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SUMMARY 

We reported recently the construction of the 4.4-kb R6K-derived pMAD1 plasmid carrying sz@’ [Stewart et al., Gene 

106 (1991) 97-1011 that does not share nt sequences with ColEl and therefore permits recombination-based screening of 

I libraries that contain ColEI sequences. Here we describe the construction of the 2.5-kb R6K-derived plasmid, pMAD3, 

that lacks the x-encoding pir gene required for R6K replication. To supply IC [Inuzuka and Helinski, Proc. Natl. Acad. Sci. 

USA 75 (1978) 5381-53851 in tram, we employed pPRld22pir116, referred to henceforth as pPR1 [McEachern et al., Proc. 

Natl. Acad. Sci. USA 86 (1989) 7942-7946; Dellis and Filutowicz, J. Bacterial. 173 (1991) 1279-12861. Plasmid pMAD3 

is small enough to be amplified readily by PCR [ Saiki et al., Science 230 (1985) 13.50-13541. This permits the insertion of 

larger fragments and the retrieval of larger I inserts, as well as the use of a simplified PCR-based cloning protocol which 

utilizes annealing rather than ligation to create recombinants in pMAD3 [N&on et al., PCR Methods and Applications 

1 (1991) 120-1231. 

INTRODUCTION 

A feature of the recombination-based assay (Seed, 1983; 

Kurnit and Seed, 1990) is that the supF plasmid is inte- 

grated into bacteriophage A carrying an insert that shares 

nt sequences with the insert in the plasmid. The size con- 

straint of phage packaging mandates that decreasing the 

size of the integrated plasmid yields more space for the 
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inserts. Here we describe the construction of a small supF 
plasmid that is achieved by placing an essential plasmid 

gene on an ancillary helper plasmid. 

EXPERIMENTAL AND DISCUSSION 

(a) Construction of pMAD3 

To screen by recombination a variety of I libraries that 

contain ColEl sequences, we elaborated the nonhomolo- 

gous plasmid, pMAD1. This 4.4-kb plasmid, unrelated to 

either II or ColEI, carries an R6K ori, a KmR marker, a 

polylinker, and the R6K pir gene (Stewart et al., 1991). An 

increased copy number of this plasmid was obtained by 

introducing the single bp pir-41 mutation into the 71 gene 

(Inuzuka and Wada, 1985). We have used pMAD1 to 

study the transcription pattern of multiple genomic 

sequences (A.J.H., M.M.O.-H., M.A. Hauser, M. Van 

Keuren and D.M.K., unpublished). 

To construct a smaller derivative of pMAD 1, we utilized 

a helper plasmid, pPR1, which does not share nt sequences 
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ECORI 

Fig. 1. Plasmids pMAD3 and pPR1. The components of these plasmids 

are: pMAD3 carries the R6K ori, a KmR gene, a supF gene, and a use- 

ful MCS; pPR1 is an RK2 derivative that carries a n-encoding pir gene 

with a pir- 116 mutation which confers a high copy number onto pMAD3. 

with either ColEl-based or R6K-based plasmids. This 

helper plasmid supplies the rc protein of R6K in trans, 

which enabled us to eliminate the pir gene (and approx. 

2 kb) from pMAD1. The small size (2.5 kb) of the result- 

ing pMAD3 vector enabled us both to amplify pMAD3 

by PCR readily and to put in larger inserts and/or re- 

trieve larger clones by recombination than with pMAD1 

(Fig. 1). 

To construct pMAD3, we amplified pMAD1 with the 

primers pMAD-380 and pMAD-1990 (Table I), yielding a 

2.5-kb PCR product (the numbers 380 and 1990 corre- 

spond to the nt in the partial Ecpr6k sequence of R6K 

deposited in the GenBank, accession number VOO320). 

This PCR product included the R6K y ori, .supF, KmR, and 

the polylinker of pMAD1 (Stewart et al., 1991) but lacked 

the p uri and the essential n protein of R6K which was 

supplied in tram by pPR1 (McEachern et al., 1989; Dellis 

and Filutowicz, 1991). Plasmid pPR1 is an Il.%kb RK2- 

derived TcR plasmid which expresses a 7~ protein with in- 

creased activity due to the single bp @r-l 16 mutation (Filu- 

towicz et al., 1986, 1987), analogous to the pir-41 mutation 

which was present in pMAD1 (Stewart et al., 1991). We 

moved the TcR pPR1 plasmid carrying the pir gene into the 

nonrestricti~g hsd~~ hdsR - strain, DM 1061, a tonA - de- 

rivative of MC1061 (Casadaban and Cohen, 1980). (Be- 

TABLE I 

Sequences of primers 

Lsq#: 5’-ATTGTTTCGGACTTTTGAA-3’ 

pMADins: 5’-CAGATCCGGAA’JTGGATC-3’ 

Igtll U-l: 5’-(CUA),GCCCGTCAGTATCGGCGG-3’ 

Rgt 11 U-2: 5’-(CUA),AGCCCGGCGCTCAGCTGG-3’ 

pMAD-380: 5’-(CUA),AAGCTAGATCTGAAGATC-3’ 

pMAD-1990: ~‘-(UAG)~GCGGTAGATCTATGGATG~G-3’ 

pMAD U-4: S’-(UAG)~CTGGAT~CAA~~CGGAT~G-3’ 

pMAD U-5: 5’-(UAG)JTCTTTCTCAACGTAACACTTTAC-3’ 

cause DM1061 is a tonA derivative of MC1061, it lacks 

the receptor for and therefore does not plate Tl phages.) 

DMlO61 has the additional advantage of being mcrA_ 

mcrB- (Raleigh and Wilson, 1986; Raleigh et al., 1988) so 

it is an excellent host lacking multiple E. coli restriction 

activities. 

To obtain pMAD3 from pMAD1 by PCR, conditions 

for amplification of a pMAD1 template were 50 s at 94°C 

for denaturation, 50 s at 58°C for annealing, and 3 min at 

72°C for extension for 35 cycles followed by a final exten- 

sion time of 7 min. This yielded an expected product of 

2.5 kb visualized on a 0.80/, agarose (Seakem) gel. The 

product was ethanol precipitated, dried, resuspended in 

UDG buffer (25 mM Tris*HCl pH 7.8~lOmM MgCl,/ 

4 mM fl-mercaptoethanol/0.4 mM ATP) at a concentra- 

tion of 500 ng in 20 ~1, and treated with 1 unit of uracil 

DNA glycosylase (UDG; BRL) for 2 h at room tempera- 

ture. The UDG was then heat inactivated at 65°C for 

20 min (Nisson et al., 1991). The resulting complemental 

ss ends were annealed at room temperature for 1 h to form 

a KmR open circle. Of this solution, 2 ~1 was used to trans- 

form the TcR strain, DM106l[pPRl]. The resulting KmR 

TcR colonies were screened by PCR using primers pMAD 

U-4 and pMAD U-5 (Table I) to confirm the isolation of 

a DMlO6l[pPRl] colony carrying the 2.5-kb pMAD3. 

(b) Use of the vector pMAD3 

CsCl-purified DNA from DM106l[pMAD3][pPRI] 

was digested with EcoRI. Linear pMAD3 DNA was PCR 

amplified using the (UAG)~-containing primers pMAD U-4 

and pMAD U-5 (Table I) to yield a 2.5-kb product. This 

2.5-kb linear molecule was isolated from a low-melting- 

point agarose gel by phenol extraction followed by ethanol 

precipitation with carrier 0.025 “/i, linear acrylamide (w/v), 

resuspended in UDG buffer (Nisson et al., 1991), and 

treated with UDG as described above. The resulting plas- 

mid with ss tails can then be stored at 4’ C. 

(c) Preparation of insert 

The sequence to be cloned by the above strategy, PG 1, 

was an insert in ;Igtl 1. This insert was PCR amplified using 

primers Agt 11 U- 1 and igt 11 U -2 (Table I) that each con- 

tain a 5’-(CUA),-3’ sequence (Nisson et al., 1991). After 

PCR amplification, the 700-bp insert was isolated from a 

low-melting-point agarose gel as described above and 

treated with UDG, resuiting in the generation of ss over- 

hangs complementary to those of the vector (Nisson et al., 

1991). 

(d) Annealing of vector and insert 

Equal volumes of the UDG-treated Kmn pMAD3 vec- 

tor (approx. 10 ng,/@l) and the UDG-treated insert (also 

approx. 10 ng/pl) were mixed and allowed to anneal at 
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room temperature for 1 h. The mixture was then used to 

transform competent TcR DM106l[pPRl] to KmR TcR. 

Inserts in the resulting colonies were analyzed by amplifi- 

cation with primers located in supF and the polylinker 

(primers Lsz@ and pMADins; Table I) that are 250-bp 

apart. Thus, clones with no insert yielded a 250-bp frag- 

ment, whereas clones containing an insert yielded a larger 

fragment. 

By virtue of amplification using LsupF and pMADins 

primers, we demonstrated that the expected 700-bp insert 

from phage PGl was inserted into pMAD3. To compare 

the efficiency of pMAD3 with pMAD1, this PCR product 

was also digested with EcoRI and placed into the EcoRI 

site of pMAD1. This enabled us to compare the recombi- 

nation rates mediated by the PGl insert in pMAD 1 and 

pMAD3. 

To extend this comparison between pMAD1 and 

pMAD3, we transformed clone 4D12 from YAC A125- 

B 12 on chromosome 21 in pMAD1 [which we demon- 

strated previously by recombination (Seed, 1983; Kurnit 

and Seed, 1990; and unpublished data) to represent an 

expressed sequence in pMAD1 (Stewart et al., 1991)] into 

pMAD3. Using primers pMAD-380 and pMAD-1990, we 

followed the deletion strategy described above to construct 

4D12 inserted into the equivalent of pMAD3. 

(e) Selection using the recombination-based assay 

Recombination (Seed, 1983; Km-nit and Seed, 1990) was 

performed between the A. phage carrying PGl and the same 

PGl insert in both pMAD1 and pMAD3. This was done 

by lysing overnight 0.2-ml cultures of pMAD1 and pMAD3 

carrying the PGl insert with lo6 PGl phages, followed by 

plate elution with 3 ml of SM buffer (0.1 M NaCl/8 mM 

MgSO,/O.S mM Tris.HCl pH 7.5/0.01 “/b gelatin). Homol- 

ogous phages, which acquired supF via recombination, were 

detected as plaques on the selective strain DM21 (Kurnit 

and Seed, 1990). In each case, the rate of recombination 

indicated that IO- ’ phages had recombined with the insert 

in the plasmid, as expected for homologous sequences 

(Km-nit and Seed, 1990). 

Furthermore, we showed by recombination using both 

pMAD1 and pMAD3 that insert 4D12 was expressed in 

eDNA libraries constructed from the RNA of human 20- 

week-old abortus fetal spinal cord and brain. The 4D12 

insert in either pMAD1 or pMAD3 was allowed to recom- 

bine with the above cDNA libraries. Approx. lo6 cDNA 

library phages were plated on cultures of 4D 12 in pMAD 1 

and pMAD3. Following confluent lysis, eluates from these 

plates corresponding to 5 x lo* pfu on a nonselective strain 

were plated on selective strain DM21, yielding approxi- 

mately four plaques per plate with the fetal spinal cord li- 

brary and two plaques per plate with the fetal brain library 

for 4D12 cloned both in pMAD1 and pMAD3. Thus, the 

rates at which recombination occurred were similar for 

4D12 cloned both in pMAD1 and pMAD3. 

Plasmid pMAD3 is currently used in our laboratory to 

study the transcription profile of various genomic sequences 

(A.J.H., M.M.O.-H., M.A. Hauser, M. Van Keuren and 

D.M.K., unpublished). In summ~y, pMAD3 has all the 

features of its predecessor pMAD1, and in addition, its 

smaller size allows the cloning and screening of larger DNA 

inserts and application of PCR-based amplification to fa- 

cilitate cloning. Its lack of homology to sequences in cDNA 

libraries makes pMAD3 an excellent choice for recombi- 

nation-based screening. 
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