BRES 18246

Zinc modulates GABA_B binding in rat brain

Sarah M. Turgeon and Roger L. Albin

Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, MI (USA)

(Accepted 16 June 1992)

Key words: GABA_A; GABA_B; Zinc; Calcium; Neuromodulation; Hippocampus; Cerebellar molecular layer; Thalamus

The effects of $ZnCl_2$ on [3H]GABA binding to $GABA_A$ and $GABA_B$ binding sites were investigated using receptor autoradiography. At concentrations exceeding 100 μ M, zinc non-competitively inhibited $GABA_B$ binding in a dose dependent fashion. $GABA_A$ binding was not inhibited significantly by zinc eliminating the possibility of a non-specific effect of zinc. Increased calcium concentrations up to 10 mM enhanced total $GABA_B$ binding but did not prevent zinc induced inhibition of $GABA_B$ binding, indicating a separate site of action for these cations at the $GABA_B$ binding site. In some regions, zinc modulates $GABA_B$ binding in a biphasic manner as concentrations of 10–100 μ M zinc significantly enhanced $GABA_B$ binding in the hippocampus and the molecular layer of the cerebellum but not in the thalamus. These results provide further evidence for a neuromodulatory role for zinc in the central nervous system.

INTRODUCTION

Zinc is widely distributed throughout the mammalian central nervous system and may function as a neuromodulator. Zinc-containing neuronal pathways¹⁰, zinc-containing synaptic vesicles¹⁸, calcium-dependent zinc release^{1,11}, and zinc uptake mechanisms²³ have been identified. Zinc modulates the function of various neurotransmitters. Zinc non-competitively inhibits NMDA receptors^{17,19,24} by either non-competitive antagonism of glycine binding²⁶ or direct antagonism of NMDA receptors9. Zinc interacts biphasically with non-NMDA excitatory amino acid receptors, exciting them at low zinc concentrations and inhibiting them at higher concentrations¹⁷. NMDA receptor-mediated glutamate neurotoxicity is also inhibited by zinc^{8,13} while zinc enhances non-NMDA receptor-mediated glutamate neurotoxicity 13. Zinc also inhibits GABAA receptor-mediated inhibitory responses in cultured neurons^{4,15,16,21,22,24}. Binding studies have revealed inhibition of [3H]GABA binding to synaptic membranes by zinc². While much of the research concerning zinc and GABA transmission has focused on the GABA receptor, there is also some evidence for zinc modulation of GABA_B receptor activity. Xie and Smart have proposed that zinc induces giant depolarizing potentials (GDPs) in hippocampal neurons by inhibition of pre- and postsynaptic GABA_B receptors²⁵. Drew et al. have shown that $100~\mu\text{M}$ zinc inhibits [³H]baclofen binding to cerebellar membranes⁷ but there has been no further characterization of zinc effects on GABA_B binding. We now report dose-dependent modulation of GABA_B binding by zinc in several brain regions.

MATERIALS AND METHODS

Quantitative autoradiography was used to analyze the effect of varying concentrations of ZnCl₂ on [3H]GABA binding to GABA_A and GABA_B binding sites, to assess the effect of [Ca²⁺] on zinc-GABA_B receptor interactions, and to determine the nature of the interaction between zinc and GABA_B binding by performing saturation analysis of GABA_B binding in the presence and absence of zinc. Male Sprague-Dawley rats (175-225 g; Harlan Industries, Indianapolis) were decapitated and brains were rapidly dissected and frozen in Lipshaw embedding matrix surrounded by powdered dry ice. Twenty-\(\mu\)m sections were cut in the horizontal plane on a Lipshaw cryostat at −20°C and thaw mounted onto gelatin-coated slides. Sections were stored at -20°C for no longer than 24 h. Sections were run in triplicate. Sections underwent a 30-min pre-wash in buffer containing 50 mM Tris-HCl and 2.5 mM CaCl₂ (pH 7.4 at +4°C) and were then dried under a stream of cool air. GABAB binding sites were examined with [3H]GABA (Amersham, Arlington Heights, IL) in the presence of 10 μ M isoguvacine (Cambridge Research Chemicals, Cambridge, UK) and non-specific binding was determined in the presence of 100 μ M baclofen (gift of Ciba-Geigy, Basel, Switzerland) while GABA binding sites were examined with [3H]GABA in the presence of 100 µM baclofen and non-specific

binding was determined in the presence of 10 µM isoguvacine⁶. Assay conditions included a 45-min incubation at +4°C in 50 mM Tris-HCl and 2.5 mM CaCl₂. Following incubation, slides were removed individually and rinsed 3 times with 3 ml buffer and once with 3 ml 2.5% gluteraldehyde in acetone and immediately blown dry with warm air. Slides were mounted in an X-ray cassette and opposed to tritium sensitive film (³H-Hyperfilm, Amersham) along with [14C] plastic standards containing known amounts of radioactivity (ARC, Inc., St. Louis, MO) for 3 weeks (competition analysis) or 6 weeks (saturation analysis) at +4°C. Films were developed in Kodak D-19, fixed and dried. The optical densities of the images were determined with computer-assisted densitometry using an MCID system (Imaging Research; St. Catherine's, Ont.). Ten to twenty-five readings were taken with a variable size cursor in each region examined and averaged together. Bound radioactivity was calculated from film optical densities with a standard curve obtained by fitting the optical density of the standards against their radioactivity with a fourth degree polynomial equation.

Zinc modulation of [3 H]GABA binding to GABA_A and GABA_B binding sites was analyzed in 3 separate experiments. Two experiments included concentrations of ZnCl₂ from 1 μ M to 3 mM in the incubation mixture with 20 nM [3 H]GABA (91.7 Ci/mmol; n=3 animals) and the third included concentrations of ZnCl₂ from 1 nM to 1 mM with 20 nM [3 H]GABA (61 Ci/mmol; n=3 animals). The effect of calcium concentration on the modulation of GABA_B binding by 500 μ M zinc was analyzed at 5 concentrations of CaCl₂ from 1.0 mM to 10.0 mM ([3 H]GABA = 91 Ci/mmol; n=3 animals). Saturation studies were performed using the method of isotopic dilution of 10 nM [3 H]GABA (91.7 Ci/mmol) with non-radioactive GABA (Sigma; n=3 animals). The range of total GABA concentrations was 10-650 nM. GABA_B binding and non-specific binding were determined at all concentrations of GABA in both the presence and the absence of 400 μ M ZnCl₂.

For analysis of zinc modulation of $[^3H]GABA$ binding, specific binding was assessed in the neocortex, dentate gyrus and CA1 regions of the hippocampus, striatum, thalamus, and granule cell layer and molecular layer of the cerebellum. IC₅₀ values for each ligand were calculated from standard dose-response semi-log plots. For analysis of the effect of calcium concentration on zinc modulation of GABA_B binding, specific binding was assessed in the molecular layer of the cerebellum. In the saturation experiments, values of specific $[^3H]GABA$ bound were quantified in the neocortex, thalamus and the molecular layer of the cerebellum to construct Scatchard plots.

RESULTS

Zinc displayed a dose-dependent biphasic effect on [3 H]GABA binding to the GABA_B binding site. At concentrations higher than 100 μ M, zinc inhibited

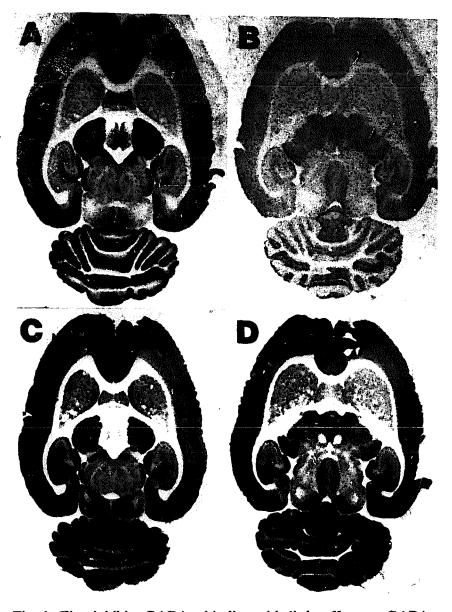


Fig. 1. Zinc inhibits GABA_B binding with little effect on GABA_A binding. Autoradiographs of [³H]GABA binding to GABA_B binding sites in the absence (A) and presence (B) of 1 mM zinc and to GABA_A binding sites in the absence (C) and presence (D) of 1 mM zinc. Side to side variations in binding are due to a rinse effect and are accounted for in the data analysis by measuring and averaging data from both sides of the sections.

GABA_B binding in all areas examined with IC₅₀ values approximating 500 μ M (Table I). GABA_A binding was inhibited slightly by zinc but 50% inhibition was not reached by the highest concentration of zinc in the assay (3 mM), indicating that the effect on GABA_B

TABLE I

Inhibition of [3H]GABA binding to GABA_B binding sites in various brain regions by zinc

IC₅₀ values were derived from inhibition curves with ZnCl₂ (see text). K_D (nM) and B_{max} (fmol/mg protein) values were determined in the presence and absence of 400 μ M ZnCl₂ (see text).

Brain Region	<i>IC</i> ₅₀ (μ <i>M</i>)	$K_D(-Zn)$	$K_D(+Zn)$	$B_{max}(-Zn)$	$B_{max}(+Zn)$
Cerebellum					
Molecular layer	505	98.5	113.0	1969.3	1353.3 *
Granule cell layer	400				
Striatum	710				
Thalamus	515	119.6	120.6	1 585.8	1 222.7
Hippocampus					
Dentate	1020				
CA1	1 105				
Neocortex	620	127.9	114.8	1 189.0	807.1 *

^{*} P < 0.05 (two-tailed *t*-test).

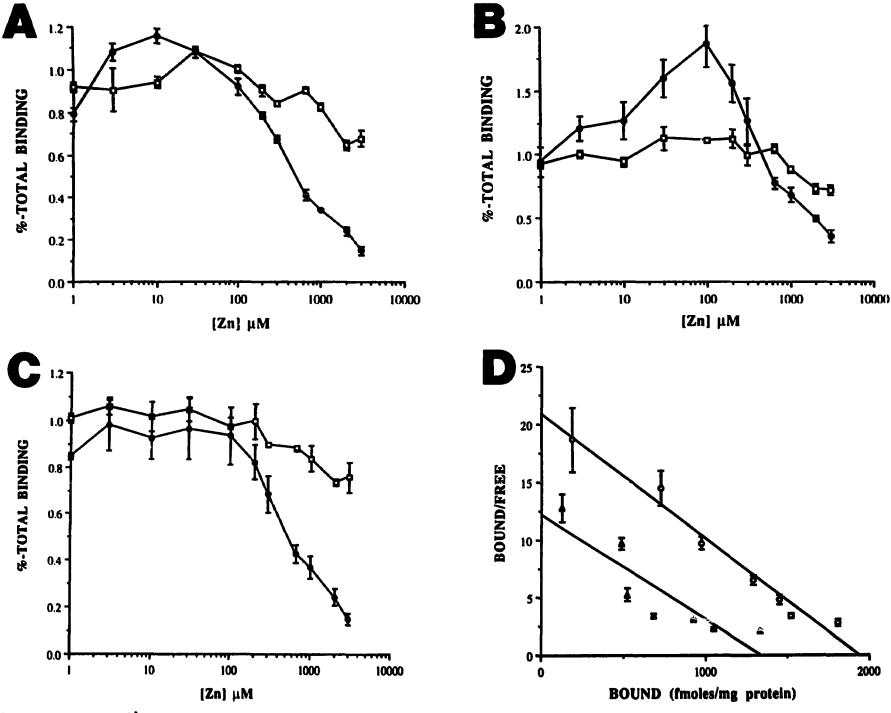


Fig. 2. Modulation of [3 H]GABA binding to GABA_A (\square) and GABA_B (\bullet) binding sites by increasing concentrations of zinc in the granule cell layer (GABA_A) and the molecular layer (GABA_B) of the cerebellum (A), in CA1 (B) and in thalamus (C). At concentrations between 10 and 100 μ M, zinc enhances GABA_B binding in cerebellum and hippocampus, while no enhancement is seen in thalamus. Saturation analysis of [3 H]GABA binding to GABA_B binding sites in the molecular layer of the cerebellum in the presence ($_{\bullet}$) and absence ($_{\odot}$) of 400 μ M zinc (D).

binding is not a non-specific effect (Figs. 1 and 2). Increased calcium concentration up to 10 mM CaCl₂ did not prevent inhibition of $GABA_B$ binding by 500 μM zinc (Fig. 3). At zinc concentrations of 10-100 μ M, GABA_B binding was enhanced in some areas. In comparison to GABA_B binding in the absence of zinc, $10~\mu\text{M}$ zinc enhanced GABA_B binding by 15% in the molecular layer of the cerebellum (P < 0.05, two-tailed t-test; Fig. 2A), 30 μ M zinc enhanced GABA_B binding by 27% in the dentate gyrus (P < 0.005, two-tailed t-test) and 82% in CA1 of the hippocampus (P < 0.005, two-tailed t-test), and 100 μ M zinc enhanced GABA_B binding by 33% in the dentate gyrus (P < 0.005, twotailed t-test) and 56% in CA1 of the hippocampus (P < 0.05, two-tailed *t*-test; Fig. 2B). However, GABA_B binding in the thalamus was not increased by 10-100 μ M zinc (Fig. 2C).

Saturation analysis revealed a non-competitive inhibition of GABA_B binding by 400 μ M zinc (Fig. 2D). K_D values for [³H]GABA binding in the presence and in the absence of zinc did not differ significantly in either the cerebellar molecular layer or in the neocortex while the $B_{\rm max}$ in the presence of zinc was significantly lower (Table I). The difference in the $B_{\rm max}$ values in the thalamus approached significance at the 0.05 level (Table I) and the plot resembled that of a non-competitive inhibition of [³H]GABA binding to the GABA_B binding site by zinc.

DISCUSSION

Our results provide further evidence for a neuromodulatory role for zinc in the central nervous system. Our findings are consistent with the physiological data

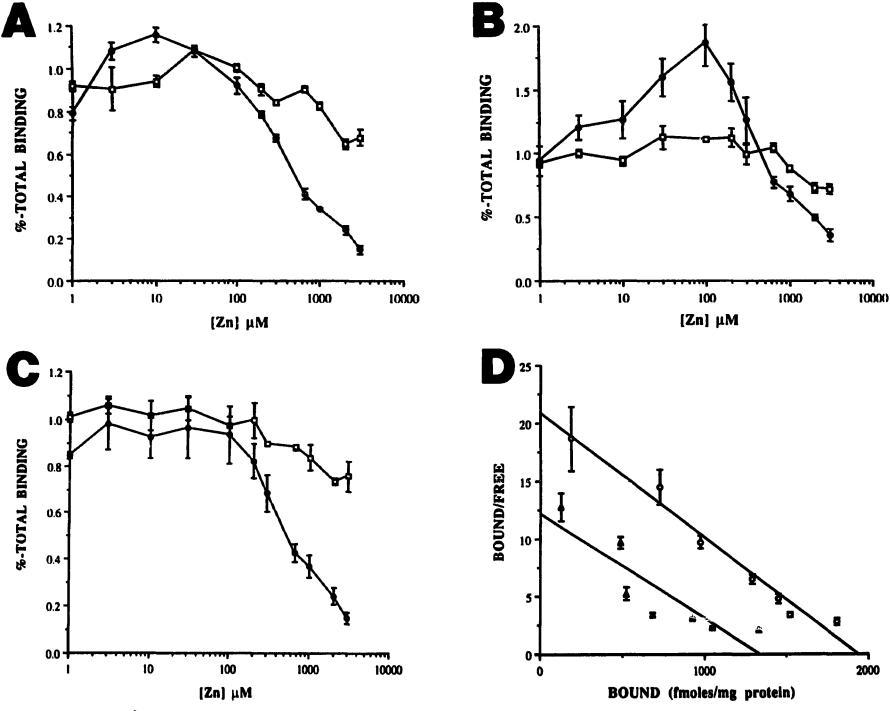


Fig. 2. Modulation of [3 H]GABA binding to GABA_A (\square) and GABA_B (\bullet) binding sites by increasing concentrations of zinc in the granule cell layer (GABA_A) and the molecular layer (GABA_B) of the cerebellum (A), in CA1 (B) and in thalamus (C). At concentrations between 10 and 100 μ M, zinc enhances GABA_B binding in cerebellum and hippocampus, while no enhancement is seen in thalamus. Saturation analysis of [3 H]GABA binding to GABA_B binding sites in the molecular layer of the cerebellum in the presence (\triangle) and absence (\bigcirc) of 400 μ M zinc (D).

binding is not a non-specific effect (Figs. 1 and 2). Increased calcium concentration up to 10 mM CaCl₂ did not prevent inhibition of $GABA_B$ binding by 500 μ M zinc (Fig. 3). At zinc concentrations of 10–100 μ M, GABA_B binding was enhanced in some areas. In comparison to GABA_B binding in the absence of zinc, $10~\mu\text{M}$ zinc enhanced GABA_B binding by 15% in the molecular layer of the cerebellum (P < 0.05, two-tailed t-test; Fig. 2A), 30 μ M zinc enhanced GABA_B binding by 27% in the dentate gyrus (P < 0.005, two-tailed t-test) and 82% in CA1 of the hippocampus (P < 0.005, two-tailed t-test), and 100 μ M zinc enhanced GABA_B binding by 33% in the dentate gyrus (P < 0.005, twotailed t-test) and 56% in CA1 of the hippocampus (P < 0.05, two-tailed *t*-test; Fig. 2B). However, GABA_B binding in the thalamus was not increased by 10-100 μ M zinc (Fig. 2C).

Saturation analysis revealed a non-competitive inhibition of GABA_B binding by 400 μ M zinc (Fig. 2D). K_D values for [³H]GABA binding in the presence and in the absence of zinc did not differ significantly in either the cerebellar molecular layer or in the neocortex while the B_{max} in the presence of zinc was significantly lower (Table I). The difference in the B_{max} values in the thalamus approached significance at the 0.05 level (Table I) and the plot resembled that of a non-competitive inhibition of [³H]GABA binding to the GABA_B binding site by zinc.

DISCUSSION

Our results provide further evidence for a neuromodulatory role for zinc in the central nervous system. Our findings are consistent with the physiological data of zinc are not mediated by the same site responsible for Ca^{2+} stimulation of GABA_B binding. Our results are consistent with a hypothesis that zinc at low concentrations might' enhance GABA_B binding by acting at one site where calcium also acts, while at higher concentrations zinc would inhibit GABA_B binding by acting at a second site. Interestingly, zinc also affects the electrophysiological responses of non-NMDA receptors in a biphasic manner, potentiating these responses at 50 μ M zinc and inhibiting the responses at 1 mM zinc¹⁷.

The regional heterogeneity of zinc effects on GABA_B binding also suggests GABA_B receptor heterogeneity within the central nervous system. Evidence is accumulating in support of GABA_B receptor heterogeneity^{3,20}. We have shown that zinc modulates GABA_B binding biphasically in some regions but only inhibits GABA_B binding in others, suggesting regional differences in GABA_B receptors.

REFERENCES

- 1 Assaf, S.Y. and Chung, S.-H., Release of endogenous Zn²⁺ from brain tissue during activity, *Nature*, 308 (1984) 734–736.
- 2 Baraldi, M., Caselgrandi, E. and Santi, M., Effect of zinc on specific binding of GABA to rat brain membranes. In C.J. Frederickson, G.A. Howell and E.J. Kasarskis (Eds.), *The Neurobiology of Zinc, Part A: Physiochemistry, Anatomy, and Techniques*, Alan R. Liss, New York, 1984, pp. 59-71.
- 3 Bowery, N.G., Knott, C., Moratalla, R. and Pratt, G.D., GABA_B receptors and their heterogeneity. In G. Biggio and E. Costa (Eas.), *GABA* and Benzodiazepine Receptor Subtypes, Raven, New York, 1990, pp. 127-139.
- 4 Celentano, J.J., Gyenes, M., Gibbs. T.T. and Farb, D.H., Negative modulation of the γ-aminobuty is acid response by extracellular zinc, Mol. Pharmacol., 40 (1991) 766-773.
- 5 Charton, G., Rovira, C., Ben-Ari, Y. and Leviel, V., Spontaneous and evoked release of endogenous Zn²⁺ in the hippocampal mossy fiber zone of the rat in situ, Exp. Brain Res., 58 (1985) 202-205.
- 6 Chu, D.C.M., Albin, R.L., Young, A.B. and Penny, J.B., Distribution and kinetics of GABA_B binding sites in rat central nervous system: a quantitative autoradiographic study, *Neuroscience*, 34 (1990), 341-357.
- 7 Drew, C.A., Johnston, G.A.R. and Weatherby, R.P., Bicuculline-insensitive GABA receptors: Studies on the binding of (-)-baclofen to rat cerebellar membranes, Neurosci. Lett., 52 (1984) 317-321.
- 8 Eimerl, S. and Schramm, M., Acute glutamate toxicity in cultured

- cerebellar granule cells: agonist potency, effects of pH, Zn²⁺ and the potentiation by serum albumin, *Brain Res.*, 560 (1991) 282–290.
- 9 Forsythe, I.D., Westbrook, G.L. and Mayer, M.L., Modulation of excitatory synaptic transmission by glycine and zinc in cultures of mouse hippocampal neurons, *J. Neurosci.*, 8 (1988) 3733-3741.
- 10 Frederickson, C.J., Neurobiology of zinc and zinc-containing neurons, *Int. Rev. Neurobiol.*, 31 (1989) 145-238.
- 11 Howell, G.A., Welch, M.G. and Frederickson, C.J., Stimulation-induced uptake and release of zinc in hippocampal slices, *Nature*, 308 (1984) 736-738.
- 12 Kato, K., Goto, M. and Fukuda, H., Regulation by divalent cations of ³H-baclofen binding to GABA sites in rat cerebellar membranes, *Life Sci.*, 32 (1983) 879–887.
- 13 Koh, J. and Choi, D.W., Zinc alters excitatory amino acid neuro-toxicity on cortical neurons, J. Neurosci., 8 (1988) 2164-2171.
- 14 Lambert, N.A., Levitin, M. and Harrison, N.L., Induction of giant depolarizing potentials by zinc in area CA1 of the rat hippocampus does not result from block of GABA_B receptors, *Neurosci. Lett.*, 135 (1992) 215–218.
- 15 Legendre, P. and Westbrook, G.L., Noncompetitive inhibition of γ-aminobutyric acid_A channels by Zn, Mol. Pharmacol., 39 (1991) 267-274.
- 16 Mayer, M.L. and Vyklicky, L., The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus, *J. Physiol.*, 415 (1989) 351-365.
- 17 Mayer, M.L., Vyklicky, L. and Westbrook, G.L., Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones, *J. Physiol.*, 415 (1989) 329-350.
- 18 Perez-Clausell, P. and Danscher, G., Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study, *Brain Res.*, 337 (1985) 91-98.
- 19 Peters, S., Koh, J. and Choi, D.W., Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, *Science*, 236 (1987) 589-593.
- 20 Scherer, R.W., Ferkany, J.W. and Enna, S.J., Evidence for pharmacologically distinct subsets of GABA_B receptors, *Brain Res. Bull.*, 21 (1988) 439-443.
- 21 Smart, T.G., A novel modulatory binding site for zinc on the GABA_A receptor complex in cultured rat neurons, *J. Physiol.*, 447 (1992) 587-625.
- 22 Smart, T.G. and Constanti, A., Differential effect of zinc on the vertebrate GABA_A-receptor complex, *Br. J. Pharmacol.*, 99 (1990) 643-654.
- 23 Wensink, J., Molenaar, A.J., Woroniecka, U.D. and Van den Hamer, C.J.A., Zinc uptake into synaptosomes, *J. Neurochem.*, 50 (1988) 782-789.
- 24 Westbrook, G.L. and Mayer, M.L., Micromolar concentrations of Zn²⁺ antagonize NMDA and GABA responses of hippocampal neurons, *Nature*, 328 (1987) 640-643.
- 25 Xie, X. and Smart, T.G., A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission, *Nature*, 349 (1991) 521-524.
- 26 Yeh, G.-C., Bonhaus, D.W. and McNamara, J.O., Evidence that zinc inhibits N-methyl-D-aspartate receptor-gated ion channel activation by noncompetitive antagonism of glycine binding, Mol. Pharmacol., 38 (1990) 14-19.