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The polynomial or trigonometric interpolant of an arbitrary function 
f(x) may be represented as a “cardinal function” series whose coef- 
ficients are the values of f(x) at the interpolation points. We show that 
the cardinal series is identical to the sum of the forces due to a set of N 
point charges (with appropriate force laws). It follows that the cardinal 
series can be summed via the fast multipole method (FMM) in 
O(N log, N) operations, which is much cheaper than the O(Nz) cost 
of direct summation. The FMM is slower than the fast Fourier transform 
(FFT), so the latter should always be used where applicable. However, 
the multipole expansion succeeds where the FFT fails. In particular, the 
FMM can be used to evaluate Fourier and Chebyshev series on an 
irregular grid as is needed when adaptively regridding in a time integra- 
tion Also, the multipole expansion can be applied to basis sets for 
which the FFT is inapplicable even on the canonical grid including 
Legendre polynomials, Hermite and Laguerre functions, spherical 
harmonics, and sine functions. 0 1992 Academic PWSS. I~C. 

1. INTRODUCTION 

The pseudospectral family of numerical methods 
approximate a functionf(x) by a series of the form Cl-63 

ftx) z f .ftxj) Cj(X), (1) 

j= I  

where the grid points xi and cardinal functions C,(x) are 
determined by the choice of underlying basis functions. For 
the Whittaker cardinal or sine basis, for example, which is 
appropriate for the unbounded interval x E [ - 00, co], 

xi = hj, C,(x) = 
sin(7rC.u - x,1/h) 

n(x - x,)/h ’ 
(2) 

where h is the (uniform) grid spacing. By definition, the 
cardinal functions have the property that 

C;(xj) = 6i,3 (3) 

where 6, is the usual Kronecker delta function. That 

is to say, the cardinal functions are combinations of the 
underlying basis (trigonometric functions, Chebyshev 
polynomials, or whatever) which are chosen so that the 
jth function is equal to one at the jth grid point and 
vanishes at all the other grid points. (The cardinal functions 
are also known as the “Lagrange basis,” the “fundamental 
polynomial of Lagrangian interpolation,” and collectively 
as the “cardinal basis.“) The monograph by Boyd [ 1 ] gives 
a full treatment. 

When the solution to a time-dependent problem develops 
shock waves or other regions of rapid change, a common 
tactic is to dynamically adjust the grid at regular time inter- 
vals. First, the gradients and curvature of the solution are 
evaluated at the current time level. The computer code then 
makes a change of coordinates so that the standard 
pseudospectral grid in the new, computational coordinate 
has a high density of grid points in regions of large 
gradients. One essential step in this dynamic regridding is to 
interpolate the solution from the original grid onto the new 
grid. 

Unfortunately, direct evaluation of the cardinal series (1) 
is rather expensive because we must sum N terms at each of 
N grid points for a total cost of 0(N2) operations per trans- 
form. Alternatively, we can sum (1) via the fast Fourier 
transform (FFT) at a cost of only O(N log, IV) operations. 
Unfortunately, the FFT is not applicable to evaluatef(.r) on 
an irregularly spaced set of points. 

However, we can sum (1) at each of N points in only 
O(N log, N) operations by using the fast multipole method 
(FMM). As reviewed by Greengard [9, lo], the FMM is a 
highly efficient algorithm for evaluating series of the form 

E(x)= f --..AQ- 
.,=I txpxj)' 

(4) 

The qj are the strengths of the N point charges (in electro- 
statics) or the masses of the N bodies (in gravitational 
problems); E(x) is the force or the potential. The inverse 
first power law in (4) may be replaced by an inverse square 
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law, by a logarithmic potential like log(x - xi), or by a wide 
variety of other functions without invalidating the algo- 
rithm. Although our illustrations are one-dimensional, the 
FMM is applicable to sums like (4) in an arbitrary number 
of dimensions. 

Historically, the FMM was invented for many-body 
calculations. However, the forces and potentials exerted by 
a number of point charges, vortices, or masses combine to 
create a series which is identical in mathematical form to a 
cardinal function series. 

To demonstrate this last assertion for the special case of 
a sine expansion, we merely use a trigonometric identity to 
write 

sin(rc[x - jh]/h) 
f(x)=CfW n(X-jh),h 

I 

= h sin(nx/h) ( - 1)-j f(x,) 
x c 

i x-xj . 

The summation on the right in (5) is identical in form to (4) 
with the equivalence ( - 1)’ f(x,) o qj. The physical inter- 
pretation is very different: thef(x,) are the grid point values 
of a single, continuous function, whereas the qj are the 
charges of N different and distinct bodies. Nevertheless, the 
series are term-by-term identical. 

We can extend the analysis to polynomial cardinal 
functions-Chebyshev, Legendre, Hermite, and Laguerre 
functions-by noting that for orthogonal polynomials, the 
interpolation points are the roots of the Nth member of the 
orthogonal set, 4,,,(x). The polynomial of degree (N - 1) 
which, as required by (3), vanishes at all but one of the grid 
points and is unity at thejth point is then [ 1,4, 81: 

4N (xl 
cj(x) = &(xj)(x - X,)’ 

The N-term cardinal series forf(x) is 

This is of the same form as (4) except for the extracted factor 
of #N(X). 

The cardinal functions for trigonometric interpolation 
are [l, 31 

C,(x)= (- l)jsin(Nx)cot 

The trigonometric cardinal series too can be summed by the 
FMM; the only difference from (5) is that the “force law” is 
cot( [x - x,1/2) instead of l/(x-xi). 

The derivative of the interpolated functionf(x) is given 
by a series of similar form which is obtained by differen- 
tiating the cardinal series (1) term-by-term. Again, the 
FMM is applicable; the effect of the differentiation is merely 
to change the “force law” of the corresponding N-body 
problem. 

For Chebyshev and Fourier methods, the FMM is useful 
only for interpolation to a nonstandard grid. Although the 
FMM and FFT are both O(Nlog, N) algorithms, the 
proportionality constant is much greater for the FMM. 
Consequently, the traditional FFT-based methods for 
evaluating derivatives on the standard pseudospectral grid 
are much more efficient and should be used instead of the 
FMM. 

However, the FFT is not applicable to sine series, 
Legendre sums, spherical harmonics, Hermite functions, or 
Laguerre functions. For these basis sets, the FMM is an 
order of magnitude faster than the direct summations that 
have been used with these basis sets in the past. 

Orszag [ 111 has also developed a fast transform, but one 
based on exploiting the three-term recurrence relations for 
these basis functions rather than the FMM. Orszag’s algo- 
rithm, like the FMM, has a large proportionality constant. 
It would be interesting to compare the FMM with Orszag’s 
fast transform, but detailed comparisons are beyond the 
scope of this note. 

We omit a detailed description of the FMM and numeri- 
cal examples because these are given in the review article 
and book by Greengard [7,8]. What is novel in this work 
is the identification of cardinal series with point force sum- 
mations, that is, the equivalence of the grid points values of 
j(x) with the point charges of the corresponding N-body 
problem. Once this identification has been made, once this 
equivalence has been recognized, then the FMM applies to 
cardinal function series without modtjkation. 

In summary, pseudospectral cardinal function series (for 
a general functionf(x) and its derivatives) are identical in 
form to N-body series (with the appropriate force law). This 
implies that the cardinal series can be summed in 
O(N log, N) operations by the FMM. 

The FMM is not restricted to the regular pseudospectral 
grid but can be applied to interpolatef(x) to an irregular 
grid, as needed in dynamical regridding. The FMM can also 
provide an FFT-substitute for basis sets such as Legendre 
and Hermite functions for which the FFT is not applicable. 
Thus, the FMM significantly extends the range of fast 
pseudospectral algorithms. 

Several open questions remain. First, is it possible to 
improve (or improve upon) the FMM by exploiting the 
quasi-alternating nature of the cardinal function series? 
(Note that the terms of a cardinal function series are strictly 
alternating in sign iff(x) is one-signed and almost alter- 
nating iff(x) is an arbitrary function.) Second, how does the 
FMM compare with Orszag’s fast transform and other 
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methods like the sum acceleration schemes in [ 12]? Third, 
if N-body interactions are described by series identical 
in form to the cardinal function approximation to a 
continuous function, can we reinterpret many-body models 
as a description of a continuous flow field, and not merely 
a cloud of discrete particles or vortices? 

These issues must remain for future work. It is already 
clear, however, that the connection between N-body models 
and polynomial approximation is both intriguing and 
useful. 
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