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Modern technology is allowing researchers to collect data from neural ensembles with a large number of units, and the analysis 
of interaction between these units can be very time consuming. Estimation of pairwise connectivity is the most common method of 
determining the neural 'network' but usually necessitates the production of numerous histograms for each pair considered. We 
present a method which will indicate which pairs in a network represent potential connections and thereby simplify the 
postexperimental analysis. The technique uses cross-interval information to create an n × n matrix which represents all possible 
connections in an n neuron ensemble and can be calculated recursively on-line. The performance of this technique is analyzed with 
respect to data size and strength of the connections. It is compared to 2 similar techniques that are also presented here, one in 
which perfect knowledge of the timing of the excitation is known, and one in which the timing can be bounded. 

I n t r o d u c t i o n  

The advent of advanced multi-unit recording 
capabilities has emphasized techniques used to 
analyze neural ensembles. The study of an en- 
semble's response to stimuli, rather than an indi- 
vidual neuron's response, is the next step towards 
understanding how the brain recognizes and clas- 
sifies information. If a group of neurons encodes 
information as an ensemble, rather than as a 
collection of individual units, they must interact 
with each other and alter each other's firing 
pattern. Thus, given the firings from a multi-unit 
recording, methods are needed to analyze the 
nature of the neural interactions and to deter- 
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mine the connections of the neural ensemble. 
Not only will more information be revealed about 
the processing of stimuli but also about the dy- 
namic working of the brain. 

Most of the non-parametric techniques devel- 
oped for analysis of neural ensembles are for 
pairwise interactions between units within the 
ensemble (Aertsen and Gerstein, 1985; Melssen 
and Epping, 1987; Palm et al., 1988; Aertsen et 
al., 1989; Voigt and Young, 1990) rather than 
n-wise interactions. This is primarily due to the 
technical limitations of recording from more than 
1 unit simultaneously. Another reason is the diffi- 
culty of displaying information about multiple 
units on a 2-dimensional plot. Cross-correlation 
functions (Perkel et al., 1967) and scatter plots 
(Gerstein and Perkel, 1972) are easily displayed 
and simple to analyze visually when dealing with 
2 neurons. Perkel et al. (1975) developed a 
method for displaying a scatter plot of 3 neurons 
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Fig. 1. a: generalization of neural connectivity, allowing for 
high-order interaction, b: simplification of neural connectivity 

where only pairwise interaction is allowed. 

in 2 dimensions using what was termed a 
snowflake plot but, in general, excitatory and 
inhibitory interactions between units are difficult 
to represent visually for groups of 3 or more 
neurons. 

If the occurrence times of neuron i are de- 
fined by the vector w i, then the firing statistics of 
an ensemble of n neurons is fully given by 
p({wi}~'). This reduces to the more manageable 
FI",=~ p(wi)  only when the neurons are firing inde- 
pendently. In the absence of such independence, 
the probability distribution for neural firings given 
neural interaction is difficult to estimate empiri- 
cally because of the large amount of data needed 
to define the probability space p({wi}' ~) with rea- 
sonable confidence. In an effort to reduce com- 
plexity, ensemble interactions have thus been re- 
duced to pairwise interactions, reducing the prob- 
ability space t o  P(Wi,Wjl{Wk}k,i,j) , i ~ j .  This re- 
duction for the case of 3 neurons is shown in Fig. 
1, where (a) depicts the most general model al- 
lowing for high-order interaction, defined by 
F(w), and (b) shows the reduction to pairwise 
interaction. 

This reduction in connectivity order has a sig- 
nificant computational effect on the analysis of 
large ensembles. If there are n units that are 
recorded, then n ( n -  1) /2  pairs must be ana- 
lyzed to examine all possible interactions. If the 
analysis of each pair requires more than a very 
simple and quick analysis, the process of detect- 
ing and estimating neural interactions for the 
whole ensemble is very time consuming and in- 
creases approximately proportionally to n z. Para- 

metric techniques exist which have been devel- 
oped for neural ensembles analysis of which is 
not reduced to pairwise analysis (Gerstein et al., 
1985; Chornoboy et al., 1988; Brillinger, 1988), 
but the methods for estimating the interactions 
are generally complex and require much more 
computational effort than non-parametric meth- 
ods. 

With recent advances in technology allowing 
data collection for large numbers of units (Be- 
Ment et al., 1986; Blum et al., 1991), new tech- 
niques are needed to reduce the n(n - 1)/2 com- 
plexity problem. A technique which detects neu- 
ral interactions but does not necessarily estimate 
the effect would be advantageous, if it were com- 
putationally simple. Such a technique would indi- 
cate which pairs should be analyzed so that the 
number of pairwise relationships considered, and 
thus computations and time, would be consider- 
ably reduced. 

In this paper, a method which detects neural 
interactions will be developed. It is a computa- 
tionally simple technique which assigns a scalar to 
each possible connection, and if that number is 
within a certain decision region then a connection 
is detected. The information can be represented 
in the form of an n × n matrix which is updated 
with each spike occurrence. The entries are up- 
dated recursively and involve few calculations, so 
this technique can be implemented online, con- 
current with the experiment. The performance of 
the detector will be analyzed with respect to the 
strength of the connection and the data sized 
used. 

Background theory 

An intensity theory of point processes will be 
used to model and study neuronal behavior. If w t 
is a vector which represents the firing times of a 
neuron up to time t, then the instantaneous inten- 
sity is defined by 

Pr{firing in [t , t  + At) I w,} 
ix(t; wt) = lim 

At--,0 At 
(1) 



This represents the firing rate of a neuron at time 
t conditioned upon a specific realization defined 
by w r For example, if a neuron has a refractory 
period then Ix(t; w t) will change according to the 
firing times w r 

The average intensity is defined by 

A( t) = E[Ix( t; wt) ] (2) 

and represents the unconditional firing rate, i.e., 
the firing rate of a neuron at time t without 
knowledge of the previous firing times. This in- 
tensity model using Ix and A assumes that the 
statistics of the firing times are equivalent to that 
of an inhomogeneous Poisson process, and given 
the intensity all of the properties of the Poisson 
process follow. For example, the expected proba- 
bility of the neuron firing within a small interval 
A about time t is approximately A(t)A for A(t)A 
< 0.1 (Edwards and Wakefield, 1990). See Sny- 
der and Miller (1991) for a detailed description of 
other properties. 

Two properties of point processes will be of 
concern in this paper. One is the interval func- 
tion, I(t). This is the probability distribution 
function (pdf) for the time between 2 successive 
firings. For a homogeneous process, one with a 
constant Ix(-), the interval function is 

I ( t )  = Ixe -~ ' .  (3) 

Throughout  the rest of the paper, this will be 
termed the self-interval function to distinguish it 
from the cross-interval function. 

The cross-interval function, Clan(t), is the pdf 
for the time interval between a spike from neuron 
A and the next spike in neuron B. It can be 
shown that the pdf for the duration from a ran- 
dom point in time to the next firing of a process 
is 

1 - F ( t )  
, ( 4 )  

Ix 

where F(t) and Ix are the cumulative distribution 
function and the mean of the intervals, respec- 
tively (Perkel et al., 1967). This is also the pdf for 
the duration from a random time to the previous 
firing. 

Now, if there are 2 spike trains A and B which 
are independent,  then the firings in train A are 

equivalent to random times with respect to train 
B, and vice versa. Thus, if A and B are indepen- 
dent, the pdf for the time from a spike in train A 
to the next spike in train B is 

1 --FB(t ) 
Clan(t ) = (5) 

Ixn 

When independent,  Clan(t) = Clan(-  t)(McFad- 
den, 1962). Dependencies between A and B can 
then be detected by comparing the CI for positive 
and negative t, a significant difference indicating 
the presence of interaction. CInA is not, however, 
simply a scaled version of Clan. This can be seen 
when neuron A fires much more frequently than 
neuron B. Given a spike in A, the expected time 
until a firing in B will be relatively long; given a 
firing in B, the expected time until a firing A will 
be relatively short. Thus, for full cross-interval 
information both Clan(t) and Clna(t) must be 
calculated for positive t. 

Cross-interval detection 

Much of the problem with analyzing neural 
ensembles is simply the time and computational 
effort needed to analyze all possible interactions. 
Parametric techniques require complicated algo- 
rithms for estimating model parameters. Non- 
parametric techniques require pairwise cross-cor- 
relation analysis that increases in computational 
load proportionally to the square of the number 
of neurons in the ensemble. With cross-correla- 
tion analysis on an ensemble of n neurons using 
cross-correlation, predicted-correlation, residual- 
correlation and PST histograms, the number of 
histograms that are required for a complete anal- 
ysis is n ( 3 n -  1)/2. For example, an analysis of 
an ensemble of 8 neurons would require 92 his- 
tograms. This number could be significantly re- 
duced, however, if there were a method which 
indicated, before the histograms were created, 
which pairs represent potential connectivity. Only 
those pairs would then need be analyzed. What is 
desirable is an algorithm which can be updated 
with each spike occurrence, using simple calcula- 
tions, and thereby indicate at the end of the data 



collection which neuron pairs are potentially con- 
nected. 

Consider the cross-interval density function 
from neuron A to neuron B, CIAB. With 2 neu- 
rons which are independent and firing at constant 
rate, CIAB has the form AB e-'~Bltl for both posi- 
tive and negative t. This is also the form of the 
self-interval function, 1 B. Johnson and Kiang 
(1976) used cross-intervals to estimate connectiv- 
ity. After  estimating A from the number  of spike 
occurrences, they subtracted the expected cross- 
interval function from the experimentally ob- 
tained function to create the cross-interval resid- 
ual. If  the residual function exceeded the confi- 
dence limits more than 5% of the time then a 
connection was detected. This method requires 
the computation of 2 cross-intervals at the end of 
data collection for every pair considered. 

The mean duration for the cross-interval be- 
tween A and B, as well as the self-interval for B, 
is 1/A B. If  neuron A excites neuron B such that 
the probability of B firing increases for a small 
duration after A fires, the mean of CIAB will be 
shorter than the mean of I B. It seems reasonable 
then to use the mean of the cross-intervals as a 
statistic for detection such that significant devia- 
tion from the self-interval mean would indicate a 
connection. This method is advantageous because 
it uses only the means of cross-intervals to make 
decisions and is thereby straightforward to imple- 
ment. 

A method which uses the mean of the cross-in- 
tervals to obtain an intensity measure will be 
derived in the next section. Three non-standard 
intensities will be used: the excitation intensity, 
Aex, which is the intensity of B during the excita- 
tion period; AAB(A), the mean intensity of neuron 
B A seconds after A fires; AAB, the relative 
intensity, or intensity of B relative to A. These 
will be explained in detail later. 

Analysis 

For the sake of clarity, the only interaction 
examined in this section will be excitatory. With- 
out loss of generality, the pre-synaptic neuron 
will always be neuron A and the post-synaptic 

neuron will always be neuron B. Also, the time t 
will always be with respect to the time after A has 
fired, i.e., the time axis in a cross-intensity func- 
tion. 

The model for interaction between neurons A 
and B will be as follows. The spontaneous firing 
rate of A and B will be defined as IJ'A and IJ, B. In 
the case of interaction from A to B, ix a is the 
firing rate of B when A never fires. The excita- 
tory connection will alter the firing rate of B such 
that 

IxB(t) = IXn + WAs, t ~< A 

= tXB, t > A. (6) 

The average intensities of the 2 neurons are then 

A A = Ix A 

I~B = [J'B -t'- ~I.ABI~A A (7) 

so that A B = tx n if there is no connectivity or if 
the intensity of A is zero. 

The excitatory effect is pulse-like since the 
intensity increases by IXA~ for A seconds after A 
fires. This is a simplification of effects seen in 
actual data, where the increase in intensity is 
more often exponentially increasing and decreas- 
ing. What  is important in the modeling of excita- 
tory effects by Eqn. 6 is that the area of the 
increased intensity in the model is the same area 
seen in actual data. This means that the in- 
creased probability of  B firing after A fires is the 
same for both cases. The parameters  that are 
adjusted to achieve this are I~AS and A. It should 
also be noted that experimental results typically 
show a small latency period after the firing of the 
pre-synaptic neuron before the excitatory effect 
begins, while the model in Eqn. 6 has no such 
delay. This will be addressed in the Discussion 
section. 

As previously stated, a method of detecting 
connectivity without calculating numerous his- 
tograms is desirable. With this in mind, the MLE 
of Aex = ['LB ~- ~I'AB will be derived from cross-in- 
terval data CIAB, under the assumption that A is 
known. The excitation intensity, hex, is the inten- 
sity of B during excitation from A and differs 
from A B only when an excitatory connection ex- 
ists. 



The cross-interval probability density function 
for a neuron described by Eqn. 6 is 

CIAB( t ) = Aex e-~'ext, t < h 

= AB e-(gex-Aa)A-;tBt, t > A. (8) 

This pdf corresponds to the intensity of neuron B 
changing from Aex to A B, A seconds after neuron 
A fires. The average intensity of neuron B does 
not change to its spontaneous rate I~ B after A 
seconds as in Eqn. 6 because there is a possibility 
that neuron A will fire again before B fires. Thus, 
there is a certain probability that the intensity for 
neuron B will be P,B but there is also the proba- 
bility that the intensity will be P,B + ~AB. The 
overall average intensity is then A B = i~ B + 
AAIXABA.  

The pdf for the N cross-intervals is 

I-I Aexe-".x t' 1-I X.e-(".x-"~)a-"~', , (9) 
i=1 j = l  

where N 1 is the number of cross-intervals of 
duration less than or equal to A and N 2 is the 
number of cross-intervals of duration greater than 
A. This distribution will be maximized under hex 
in order to obtain the MLE of hex, assuming that 
A is known. 

Near-perfect knowledge: excitation intensity 
The only unknown assumed in Eqn. 9 is Aex. 

A 8 is considered known and is estimated by N b / T ,  
where T is the observation period and N B is the 
number of spikes fired by B. When the derivative 
with respect to Aex of the log of Eqn. 9 is taken 
and then set to zero, the maximum likelihood 
estimator (MLE) is obtained: 

Aex = N 1 /  ti + N2 A . (10) 
i 

Aex is the maximum likelihood estimate of the 
intensity of B during t ~ [0,A) using cross-interval 
information. This estimate is then compared to 
A B and if it is significantly different then a con- 
nection is detected. 

This estimator was implemented on a simu- 
lated 3-neuron ensemble with Ai = 100 spikes/s,  
A = 1 ms and ~.ij = 150 spikes/s  for the specified 
connections and 0 otherwise. Ten seconds of data 
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Fig. 2. Different ensemble configurations with excitatory con- 
nections. The component (i,j) in each matrix estimates the 
excitation intensity ~ex using Eqn. 10, and the bold entries are 
the estimates for the actual connections. All connected pairs 
have Aex = 250 spikes/s; all unconnected have Aex=100 

spikes/s. 

were simulated using the point-process generator 
described by Snyder and Miller (1991). 

The results are given in the form of a matrix 
^ij where entry (i~j) represents Aex, the excitation 

intensity estimated from Clij, and (i,i) represents 
the average firing rate A i estimated by N,./T. 
Different interconnections were created to test 
the ability to distinguish between direct and indi- 
rect connectivity, and Fig. 2 shows both the neu- 
ral ensembles and the matrices of estimators. The 
excitation intensity estimate A:eJ~ in (i, j) must be 
compared with the average intensity Ay in (j, j). 
The matrix values which represent connections 
are significantly different from the diagonal en- 
tries, signifying detection of a connection. Those 
values representing connectivity detection are 
bolded. 

Fig. 2c shows that the estimator is not affected 
by indirect connectivity since (1,3) is not signifi- 
cantly different from (3,3). Common drivers do 
not significantly affect the estimator, as seen by 



nearness of (2,3) to (3,3) and (3,2) to (2,2) in Fig. 
2d. 

The MLE of Eqn. 10 is a useful detector of 
connectivity since it requires minimum analysis of 
the data: the number  of cross-intervals smaller 
and larger than A, and the sum (or average) of 
the cross-intervals small than A. The estimation 
matrix can be updated with every spike and re- 
quires the storage of 3 scalars for every potential 
connection analyzed. 

One obvious fault with this method is that in 
reality the excitatory duration A is unknown and 
requires either a cross-interval or cross-correla- 
tion interval histogram to estimate. The maxi- 
mum likelihood estimate of A is not simple and 
would require calculation from a histogram, a 
requirement which the technique presented here 
is intended to avoid. A priori information might 
be used, however, in the form of a maximum 
possible A. This will be explored in the next 
section. 

Bounded A: mean intensity 
The estimator of Eqn. 10 effectively compares 

B's intensity for t < A with the overall average 
intensity. In most experimental data, the excita- 
tory effect occurs within a limited time after the 
pre-synaptic neuron fires. If  one assumes that any 
excitatory effect will have died out 5 ms after the 
pre-synaptic neuron fires, A can be bounded by 5 
ms. The estimator can then be effectively used to 
compare the average intensity for t < 5 ms with 
the overall average intensity. If  there has been an 
increase in the intensity of any duration during 
the first 5 ms, then the estimated intensity during 
the first 5 ms will be greater  than the average 
intensity. 

When an estimate of h is used instead of the 
actual value, the MLE of Eqn. 10 estimates the 
average value of the intensity of A, even though 
there may be 2 distinct regions with different 
intensities during (0,/~). This estimate of the aver- 
age intensity, which is not only a function of the 
neural process but of the /~ used, is termed the 
mean intensity and is denoted by A(A). Note that 
when A = A, the actual duration of the excita- 
tion, A(A)= Aex. The estimator of Eqn. 10 for 
Ai~(A) will be used with an estimate of A = 5 ms. 
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Fig. 3. I: the  s ame  as Fig. 2 only es t imat ing  the  m e a n  intensi ty  
us ing an es t imate  of  A = 5 ms  ins tead of the  t rue  value  of 1 
ms  in (10). II: the  s ame  as Fig. 2 only the  c o m p o n e n t  (i,j) in 
each matr ix  r ep resen t s  the  es t imate  of the  relative intensi ty  
Aij. T h e  values  bolded in bo th  f igures are the  es t ima tes  of  

actual  connect ions .  

The left-hand column of Fig. 3 illustrates this 
technique using the same neural simulation as in 
Fig. 2, only A = 5 ms is used in Eqn. 10 instead of 
the true A = 1 ms. The results are not as striking 
as in fig. 2 when A was known, but the connec- 
tions can still be readily detected. The estimated 
values of Aij.(A) where there is a connection are 
not as large as before since the 1 ms excitatory 
intensity is spread out over 5 ms. 

Unknown A: relative intensity 
If  one does not want to make any assumptions 

about A, the limit of Eqn. 10 can be taken as 
A ---, ~ to obtain 

N 

AAa = lim A(A) = U /  ~_, t i. (11) 
~--* oo i = 1  

This result is obtained because as A ~ oo, N 2 ~ 0 
and N 1 ~ N, the total number  of cross-intervals. 
While letting A---, oo is a naive approach - it 
assumes the excitation after A fires lasts until B 
fires without decay - -  the estimator is in a very 



simple form. It  can be shown that the estimator is 
the MLE of X assuming that the cross-interval 
has a pdf  of  the form A e x p ( - X t ) .  The estimate 
AAB can be thought of as a relative intensity, i.e., 
the intensity of neuron B as seen by or relative to 
neuron A. If  this relative intensity is different 
from the average intensity AB, then a connection 
can be said to exist. 

An intuitive description and a justification of 
the est imator in Eqn. 11 can be seen when con- 
sidering the Neyman-Pea r son  test (Van Trees, 
1968). The Neyman-Pea r son  test is used when 
there are 2 hypotheses H 0 and H 1, where the 
statistics of H 0 are known but the statistics of H 1 
are not. In this case, H 0 represents the hypothe- 
sis that there is no connection between neurons 
A and B, and H t represents the hypothesis that 
there is an excitatory connection from A to B. 
Under  H 0, the distribution of the cross-intervals 
from A to B is 

CIAB(t) = ABe-*"" (12) 

Since a n is known, the statistics under  H o are 
known. 

Under  Ht ,  the distribution of the cross-inter- 
vals is discontinuous and given in Eqn. 8. There  
are 2 independent  unknowns in this equation: A 
and Aex. H 1 in this case is te rmed a composite 
hypothesis since the parameters  A and Aex have 
a range of possible values. Even though A and 
Aex a r e  unknown, however, they are not random 
variables but are constants. The subsequent lack 
of a probability density makes any Bayes test 
unreasonable,  since a Bayes test would require 
probability distributions for A and Aex in order to 
create a likelihood ratio test. The Neyman-Pea r -  
son test, however, can be used as a method for 
detection since only the statistics under H 0 are 
used, i.e., the distributions of A and Aex are not 
needed since they exist only under  H1. Under  the 
Neyman-Pea r son  test, the probability of  a false 
alarm (PFA) is specified - -  which is definable 
since the statistics under  H 0 are known - -  and 
bounds are derived. This creates decision regions 
for H 0 and H 1 based upon a significant statistic, 
which in this case is the relative intensity estima- 
tor of Eqn. 11. Under  H0, I~an = 0 so the estima- 
tor )tAB in Eqn. 11 estimates i~n(= An). 

Appendix A derives an expression for 3', the 
upper  bound for the decision region of H 0. It 
shows 

AB 

3' = a " f N / ( N -  1) + N / ( N -  1) 

AB 
- ( 1 3 )  

a " / v ~  + 1' 

where the approximation holds for large N. a" is 
solely determined by the predetermined PFA and 
is defined by the value 

PFA = 1 - erfc, (a") 

® 1 u2 ]du. 
(14) 

/ 

The lower limit a" can be obtained from stan- 
dard error function tables. Since a" is negative 
for PFA < 0.5, 3, is monotone decreased with 
respect to N and monotone increasing with re- 
spect to A B, which is not surprising since the 
expected value of AAB is A B under H 0. 

Fig. 4 plots the bound 3, as a function of N for 
PFAs of 0.05, 0.01 and 0.001. The bound is given 
as a multiple of A B since the form in Eqn. 13 can 
be easily rearranged into a ratio between 3, and 
A B. For example, given a data set of 500 intervals 
with a firing rate of 100 spikes/s ,  the upper  
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Fig.  4. T h e  u p p e r  b o u n d  o n  the  e s t i m a t o r  E q n .  11 fo r  de t e r -  
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bound for a PFA of 0.01 is approximately 111 
spikes/s.  

With y set as determined by Eqn. 13, the 
detection characteristics are completely specified 
under H 0. To describe the detection characteris- 
tics under H~, and thus completely characterize 
the detection task, the probability of detection 
(PD) must be derived. This is done in Appendix 
B, which results in 

P D =  1-e r f c , [a"  + v/N(Aex-AB)A] 

= 1 - e r f c , [ a " +  V~tXA.(1-- AAA) A]. 

(15) 

PD is seen to be monotone increasing with A, 
N and IXAB, as expected. PD is monotone de- 
creasing with AA because an increase in h A de- 
creases the difference between beg and A a, which 
decreases PD as seen in the first line of Eqn. 15. 

Fig. 5 plots the PD as a function of (hex - AB)A 
and N for PFA = 0.05. (Aex - An)A is termed the 
normalized efficacy, e'. The true efficacy value is 
e = ~ A B  A and, from Eqn. 15, e '  = ( A e x  - An)A = 
e ( 1 -  A4A). The difference value ( h e x -  AB)A is 
often mistakenly termed the efficacy because it is 
the area increase in the cross-correlation function 
due to connectivity. As explained in detail by 
Aertsen et al. (1989), this measure is not condi- 
tioned correctly. Fig. 5a plots PD versus e'  with 
the number of intervals N as a parameter. Fig. 5b 
plots PD versus N with e' as a parameter. 

In the simulation of networks shown in Fig. 2, 
the number of cross-intervals generated were ap- 
proximately 1000 per pair and the normalized 
efficacy was 0.135. According to Fig. 5a the prob- 
ability of excitation detection should be near 1. 
With the neurons firing at 100 spikes/s,  the con- 
fidence limit for PFA = 0.05 is derived using Eqn. 
13 as y = 109 spikes/s. The results are shown in 
the right-hand column of Fig. 3 for the various 
ensemble connections, with the estimates that 
exceed the bound in bold. As can be seen, the 
detector was perfect, with no false alarms and no 
misses. 

Discussion 

The problem of detecting connectivity in an 
ensemble of neurons has been addressed with an 
emphasis on minimal computation time. The 
methods developed have used only cross-interval 
information and represent pairwise relationships 
with scalar values that can be updated with each 
spike occurrence. The simplicity of these methods 
can be see in Figs. 2 and 3, where a n x n matrix 
is used to represent possible pairwise connec- 
tions. 

All 3 methods involve an estimation of the 
excitation intensity. The first method, where the 
duration of the excitation A is known and Aex is 
estimated, represents near perfect knowledge of 
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the interaction. This is unrealistic since the tim- 
ing characteristics of interactions vary and esti- 
mating the duration requires a complexity of 
analysis that these methods are at tempting to 
avoid. The second method assumes that the re- 
gion of excitation can be bounded, thereby upper  
bounding 4. The mean intensity h(/~) over the 
bounded region is estimated, effectively spread- 
ing the excitatory intensity over the bounded re- 
gion such that -h(/~) is smaller than Aex. The third 
method makes no assumptions about the timing 
of the excitation and estimates the relative inten- 
sity AAR. The relative intensity is calculated by 
assuming that the cross-intervals are a result of a 
constant intensity and the intensity is estimated 
taking the inverse of the cross-interval mean. For 
excitatory interaction, the relative intensity hart 
will be higher than the true intensity A s and the 
difference between the 2 will be greatest for high 
efficacy, or high IXAB and A. 

The differences between the 3 detectors are 
seen in Figs. 2 and 3. The perfect knowledge 
detector performs the best, as expected, with the 
intensities representing connections clearly dis- 
tinguishable from the intensities with no connec- 
tions. As stated previously, the relative intensity 
method is equivalent to the bounded method with 
the upper  bound on A being oo. The variance in 
the excitation intensity estimators decreases as 
increases because more  cross-intervals N 1 are 
used to estimate the excitation intensity, as seen 
in Eqn. 10. The expected value of the estimate, 
however, decreases as /~ increases because the 
excitation intensity is averaged across the bound. 
This is realized in Figs. 2 and 3 where the esti- 
mated intensities for connected pairs are smaller 
when /~ = oo than when /~ = 5 ms, and both are 
smaller than when ~ is the true value of 1 ms. 

One surprising feature of Figs. 2 and 3 is the 
absence of false alarms when there are indirect 
connections or common drivers. Fig. 2c shows a 
common situation where many techniques detect 
a connection between neurons 3 and 1 since 
neuron 3 is indirectly excited by neuron 1 through 
neuron 2. Entry (1,3) in all 3 detection matrices 
for this network show a negligible excitation in- 
tensity. Fig. 2d depicts a situation where neurons 
2 and 3 could be falsely detected as connected 
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Fig. 6. Receiver operator characteristics for four different 
estimators, with N= 1000 cross-intervals, h = 1 ms, A i = 100 
spikes/s, and P'AB = 50 spikes/s. The solid line represents 
the excitation intensity estimator, the dashed line represents 
the mean intensity estimator with ~ = 5 ms, the dotted line 
represents the mean intensity estimator with /~ = 10 ms, the 
the long-dashed line represents the relative intensity estima- 
tor. The last one was derived using Eqn. 15, the rest were 

obtained using Monte Carlo simulations. 

since they are both timed to a common driver. 
Again, entries (2,3) and (3,2) show negligible exci- 
tation intensity. 

The intensities Aex and AAB are special cases 
of ~(/~), where ~ex = ~ ( A )  and h4, 8 = ~(oo). The 
performance of h(~,) for varying A is shown in 
Fig. 6, where the receiver operator  characteristics 
(ROC) are plotted for the different methods 
(Green and Swets, 1966). Both these values are a 
function of the detection threshold that is chosen, 
i.e., 3' in Eqns. (A8) and (B5). The ROC curve for 
the relative intensity estimator was determined 
using Eqn. 15 while the rest were obtained using 
Monte Carlo simulations. The ROC plot was 
derived using the following characteristics: N = 
1000 cross-intervals, I~AB = 50 spikes/s ,  h i = 100 
sp ikes / s  and A = 1 ms. These values represent  
approximately 10 s of data with a total of approxi- 
mately 1000 spikes /neuron.  

The lines represent  A = 1 ms, 5 ms, 10 ms and 
oo. The estimator for Aex is seen to perform 
nearly perfectly, with the sub-optimal region ap- 
pearing in the top left corner. The performance 
of the mean intensity estimator with /~ = 10 ms is 
equivalent to the relative intensity estimator 's 
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performance, indicating that }tAB is a reasonable 
statistic to estimate when tight bounds on A 
cannot be used. 

The performance of the relative intensity esti- 
mator is shown in Fig. 5 for PFA = 0.05. When 
making a decision about connectivity, correctly 
determining that connectivity exists is more im- 
portant than correctly determining that it does 
not exist. Thus, increasing the probability of false 
alarm is a reasonable sacrifice in order to in- 
crease the probability of detection. Fig. 7 shows 
the same plots as in Fig. 5 for PFA = 0.25. The 
plots have shifted to the left, reducing the inten- 
sity difference and the number of intervals needed 
for an equivalent probability of detection. 

Since the number of unconnected pairs is typi- 
cally much greater than the number of connected 
pairs in an ensemble, the reduction in analysis 
afforded by using the relative intensity estimator 
is approximately to the value of the PFA. So, if a 
PFA of 0.25 is used, the analysis computations 
are reduced by 75%. In the original example of 
an 8 neuron ensemble, approximately 23 his- 
tograms would have to be analyzed instead of 92. 
Even with a PFA of 0.5, an unacceptable high 
value for most communication systems, the num- 
ber of computations would be reduced by approx- 
imately one-half. In this case, the detection task 
reduces to choosing H 1 if AAB > A B and H 0 if 

AAb <-~ A B. 
The performance of the detector was seen in 

Eqn. 15 to become poorer  with increasing firing 

rates. While many systems have neurons with 
rates on the order of 100 spikes/s (cochlear nu- 
cleus, olivary complex) others fire at a rate of just 
a few spikes/s  (vestibular system, cortex). For 
low firing rates, the normalized efficacy discussed 
is approximately the true efficacy, i.e., e ' =  

p~ABA(1 -- AAA) --~ ~AB A = e. This reduction in 
firing rate will reduce the number of cross-inter- 
vals N that are produced, however. Thus, there 
exists a trade-off. 

One of the simplifying assumptions in the form 
of the connectivity, as seen in Eqn. 6, was that 
the excitation occurred instantly after the pre- 
synaptic neuron fired, i.e., there was no latency 
period before the post-synaptic neuron's intensity 
increased. This is not realistic since all experi- 
mental data has shown some form of latency 
period before the excitation occurred. For exam- 
ple, Michalski et al. (1983) have found that the 
average latency before excitation in the cat striate 
cortex was 0.62 ms, followed by an average excita- 
tion period of 2.22 ms. Part of the latency that is 
seen in cross-correlation functions can be at- 
tributed to separation effects due to estimating 
multiple-unit firings from a single electrode 
(Gochin et al., 1989), but a time delay between 
the pre-synaptic firing and the post-synaptic exci- 
tation does exist. 

The effect of such a latency on these tech- 
niques would be to increase the cross-interval 
mean and decrease the estimated relative inten- 
sity. It can be shown that, while the expected 
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relative intensity without latency is 

A B 

1 - ( ~ e x  - -  ~B) m (16) 

the expected relative intensity with a latency of t~ 
is 

AB 
(17) 

1 - (1 - ,~Bt~)(~ex -- /~B) m '  
^ 

for small AB6 and AAB A. The effect of 8 on AAB 
is seen to be negligible for realistic parameter  
values. 

Another  assumption made in the analysis was 
that the neurons had independent firing rates of 
tx i. This value can be either a spontaneous firing 
rate or a constant firing rate due to a constant 
driving function, such as a high frequency tone. 
While the performance characteristics derived in 
this text do not hold for time-varying driving 
functions, the techniques might still work due to 
the simple fact that connected units will tend to 
fire near each other and thus the cross-intervals 
will have a shorter mean than the self-intervals' 
mean. Several simulations using a sinusoidal in- 
tensity of varying frequency and modulation depth 
have resulted in similar cross-intensity perfor- 
mance as shown in Figs. 2 and 3. Also, units with 
common driving functions that are time delayed 
may be detected as interconnected since the stim- 
ulus will have the same effect on the cross-inter- 
vals that a connection would have. Shuffle, shift, 
or PST predictors will have to be used after 
connections have been detected to eliminate the 
stimulus-induced connections. 

The excitation and mean intensity estimators 
are similar to one created from a cross-correlo- 
gram approach. Coincidence counts could be cre- 
ated using a window the size of the bounded 
excitation /x and the cross-correlation intensity 
compared to the firing rate. The cross-correlo- 
gram does not provide for a computationally sim- 
ple technique where the excitation duration is not 
bounded, however, and thus a computationally 
efficient detection technique without a bound on 
A is unique to the cross-interval method. 

Finally, the analysis presented has been with 
respect to excitatory connections. Inhibitory con- 

nections can easily be addressed by making IXAB 
in Eqn. 6 negative and the rest of the analysis will 
remain the same except that Y will be a lower 
bound. If one wants to apply this method to 
detect both excitatory and inhibitory connections, 
Eqns. (A4), (A8) and (B5) will have a lower 
bound in the integration along with the upper 
bound T- A corresponding upper bound for the 
normalized gaussian must be calculated along 
with a" in (A9) to determine the PFA. An excita- 
tory connection will then be detected if the rela- 
tive intensity hA8 (or mean intensity A(/X) if the 
time of the effect is bounded by A) is above the 
upper bound and an inhibitory effect will be 
detected if AAB is below the lower bound. 
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Appendix A 

We will derive here the upper bound for the 
H 0 decision region. The pdf of the sum of N 
Poisson distributed intervals, each with pdfAe -*t, 
is 

( ~ Z )  N-1  

py : t (Z )  = Ae -*Z. ( A 1 )  
( N -  1)! 

The MLE for A given this distribution is N/ENti . 
Letting z = ENlti, the expected value of N/z  is 

=[=N(Az)  N-1 
E[ g / z  ] Jo z-(~--- ~ (  Ae-*Zdz 

_ __NA fo (Az)N-2he-XZdz 
N - 1  ( N - 2 ) !  

NA 
- N - ~ "  (A2)  
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Thus, the MLE of AAB from the cross-interval 
data is biased by a factor of N / ( N  - 1), and the 
unbiased estimator of AAB is 

N 

AAB = ( N -  1 ) / E  ti" (A3) 
i = 1  

The pdf for EiNti under H o is given by (A1). 
Defining the variable y = (N - 1)/ENti, the up- 
per bound y must be determined such that 

1 - fo~py(Y)dy = PFA, (A4) 

where again PFA is the probability of a false 
alarm, that is, the probability of deciding H I 
when the signal H 0. 

Unfortunately, py(Y) is difficult to integrate to 
a closed form solution for arbitrary bounds. Since 
z = ENti/N is the normalized sum of identically 
distributed variables, however, the pdf for z is in 
the shape of a gaussian. Using the Central Limit 
Theorem (Feller, 1968), 

pHO(z) exp - 

where m 0 =  E[z]= 1/A n 

m° 12 ] , 
(A5)  

and ~r2 = var[z] = 
1/(NA~). The integral of (A5) over [0,oo) is as- 
sumed to be 1, i.e., the area of the pdf over 
negative values of z is negligible. This is justifi- 
able because the actual area over negative values 
is 0.5-erf(lx/~r) = 0.5 - e r f (v~)  which is negligi- 
ble for large N. 

Recalling that the estimator of interest is (N - 
1)/ENti, define y = ( N -  1)/ENti = ( N -  
1)/(Nz). When a variable y is a function of z, 
the pdf for y, py(Y) can be derived from pz(Z) 
using 

=p~(Z) ~ .  py(V) (A6) 

From (A5) and (A6), 
N - 1  1 

PY(Y) - Ny 2 2V~o" 

(A7) 

To derive the Neyman-Pearson test, the bound 
y must be determined for which the integration 
of py(Y) over [y,oo) equals the predetermined 
PFA. Thus, y must be determined such that 

1 - P F A  
N - I  ~1 1 

n fo?  

0 < y < o o  

fa, ~ e x p [  _ l [ x - m° ~ 2] 

0 < X < O O  

= fa,~, 2 - ~ e x p [ -  ~ 1  du, 

m 0 
- - -  < u  ( A S )  

(9" 

where the bounds are 

N - 1  
a r 

Ny 

( N -  1 ) / ( N y )  - m  0 
a " =  (A9) 

O" 

In (A8), the second line was obtained by substi- 
tuting x = ( N -  1)/(Ny) and the third line was 
obtained by substituting u =(X-mo)/Cr.  The 
function in the third line is the normalized gauss- 
ian and the bound a" is solely determined by 
PFA and can be calculated using standard error 
function tables. The original bound y can be 
derived from a" by rearranging Eqn. (A9): 

N - 1  

Y= N( a,,q + mo ) 

AB 

a"v~ / (  N -  1) + N / (  N -  1) 

AB 

a " / f N  + 1 
(AIO) 



Appendix B 

H e r e  will we derive an express ion for  P D  given 
a specif ied PFA.  T h e  expec ted  value of  an inter-  
val with a p d f  descr ibed by Eqn. 8 is 

E [ t i ]  = 1/hex + exp( - A e x A  ) (  I / A  n - l /Aex  ) 

--- (1 - A , x A ) / A  B + A. ( B 1 )  

T h e  var iance  can be shown to be  approximate ly  

va r [ t i ]  = (1 - AexA)(1 + Ae~A)/A B + A 2, 

~AA << 1 

= 1 / h ~ ,  Aex A << 1. ( B 2 )  

Using the same  m e t h o d  appl ied  in Append ix  
A, the p d f  for  z = Y'.~ti/N is 

1 [ l(Z-m,:l 
p H i ( Z )  = 2-~---~exp - -~ - - - 7 - -  ] ] ,  ( B 3 )  

with 

m 1 = (1 - A ~ x A ) / ( N A B )  + A / N  

o " z =  1/(NA2B). ( B 4 )  

T h e  probabi l i ty  of  de tec t ion  P D  is def ined  as 

N - 1  : , N - 1  1 
1-PD= fo 

= f a t  2 - - ~  e x p [ - l ( ~ - L ) 2 ]  du 

[1( o m0;] 
= fa" - - ~ - e x p  - - ~  u o" du,  

( B 5 )  

where  the same  var iable  subst i tut ions were  m a d e  
as in (A8) and  thus the  bounds  a '  and a" are  also 
the  same as in (A9), with m I ins tead of  m 0. 
Compar ing  (A8) with (B5), the 2 hypotheses  H 0 
and H 1 can be mode led  as 2 gaussian distribu- 
t ions with unity var iance  and a m e a n  separa t ion  

13 

d of  (m 1 - m o ) / O .  The  separa t ion  
duced  to 

can be re- 

~vl I --D'I 0 
d -  - -  

(1  - X e x A ) / a  B + a - 1 / A B  

I / ( f N - A B )  

= ~fN(  t~B-- t~ex)m. ( B 6 )  

T h e  ideal threshold  for  such a case is a " =  d / 2 ,  
but  the threshold  was a l ready predef ined  for a 
specific P F A  in Eqn. 14. 

With  a" def ined  for  a specific PFA,  the PD 
can be expressed f rom (B5) as 

PD = 1 - erfc , [ a" - ( rn, - mo) /Cr  ] 

= 1 - e r f c . [ a "  + v ~ - ( A e x -  AB)A ] 

= 1 - e r f c . [ a "  + V~(P,B + P~AB-- P~B 

= 1 - e r f c . [ a "  + fNPLAB(1- AAA)A], 

where  

( B 7 )  

( B 8 )  
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