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Abstract--In this paper, we consider a general linear 
interconnection of a continuous-time plant and a discrete- 
time controller via sample and hold devices. When the closed 
loop sampled-data feedback system is internally stable, 
bounded inputs produce bounded outputs. We present some 
explicit formulae for the induced norm of the closed loop 
system with ~ (i.e. peak value) and ~1 (i.e. integral 
absolute) norms on the input and output signals. 

1. Introduction 
AN ANALYTICAL APPROACH fo r  evaluating performance of 
linear feedback systems is through the use of system norms. 
Depending on the nature of the signals affecting the system 
and performance objectives, one can define a number of 
different system norms. Among the most commonly used 
norms for Finite Dimensional Linear Time-Invariant 
(FDLTI) systems are the following: 

(1) the ~ norm--square root of the integral of the squared 
magnitude of the transfer function on the imaginary axis 
(or the unit circle in the discrete-time case). It measures 
the output power assuming that the input is a white 
Gaussian stochastic process of unit intensity; 

(2) the ~'~ norm--the supremum of the magnitude of the 
transfer function evaluated on the imaginary axis (or the 
unit circle in discrete-time case). It measures the 
maximal energy gain; 

(3) the ~,  or J norm--integral of the absolute value of the 
impulse response. It measures the maximal peak gain. 

All of these norms are quite useful in analyzing feedback 
systems in which the plant and the controller are linear 
time-invariant systems operating either both in the 
continuous-time or both in the discrete-time. This does not 
cover the class of sampled-data systems in which the plant 
operates in the continuous-time while the controller operates 
in the discrete-time and the plant and the controller are 
interfaced with each other using analog-to-digital (A/D) and 
digital-to-analog (D/A) converters. We will omit in this 
paper the fact that the A/D converter also involves 
quantization in magnitude of signals and are thus really 
nonlinear operators. We will treat them as ideal sampler and 
ideal hold devices. It is of interest to extend the notion of 
system norms for sampled-data systems. 

Recently, many papers have appeared that deal with 
and ~ norms for sampled-data systems. Bamieh and 
Pearson (1992), Ba~ar (1991), Chen and Francis (1990), 
Kabamba and Hara (1990), Sun et al. (1991), Tadmor (1991) 
and Toivonen (1992) have considered ~ optimal control 
problems while Bamieh and Pearson (1991), Chen and 
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Francis (1991b), Juan and Kabamba (1991) and Khargonekar 
and Sivashankar (1991) have considered the ~ optimal 
control problem for sampled-data systems. Keller and 
Anderson (1992) have worked on the related problem of 
discretization of continuous-time controllers. In this paper, 
we will present some formulae for the induced norms of 
sampled-data systems. A general interconnection of a 
continuous-time system (the plant) and a discrete-time 
system (the controller) with sample and hold operators will 
be considered. The key difference between analyzing a 
digital control system as a sampled-data system and as a 
discrete-time system is that the intersample behavior is taken 
into account directly in the former by treating the 
(exogenous) inputs and the (regulated) outputs as 
continuous-time signals. We will consider two different cases. 
In the first case, the input and output signal norm will be 
taken to be the ~ (peak value) norm and a formula for the 
induced norm of a sampled-data system will be given; in the 
second case we will give a similar result when the input and 
output signal norm is the .T, (integral absolute) norm. Using 
these two formulae, we can give an upper bound on the 
Lep-induced norm of a stable sampled-data system for 
1 < p  <o0. This also shows that if a sampled-data feedback 
system is internally stable then it is input-output stable from 
the exogeneous inputs to the regulated variables. 

As mentioned above, a major motivation for analyzing 
sampled-data systems stems from the need to deal with the 
intersample behavior of various signals. From this point of 
view, the .T~-induced norm seems to be quite well suited. 
Consider for example the situation where the input is a 
disturbance signal and the output is tracking error. Then the 
~ - induced  norm is exactly the maximal value of the 
amplitude of the output signal when the input is an arbitrary 
signal bounded in amplitude by one. Induced operator norms 
also play a major role in the robust stability and performance 
analysis and synthesis of sampled-data systems as shown in 
Sivashankar and Khargonekar (1991b). 

In Section 2 we define our notation and set up the 
framework for sampled-data feedback system analysis. In 
Section 3 we derive a formula for the .T®-induced norm of a 
sampled-data system. We also give an approximation to the 
.T~-induced norm. It is shown that for a given sampled-data 
system we can obtain a Finite Dimensional Linear 
Shift-Invariant (FDLSI) discrete-time system whose input-  
output I~-induced norm approximates arbitrarily closely the 
Le®-induced norm of the sampled-data system. A formula for 
the ~- induced norm of a sampled-data system is given in 
Section 4 and an upper bound for the ~p-induced norm is 
derived in Section 5. This is followed by a simple numerical 
example to illustrate the formulae in Section 6. A 
preliminary version of this paper appeared in the 
Proceedings of the American Control Conference 1991 (see 
Sivashankar and Khargonekar (1991a)). 

2. Mathematical preliminaries 
2.1. Signals, sequences and norms. Let ~n denote the 

space of continuous functions from the time set [0, o~) to !Rn, 
and let ~ , n  denote the space of piecewise-eontinuous 
functions from the time set [0, ~) to ,~n that are continuous 
from the left at every point except the origin. As usual, 
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.o~p[0,~) denotes the Lebesgue space of measurable 
functions f from [0, ~) to ~ which satisfy 

Ilfll~,:= IIf(t)l lPdt < ~  for l < - p < ~ ,  

and 

Ilfll~e~:=esssup IIf(t)ll <oo for p =c¢, 

where I1"11 is the vector norm on ~ defined as 

If;(t)l" for 1 <:p < ~, 

IIf(t)ll := = 
L i ~  ax] If//(t)l for p = ~. 

Similarly, in discrete-time ~ denotes the space of ~ - v a l u e d  
sequences defined on the time set {0, 1, 2, . . . ) ,  e, denotes 
the set of all sequences ~ in ,Sin which satisfy 

/ II~lle: = II~(k)ll" < ~  for l < - p <  o¢, 
k = 0  / 

and 

II~lle~:=sup II~(k)ll < ~  for p =oo. 

We will drop the superscript n in the subsequent sections 
when the dimension of the signal space is clear from the 
context. 

Let ~" denote a bounded linear operator 

The ~- induced  norm of ~- is defined as 

f liz IIz-~ Ilwll~p ~ 0}. II~rll~ := sup ~ : w  • ~ and (1) 

2.2. Sampled-data feedback systems. Consider the 
sampled-data feedback system in Fig. 1. Here G is a FDLTI 
causal continuous-time plant, K is a FDLSI causal 
discrete-time controller, w(t)•~3t 'm is exogenous input, 
z(t)  • ~ m  is the regulated output, u( t )~  ~3t '~  is the control 
input, and y(t)  • ~;'2 is the measurement output. The block 
labeled as ST represents the sampling operator with time 
period T defined as follows 

ST : (~P2--.). SP2 : y ~ STy : (STy )( k ) = y(  k T). 

The system block denoted by l i t  represents the (zero-order) 
hold operator with time period T: 

H T : b am2- - )  ~)(t~ m2 : 1~ ~ H T ~  

(Hrw)( t )=~p(k) ,  k T  < t ~ ( k  + l)T. 

Consider the following transfer function representation of 
G: 

z = Gt tw  + Gt2u, 

y = G2~ w + G22 u. 

We will assume throughout this paper that (722 is strictly 
proper. This ensures weli-posedness of the feedback system. 
In Fig. 1, notice that ST acts on the measurement output y. 
So y must be (at least piecewise) continuous for this to make 
sense. To ensure this, it is sufficient to assume that G2~ is 
strictly proper in which case y is continuous. 

Let 

f ~c = A x  + B~w + B2u, 
G: ) z  = C~x + Dt~w + D~2 u, (2) 

y = C2x, 

~ ( k  + 1) = (l)~(k) + rn (k) ,  
K: (3) 

~p(k) O~(k) + Yr,(k), 

be the state space representations of the systems in Fig. 1. 
Let the state-dimension of G in (2) be n and that of K in (3) 
be ri. Notice that the direct feedthrough terms from w to y 
and from u to y are set to zero in the state-space 

G 

FIG. 1. Sampled-data system. 

representation of G to satisfy the conditions that G2~ and G22 
are strictly proper. 

The feedback interconnection (G, HTKST) is called 
internally asymptotically stable if the associated unforced 
discrete-time system with the state 

( x ( k ) ~  .= (x(kr)~ 
~(k)/" \ ~(k) / '  

is asymptotically stable. 
In Fig. 1, since u is the output of a (zero-order) hold 

operator it follows that 

x((k + 1)T) = eArx(kr)  + eA(T-~")B1 w(kT + s) ds 

+ ¢~(TIB2u(kT), 

fo- z ( k r  + t) = C,eA'x(kr) + [CleA(t-SIB, + D 1 t ~ ( t  - s)] 

x w ( k T  + s) ds + [C~go(t)B 2 + D12]u(kT ), 

where 

£, 
O(t) = e A~dr  and t • [0 ,  rl. 

A compact way of writing the above system of equations 
for the input-output description of the plant G is as follows 
(Bamieh and Pearson (1992); Toivonen (1992)) 

x((k + 1)7") = eArx(kr)  + Blwk + ep(r)B2u(kT), 

z~ = d , x ( k r )  + D,,w~ + D,2u(kr),  

where wk(t) = w(k_T + t), Zk(t) = z ( k T  + t), t • [0, T], and 
B1, Cl, D11 and D12 are linear operators defined as follows: 

~l :~ ' [0 ,  rl--,:~" and /~lw= eA(r-~)Biw(s)ds ,  

d,: '~°--,~'[0, r l  and (C.,x)(t) = Cle'~'x, 

~5,,:~e;,[0, r l - - , ~ ' [ 0 ,  r l  and 

(/),lw)(t) = Cle "4(` ")B,w(s)  ds + O , , w ( k T  + t), 

/5~2:!)t'2--~L~p;[0, T] and (L),2u)(t) = [Ct~p(t)B2 + D~2]u. 

If the controller is given by (3) then it is easy to verify that 
the closed loop system with input wk and output Zk and a 
combined state vector (x ' (kT)  ~'(k)) '  has the form (in 
packed matrix notation): 

F E (4, 
where 

F := L[eAT+~)(T)B2YC2Fc2 ~ ( T ) B 2 0 ]  ' 

H : = [/~! + / )12YC2 /~)120], 
J : = / ) H .  

Thus the feedback system is internally asymptotically 
stable if and only if F has all its eigenvalues in the open unit 
disc. 
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We now set up some notations which will be used in 
Sections 3 and 4, Consider the closed loop system described 
in (4). Define 

H(t):=(n~(t) HZ(t)) for t~[O, T], 

where 

and 

H~(t) := Cte a' + (Cld?(t)B2 + Dt2)YC2, 

H2(t) := (C~cp(t)B 2 + D12)0. 
The main results of this paper give explicit formulae for the 
~ -  and the ~t-induced norms of the closed loop 
sampled-data system in terms of G, K, and T. 

3. A formula for the .~®-induced norm 
Consider the system given in Fig. 1 where G and K are as 

described by (2) and (3), respectively. Suppose the feedback 
system is internally asymptotically stable. We now state a 
result which shows that the ~- induced norm of the closed 
loop system is finite and gives a formula to evaluate it. 

Theorem 3.1. Consider the system in Fig. 1, where G is a 
FDLTI causal continuous-time plant described by (2) and K 
is a FDLSI causal discrete-time controller described by (3). 
Suppose the closed loop system is internally asymptotically 
stable. Then the closed loop input-output operator 

er : ~e~---, ~e. : w ~,  z, 

is bounded and 

I1~'11® 
m, [{~=ofo r [ (eA':')]q ds} = max max ~ H(t)F ~ 

i~{1,...,pl} I~[0, T] j=l 

+ {Ltl[CleASB1]ijl d$} + ,[Dll]ij,], (5) 

where [A]i j represents the (i, ]) entry of the matrix A. 

Remarks. As one might observe, there are two distinct 
components in this formula. The first component involves 
closed loop system matrices as should be expected. The 
second component, however, depends only on the plant 
data-A, B~, C,, D , .  The reason for this somewhat 
unexpected term is as follows. In between the sampling 
instants there is no feedback and the closed loop system 
evolves according to the plant dynamics. Since we are 
dealing directly with inter-sample behavior in analyzing the 
~®-induced norm, presence of an "open loop" term should 
come as no surprise. 

Proo[of Theorem 3.1. Consider the ith output of the system 
in Fig. 1 at the time instant kT+t  where t¢[0,  T] and 
ke{O, 1,2 . . . .  }: 

z,(kT + t) 
ral k--1 

= ;=,Y" [/--~o J0 (r[HtL ( ) F(*-'-')(ea(r-'OB'~l\ 0 /Ju wilT +s)ds 

L'[CleA(l-$)  B1]i]w](k T dr-s) ds + [Ol,]ijwj(k T + 1)]. + 

It then follows that 

IIz(kT + t)ll 

-< max ,=~=t[t_~of o ' '  k-' r [H(t)Ft(eA(r-')B')] ds 
i e {  I , . . .p l  } .= 0 ij 

+ L'l[C, ea('-')Bt]ij I ds + ItO,,l,/] Ilwil~., 

where II'll (on the left hand side of the above inequality) is 

the "max" norm. Then, 

ml ~ f T  F / Asn 
[[Zflso-- < max max ~ [ ~  IH(t)Fq e l~ l  

tet0.rl i¢O,...,t,t)j=ll.t=o-lo l_ \ 0 ]]ijl 

+ t[C,eASB,]olds +I[D,,]O I IfwfP~. (6) 

This establishes the upper bound on the ~- induced norm: 

° [ ( g " , ) ]  i[~[l= - < max max ~ H(t)F t ds 
t~[O, T] i~{l,....pt} j= I ij 

,] + ]ol~+l[D, , ]o  =:'/®, 

which is finite because of internal asymptotic stability. This 
proves that the closed loop input-output operator S is 
bounded, 

Now for a given E>0,  there exist ?~[0, T], i 'e 
{1 . . . . .  Pl} and k e {0, 1, 2 , . . . }  such that 

ml k--l T eA(T-s) 

[.,,)r( 0 ' 
+ (j, I[Cteaa-')Bd~jl ds + I[O. -< e. 

(7) 
Consider the hh output of the feedback system, z b in Fig. 

1 at the time instant kT + ~: 

z , ~ r  + t') 

= ~ L~'=o"' [~'k-' f :  [H(t)F ^ k-t-t(eA(r-"B')]~/wj(lT+s) ds 
j=l 0 

+ ~"[C,eAO-"B,Iwj(kT + s) ds + [D, ,]bw(fcT + t)]. 

Now choose 

wilT + s) = I ~  
if is nonzero 

( o  otherwise 

for t =  {0, 1 . . . . .  k - 1 } ,  s ~[0, T] and}~ {1, 2 . . . . .  mr}, 

where 

f f : = [  H(t)F£-I-t ( oeA(r-')Bt)]ij ' 

and, 

wj([cT + s) = ~ ~ffl 
Lo 

if • is nonzero 

otherwise 

for s e [0, ?) and j e {1, 2 . . . . .  mr}, 

where ff : =  [CleaO-S)Bl]~j and 

f ~  if [D,]  b is nonzero 

wj([cT+t)=LoD,]bl'[l[ otherwise f o r j e  {1, 2 . . . . .  mr}. 

Choosing the inputs wj as described above we get, 

+,, = ileal [ ( I 
+ £*l[C,e'*O-"B,l~;I ds + IIDttl~jI]. (g) 

It now follows from (g), (7) and (6) that y=>ll~rll=~ 
(y® - E). This concludes the proof. • 

Consider the system in Fig. 2, where G and K are as 
described by (2) and (3), respectively. Let TN:= TIN for 
some integer N > 0. Since the closed loop feedback system is 
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internally stable, the closed loop operator 

.°f N : l~---* l~ : WN ~--~ ZN, 

is a bounded operator. Define the induced operator  norm 

( z~lb IIWNIIt~O}. II ~-ull "= sup . . . . . . .  
• ~llwNIb. 

We state a proposition next, which gives a way of 
approximating the ~ - i n d u c e d  norm arbitrarily closely. 

Proposition 3.2. Consider the feedback system in Fig. 2, 
where G and K are as defined in (2) and (3), respectively. 
Suppose the feedback system is internally asymptotically 
stable. Then 

lim II~-NII = IIO-IL. (9) 

The proof of the proposition is not given here and the 
interested reader may find it in Sivashankar and Khar- 
gonekar (1991a). A similar result is given in Dullerud and 
Francis (1992) for the case of stable G. 

WN 

FIG. 2. Multi-rate approximation to a sampled-data system. 

Notice that the operator f in is a discrete-time system with 
two sampling periods T and Tu. So ~-N can be represented as 
a multi-rate linear discrete-time system 

~-N = STN G, , HT ~ + STN G,2HTQSTG2, HTN, 

where Q := K(I  - STGz2HTK ) ~ is a FDLSI (single rate with 
period T) discrete-time system. Now we can use the standard 
"lifting" techniques from literature (Jury and Mullin (1959); 
Khargonekar et al. (1985)) to reduce O-u to a FDLSI 
single-rate (sampling period T) system (see Dullerud and 
Francis (1992) for the explicit formulae). Since the "lifting" 
operation is system and signal norm preserving (Bamieh and 
Pearson (1992); Khargonekar et al. (1985); Toivonen 
(1992)), it follows that by calculating the l=-induced norm of 
this "lifted" discrete-time system we actually get II ~rNII. 

It is clear that the approximation that we get using 
Proposition 3.2 is only a lower bound on the ~ - i n d u c e d  
norm. Using a finite term approximation to the infinite series 
and first order approximation to the integral in the formula 
for the 5f=-induced norm we can get other lower bounds. It is 
not clear as to which approximation is computationally more 
efficient. We can get some upper bounds on the ~ - i n d u c e d  
norm which may be quite conservative. With these upper and 
lower bounds one can derive an iterative algorithm to 
compute the Lc=-induced norm for a sampled-data systems. 
This is a subject for future research. 

4. A formula for  the 5f t-induced norm 
Consider the system in Fig. 1, where G and K are as 

described by (2) and (3), respectively. Suppose the 
sampled-data feedback system is internally asymptotically 
stable. In this section we show that the ~, - induced norm of 
the closed loop system is finite and derive a formula for it. 

Theorem 4.1. Consider the system in Fig. 1, where G is a 
FDLTI causal continuous-time plant described by (2) and K 
is a FDLSI causal discrete-time controller described by (3). 
Suppose the closed loop system is internally asymptotically 
stable. Then the closed loop input-output  operator 

~ : S ¢ , ~  ~ , : w ~ z ,  

is bounded and 

115"11, 

= max max 
J~:{l'""ml} s~IO'TIi=--I i , 

F / e  A{T s) B \ q  ] 
x H( t )F  m- '  , ' } ]  I dt~ 

+{~rilC,e A~' 'B,loIdt}+IID,,lol], (10) 

where [A]0 represents the (i, j) entry of the matrix A. 

Remarks. Again, we observe that the formula has two 
components. The formula computes the "worst-case" St, 
norm of the output z when the corresponding input 
w(llwll~,-< 1) is applied. As will be seen in the proof, the 
worst input is a Dirac delta function applied at some time 
s ~ [0, T] at some input channel. Thus, in the interval [s, T], 
the sampled-data system evolves as an open loop system 
leading to the last two terms in (10). 

Proof. Consider the ith output of the system, z~ at the time 
instant k T  + t in Fig. 1 where k ~ {0, 1, 2 . . . .  } and t ~ [0, T]: 

zi(k T + t) 

f t + [Cle  A(t ~)Bi] i jwi (kT+s)ds  

It now follows that 
TPl 

~, i ~  I izi(k T + t)] dt 

Then 

+ [D I ,]ijwi(kT + t)].  

<_ ~ H(t)FCk_l_l) e B I 

x IN(IT +s)l ds + I[Cle A" ~"~Bdijl 

x N ( k r  +s)l ds + I[D, dol Iw,.(kr + t)l] dt. 

Let 

H(t)F~k-~ t) eAST ")Bi 

f w + I [C,e A" S~Bd,j ldt+l[D~d~jl ] lwj(IT+s)ld~ 

m . x  r 

j ~ { I , . .  , m l }  s~IO, T[ t m = l  t= l  

C / A(T ~)B ~3 I x e ,, ,)]i, ld, 

71 := max max '~  
ja{l,. . . ,ml} se[O, TIm=l i = 1  I 

H(t)F(,,,. I~ eA(T s)BI 
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The constant y~ is finite because of internal asymptotic 
stability and we have shown that 119-11, -< Y,. This proves that 
the closed loop input-output operator 9- is bounded. 

Now there exist j e {1, 2 . . . . .  m J  and g e [0, T] such that 

Yl= i=, ~=t ~..[f0 r [ ( )  H t F ( m - l )  eAfr-;)B1 ( 0 )]i~ dt 

+ £rl[C,eAl' S)BI]iJdt+l[Dll]iJ]. (11) 

It is known that one can construct a sequence of functions 
{f.} such that IIf.ll~e, = 1 and f~ converges to the Dirac delta 
function, a(g) in the sense of distributions^as n--+oo. Now 
apply the approximate function f. to the j th input of the 
system in Fig. 1. Let z,. denote the corresponding ith output. 
Then it is not difficult to show that z~.--+ z~ where z, is given 
by 

zi(e) = [hi  i ] i i ,  

zi(t ) = [Cjeat'-~)B1]i; for g<t  < T, 

zi(t) = [ H(t - kT)Fk(ea(o-*)BI) ]i~ 

for k T < t < - ( k + l ) T  V k e { 1 , 2  . . . .  }. 

Clearly, 

ilzll.Zl=m~l ~ [fT [H(t)F(m_I)(eA(T-.~)B1)] dt 
= i=1 t--0 I L  ~ 0 /Jill 

+ ~T,[CleA('-')B1]iJ dt + I[Dtl]iJ]. 

For any • > 0, there exists n sufficiently large such that 

119-11,-> I I z J  -> Y, - •. 

Thus, Yl -> II 9-11, -> ~', - e which completes the proof. • 

5. An upper bound for the Ze finduced norm 
Using the formulae developed for the ~=- and the 

~l-induced norms, we give an upper bound for the 
&ep-induced norm of a stable sampled-data system. The 
following theorem is a direct consequence of the Riesz 
convexity theorem (Stein and Weiss (1971); Chen and 
Francis (1991a)). 

Theorem 5.1. Consider the sampled-data system given in 
Fig. 1 where the plant G and the controller K are as 
described in (2) and (3), respectively. Suppose the 
sampled-data feedback system is internally asymptotically 
stable. Then the closed loop input-output operator 

9- : ~e , - - .  ~ep : w ~ .  z .  

is bounded and 

119-lip <-II 9-11]/p II 9-11~/q, 

where 119-11~ and 119-1h are given in (5) and (10), respectively 
and ( I /p)  + ( I /q)  = 1 (for 1 < p  < ~). 

6. Example 
In this section, we will give a simple numerical example to 

illustrate the formulae developed in Sections 3 and 4. 
Consider the plant G: 

. - a  - 4  - 1  1 

G: z = ( 1  O)x+w, 

y = (1 1)x. 

Here a is a real parameter and the sampling time period is 
T = 2. With a constant output feedback gain of K = 0.5, the 
eigenvalues (A1,2) of the system matrix F of the closed loop 
system are listed in Table 1. It is clear that the sampled-data 
system is internally asymptotically stable for all the values of 
the parameter a (listed in Table 1). We have computed the 
induced norm of the system for different values of the 

TABLE 1. COMPARISON OF THE INDUCED NORMS 

a 3 1.5 0.9 0.5 0.2 
0.04 0.023 0.007 - 0.008 

0.117 
~1,2 0.003 + + + + 

0.104j 0.251j 0.468/" 0.78j 
119-11~ 1.398 1.784 2.29 3.458 8.717 
119-1h 1.415 1.813 2.33 3.455 8.489 
rlg-dll 1.287 1.352 1.421 1.599 2.462 

parameter a using standard numerical software and these are 
tabulated in Table 1. We used a finite term approximation 
for the infinite series in the formulae for numerical 
implementation. 

Traditionally, sampled-data systems are analyzed by 
considering the feedback system only at the sampling 
instants. This is the same as using a sampler of period T at 
the output z and a hold operator of period T at the input w 
in Fig. 1. Using such a sample-hold equivalent of the 
sampled-data system, we get a FDLSI discrete-time system. 
We used standard numerical software to compute its e~- and 
(t-induced norms. Note that for a FDLSI discrete-time 
system with scalar inputs and outputs the (®-induced norm is 
equal to the (l-induced norm. The induced norm of this 
approximate system 119-dll for different values of the 
parameter a is also listed in Table 1. As expected, the 
numerical values for II 9-11~.1 are greater than those for 1/9-all 
and hence our formula captures the inter-sample behavior in 
the system. We also notice that as the eigenvalues of the 
open-loop system matrix approach the imaginary axis, the 
induced norms 119-11~ and 119-1t, increase and the gap 
between these and the induced norm of the discrete-time 
approximation also widens significantly. 

7. Conclusion 
We have given explicit formulae for the ~ -  and 

Lel-induced norms of a sampled-data system. We have also 
shown that the Le~-induced norm of a sampled-data system 
can be approached as the limit of the norm of another 
multirate discrete-time system associated with the sampled- 
data system. One can now pose the problem of minimizing 
the Z% and ~t-induced norm of the closed loop operator 
from w to z over all sampled-data controllers that provide 
internal stability. Some related works along these lines are 
reported in Dullerud and Francis (1992) and Bamieh et al. 
(1991). 
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