for the fractal dimension might be reached at 
finite values of 7. We have carried out a large simulation program to test these conjectures 
and we find evidence supporting their validity. This is a preliminary report of our work on this 
problem. 

1. Introduction 

Among the models proposed in the last decade to describe different growth 
phenomena, the 7 or dielectric breakdown (DB) model [l] is perhaps the one 
which shows the largest variety of interesting features. Besides, it has become 
extremely useful to understand not only the phenomenon of dielectric break- 
down, but also a number of others like electrodeposition, fluid-fluid displace- 
ment, or fluid flow in porous media (see, e.g., ref. [2], and references therein). 
It is also closely related to models for dendritic growth and crack formation. 
Finally, it includes as particular realizations for certain values of the parameter 
77 other growth models, such as the Eden model [3] or the diffusion-limited 
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aggregation (DLA) [4], and therefore it provides a way to study them in the 
more general context of Laplacian growth processes. 

The 77 model is defined [l] by a growth rule that assigns at any point of the 
surface of the evolving cluster a growth probability proportional to the local 
normal electric (Laplacian, in general) field raised to the power 7, i.e., 

P,(x) c( ]n ~V@Wl”, x being a cluster surface point and d3 being the electric 
potential. The cluster is assumed to be equipotential (@ = 0) and far from it 
there is an enclosing circular electrode kept at constant potential (@ = 1). The 
resulting aggregates are branched structures, the complexity of the ramification 
decreasing with increasing 7. For instance, if 77 = 0, the growth probability is 
purely random and independent of the Laplacian field (and the model becomes 
the Eden one, as we announced above); the corresponding clusters are 
compact objects, although with a very complicated surface. When n increases 
to 1, more and more holes appear, defining branches in the clusters. For v = 1, 
which from the definition can be seen to be the same as DLA, the well-known 
star-shaped aggregates arise. 

Since the earliest simulations, an important parameter used to characterize 
the 77 clusters was the fractal dimension in several of its forms, e.g., as obtained 
from the scaling of magnitudes such as the radius of gyration or the number of 
particles with the cluster size. The first values of the fractal dimension were 
computed in ref. [l], and it turned out that for n = 0, 0.5, 1 and 2 the results 
were D = 2, 1.89, 1.75 and 1.6, respectively. Higher n values were not 
analyzed, because the little ramification of the structure implied very large 
simulations to have reliable estimates of the fractal dimension. Later, Mat- 
sushita et al. derived [5] an expression for the dimension of the n clusters, 
using a random-walk DLA-like version of the model (valid only for rational n 
values). Their result, which indicated that D -+ 1 continuously when q-+ ~0, 
was also checked numerically [6], but, again, only up to n = 2. Finally, 
motivated by theoretical work by Halsey [7], Amitrano carried out [8] a 
detailed numerical work, studying a large number of small (some 150 particles) 
clusters, grown with n between 0 and 5. Her results show a monotonic 
decreasing of D, and, for the largest n value considered, 77 = 5, D = 1.08. This 
is, to our knowledge, the last result about this question. 

2. The needle model 

The reason to come back to the problem of the fractal dimension of the V) 
model and more generally to the behavior of the model fractal characteristics 
as n increases is that, recently, Derrida and Hakim [9] have derived some 
results for a related model which suggest that the aggregate might become 
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branchless for n larger than a finite critical value vi. This also raises the 
possibility that D = 1 is reached for a finite value of n which can coincide with 
v1 or be larger. In this section, we summarize the results of ref. [9] and discuss 
their implications. 

The overall branched structure of DLA and 7 clusters can be simulated by a 
set of one-dimensional needles, growing from a central seed. In two dimen- 
sions, this model can be treated by conformal mapping techniques, and the 
field @ calculated outside the aggregate. Once Q, is obtained, the growth 
probability and velocity are readily derived from it. Competition between 
needles of different sizes can be estimated, as function of their number and of 
7. The most striking result of this analysis is the reduction of the number of 
stable needles to two, as n+6. Indeed, the stability condition for IZ branches 
turns out to be 

4 

n-2 I- for even )z , 

77< 4n 

n*-2n-1 
for odd n . 

If this result for the needle model holds true for the 77 model as well, the 
resulting aggregate should look effectively one-dimensional on a coarse-grained 
scale, and branching should be suppressed. The pattern could be modeled as a 
kind of random walk, with a statistical weight depending on its shape and on n. 
Such walks have already been discussed [lo], under the name of Laplacian 
random walks. The possibility that for values of n greater than 6 the aggregates 
generated by the DB model reduce to Laplacian random walks is rather 
intriguing, and opens new perspectives to study these growth processes. 

3. Simulation results and discussion 

In the present work we have generated a variety of aggregates for different 
values of q. The main difficulty in obtaining accurate statistics is the necessity 
of solving Laplace’s equation in a sufficiently large lattice. We have used 
hexagonal lattices, to minimize anisotropy effects, of sizes up to 256 x 256. The 
smallest aggregates are those simulated for large values of n. They turned out 
to be close to a straight line, and reach soon the boundaries of the lattice. 
Typical sizes, for n 2 8, are -300. On the other hand, for typical DLA clusters 
(77 = l), aggregates with up to 20000 particles were generated. These sizes, 
which are significantly larger than previous calculations, appear to reach the 
limits of present computing capabilities. We are currently investigating alterna- 
tive ways of studying these models. 
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Fig. 1. Fractal (box-counting) dimension of the clusters as function of 7. The dashed line indicates 

D=l. 

Our main results are summarized in fig. 1. We present the fractal (box- 
counting) dimension of the clusters generated, as function of 77. For each n 
value, an average of at least 3 clusters is presented. The fractal dimension, D, 
decreases as function of 7, and becomes constant, around D = 1, for n 2 6. We 
have analyzed other magnitudes, like the mean number of particles per cluster 
and the mass-radius scaling dimension, and they also support the conjecture of 
the existence of a “transition”. In particular, the mean number of particles per 
cluster is greater (smaller) than the lattice diameter for r] less (more) than 6. 
This is a hint of a less intricated structure of the aggregates with n > 6, which 
would be related to the fact that they show D = 1. Moreover, the number of 
branches of the grown clusters is in accordance with the aforementioned 
theoretical prediction of ref. [9]. For n > 2 they never show more than three 
branches, and no presence of branches, on the scale of the aggregate size, can 
be observed for large values of n. Typical examples for n = 8 are shown in fig. 
2 (the side of the outer hexagon is 256). 

Fig. 2. Examples of n = 8 clusters. Branches are practically absent and the clusters are ribbon-like. 

From left to right the number of particles is 319, 304 and 288, and their dimensions are 0.95 2 0.02, 
0.97? 0.01 and 0.96 c 0.02, respectively. 
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4. Conclusion 

Our results support the hypothesis that the shape of the aggregates of the n 
model changes into a ribbon-like object with no branches for 77 - 6. Moreover, 
it also seems that the resulting Laplacian random walk has a fractal dimension 
D - 1. This change in the behavior of the aggregates, which resembles a 
conventional phase transition in some aspects, opens new possibilities for the 
study of the model. The high 17 regime, with its simple and quasi deterministic 
shapes, looks similar to the mean field solutions in statistical mechanics. It is 
interesting to check whether this analogy can be pushed further, and the 
deviations from unbranched objects can be understood within some kind of 
perturbation expansion. Further research along these lines, as well as to get a 
better characterization of the transition, is in progress. 

Acknowledgements 

We gratefully acknowledge permission from the Advanced Computing Lab- 
oratory of Los Alamos National Laboratory and the Universidad Complutense 
to use their computer facilities to grow the clusters studied in this work. AS. 
was partially supported by the CICyT (Spain) project MAT90-0544, whereas 
the U.S. Department of Energy supported his work at Los Alamos. F.G. and 
E.L. were supported by CICyT (Spain). 

References 

[l] L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett. 52 (1984) 1033; L. 
Pietronero and H.J. Wiesmann, J. Stat. Phys. 36 (1984) 909. 

[2] J. Feder, Fractals (Plenum, New York, 1988). 
[3] M. Eden, in: Proc. Fourth Berkeley Symp. on Mathematical Statistics and Probability, vol. 4, 

J. Neyman, ed. (University of California Press, Berkeley, 1961) p. 223. 
[4] T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47 (1981) 1400. 
[5] M. Matsushita, K. Honda, H. Toyoki, Y. Hayakawa and H. Kondo, J. Phys. Sot. Jpn. 55 

(1986) 2618. 
[6] Y. Hayakawa, H. Kondo and M. Matsushita, J. Phys. Sot. Jpn. 55 (1986) 2479. 
[7] T. Halsey, Phys. Rev. Lett. 59 (1987) 2067. 
[S] C. Amitrano, Phys. Rev. A 39 (1989) 6618. 
[9] B. Derrida and V. Hakim, Phys. Rev. A 45 (1992) 8579. 

[lo] J.W. Lyklema, C. Everstz and L. Pietronero, Europhys. Lett. 2 (1986) 77; J.W. Lyklema and 
C. Everstz, J. Phys. A 19 (1986) L895; G.F. Lawler, J. Phys. A 20 (1986) 4656. 


