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Abstract: The main result reported here is a Stone type local limit theorem for perturbed random walks 2, = S, + 5, when some 

slow variation conditions are imposed on 5,‘s. 
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1. Background 

When specialized to one dimension and non-lattice distributions, Stone’s Theorem (1965) asserts the 
following: Let X,, X,, X,, . . . denote i.i.d. non-lattice random variables for which E[X,] = 0 and 
E[XF] = 1. Let 

s,=x,+x,+ *.* +x,, n=l,2,3 )...) 

be the sums, called ‘random walks’. Then for each L E [0, a), 

E,(L)= sup sup~6zqb<S,=Gb+c) -cC$(b/&)I x 0, 
c<L bsR 

where 4(x) is the standard normal density and [w is the real line. A consequence of this is 

fiP{S, EJ} a VI/G 

for any interval J c [w of length I J I. This is the result of Shepp (1964). 
There has been recent interest in sequences of random variables, called perturbed random walks. See, 

for example, Siegmund (19851, Woodroofe (1982) and Lalley (1984). A perturbed random walk has the 
form 

where S, is a random walk, 5, is independent of X,,, 1, X,,+2,. . . for all n = 1, 2,. . . and the sequence 
t,, n 2 1, is slowly changing in a sense described by Woodroofe (1982, p. 41). 
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2. A local limit theorem 

STATISTICS & PROBABILITY LETTERS 

The main result of this paper is a local limit theorem for perturbed 
conditions are imposed. 

Condition C (Cramer’s condition). A random variable X, is said to satisfy 
tic function 
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random walks. The following 

Condition C if the characteris- 

t/~(t) = lE[eitXl ] = jRei’“F(dx), t E R, 

has the property 

lim supj$(t)l< 1. 
I-m 

Cramer’s condition is also known as the strongly non-lattice condition. 

Condition SL (Slow variation condition on ti’s). A sequence of random variables, ei, is said to satisfy 

Condition SL if there is a number (Y E (3, 0, such that 

for each E > 0. 

M (Moment condition on Si’s). A sequence of random variables, ti, is said to satisfy Condition Condition 
M if for the LY in Condition SL, 

lim Wll 0 

&-l/z = . n+m 

For 5, satisfying Condition SL and M, and independent of Xn+l, X,,+*, . . . for all n = 1, 2,. . . , the 
sequence 2, = S, + 5, is called a perturbed random walk, even though the conditions imposed differ 

from those imposed for nonlinear renewal theory. 

Theorem 1 (Stone type local limit theorem). Zf E I X,’ I < ~0 and Conditions C, SL and M hold, then 

Examples. A class of examples of perturbed random walks may be constructed by letting 

z, = ng(%/n) 

where g(O) = 0, g’(O) = 1, and g E g2([ -6, 61) (i.e., g is twice continuously differentiable on [ -6, 61) 
for some 6 > 0. Assume E I X,’ I < CC and Condition C holds for the Xi%. Write 

5,=ng(S,/n)-S,=Z,-S,, nEN. 

If there is a k & 0 and C > 0 such that 

Ig(x)l =sC(IxI+l)k, x=R, 
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and [E I X,P I < co for some p > k, then Z, = S, + 5, satisfies all the conditions in the local limit theorem 
for perturbed random walks (Theorem 1). 

The verification of these assertions will be given in the last section. 

The following lemma is an important tool in the proof of the theorem. 

Lemma 2 (Edgeworth expansion, Woodroofe, 1988). Assume E 1 X,” 1 < w and Condition C holds. Let M 
be given, 0 <M < m. Then for b E R! and c E [0, M], 

F*“(b+c)-F*“(b-c)=@((b+c)/&)-@((b-c)/&)+O(l/n) 

uniformly in b and c. q 

The lemma follows directly from Theorem 1 in Section 3 of Woodroofe (1988). 

Proof of Theorem 1. For 0 < /!I < y < CQ and n > 1, let 

EJP, y) = sup sup~v%P{b<Z,<b+c} -c+(b/&)(. 
/3<c=sy bcR 

Then it is easily seen that 

s,(L) =&JO, L) G&,(0, 6) + &,(a, L) V’6 E (0, L). 

So it is sufficient to show that for all 6 > 0, ~,(a, L) + 0 as n + 00. 
Let LY E (3, 1) be as in Condition SL. Let b E R, c E [a, Ll and E E (0, is>. For sufficiently large n, let 

Z=[n*]and m=n-l.Then 

P(b<Z,<b+c} <P(b<Z,<b+c, l&-5,1 <e}+F=(IS,-[,I >e} 

<P{b-e-Z,<S,-S,<b+e-Z,+c} +S,/fi 

where 6, * 0 as n + w by Condition SL. Let ~7~ = a{X,, X,, . . . , X,; 5r, t2,. . . ,[,I be the a-field 

generated by IX,, A’,, . . . , A’,,,, 5,, t2,. . . ,5,} and 

!Pn(x, c) =F*‘(X+C+&) -F*‘(x-E). 

Then 

P{b-e-Z,<S,-S&b+&-Z,+c} 

=lE[P{b-e-Z&S,-S,<b+e-Z,+&Bm}] 

= E[ ‘P,J b - Z,, c)] . 

Similarly, 

P{b-e<S,<b+c+e}=E[?P,Jb-S,,c)]. 

so 

&P{b<Z,,(b+c} =&&{b-e<S,<b+e+c} 

+fiE[(V,(b-Z,, c) -‘J’,(b-S,, c>I] +a,. (1) 

The first term on the right-hand side will give the desired upper bound by Stone’s theorem. The second 
term will approach zero as n -+ 03 by using the local Edgeworth expansion (Lemma 2). The third term 
goes to zero as n + 03 as above. 
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For the first term, by Stone’s theorem, 

~vGP(b-E<S,<b+&+c} -(c+244((b-4/G)/ a 0 

uniformly for b E R’ and c E [a, L]. 

(2) 

By Lemma 2 and a Taylor series expansion, there are constants C,(L) depending only on L for which 

~IW,(b-Z,,c)-~~(b-S,,c)l 

for all b E R and c =G L. Observe that the last line does not depend on b or c. For large IZ, Ia $za. So by 
Condition M, 

It follows from (1) and (2) that there is a sequence a,, n z 1, for which 

&&(b<Z,,<b+c} -(c+2+((b-~)/&+a, a 0, 

uniformly in b E R, c E [a, L]. Similarly, there is a sequence Z,, with &,, + 0 as n --f CO and 

6zP{b-Z,=zb+c} -(c-22~)~((b+~)/d+&,, s 0 

uniformly in b E R, c E [6, L]. 
The theorem follows by letting IZ + 03 and then E J 0. 0 

3. Directly Riemann integrable functions 

The following definition is taken from Feller (1966). For a bounded real valued function h defined on R, 
6 > 0 and k E Z, let Jk = (k8, (k + l)S] and 

mk = min{h(x): x EJ~}, Mk = max{h(x): x EJ~), 

i?=??,(h)= f 6A4,, +=_a,(h) = E am,. 
k= --OD k= --o) 

Then h is said to be directly Riemann integrable (h E DR) if: (a) 0, _a converge absolutely for 
sufficiently small 6 > 0; (b) lim, --t a (as - _a~) = 0. Then h EL’ and for all E > 0, 
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Proof. There is no loss of ~e~~rali~ in supposing that h B 0, since othe~~se positive and negative parts 
may be considered separately. 

Given E > 0, there is a S > Q for which if, - _6, CF K E. With this choice of 8, by Theorem 1 there is an 
N, E N for which 

for a11 /k/ <K, ndNI.Then 

and for all n 2 N, V N, (i.e,, n 2 rn~~~~, IV,)). Simi~arly~ 

The theorem now follows by letting y1-+ w, 8 -+ 0 and then E -+ 0. 0 

The local limit theorem (Theorem 1) is the special case when ;ta(xf =I &+ 

4, Proof of the examples 

Recall the ~arcin~iewic~-~y~rn~~d ~~e4~ali~ (see Section 10.3 in Chow and Teicher, 1378): Assume 
E[ I.Xi / ‘I< ~0, for some p >, 3. Then 

!E[rs,Vq <E[ IxilP]C12p’2 

for some constant C depending on Q, 
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Proposition 4. Suppose g E @7’([ -6, S]) f or some 6 > 0 and there exists a constant C > 0 such that 
Ig(x)l~C(l+IxI)kforaZlxEIW. Zf lEIXiIP]<ccf or some p with p > k and p > 3 where the Xi’s 

satisfy condition C, then with 5, = ng(S,/n> - S,, Z, = S, + 5, satisfies Theorem 1. 

Proof. Let A, = {I x,, I < 6). Then on A,, 5, = g”(A,>S,2/n, I A, I G 6 and I g”(A,)l, I G C, for some 
C, E (0, ~1 independent of n. Let h(x) = g(x) -x. So h E E’*([ -6, S]), h(O) = 0, h’(O) = b, 5, = nh(S,/n). 
It is easy to see that I h(x)1 G C, I x I k for all Ix I a 6 for some constant C, E (0, w), and that 
I h(x)1 G C,x2, for x E I-6, 81, for some C, E (0, m). 

Step 2. Show that condition M is satisfied. i.e., lE[ I[,, I] = o(n a-1/2) 
(Y E (+, 1 - l/p) c (+, 1). Now 

for some LY E (i, 1). Choose 

E[ ISJ] a[ ls,lLn] +q klL,] 

where AL is the complement of A,. By the boundedness of g” on A, and M-Z inequality, 

E[ l&llA,] =E[~g”(d,)IIA,S~/n] ~C,[E[S,2]/n~C,=o(n”-“2). 

By the properties of h(x), 

E[ I 5, I I,~] = nE[ 1 h( S,/n) Il,;] G nC&[ I S,/n I kl,6] 

G C,n2-p = o( na-1/2) (since p 2 3). 

The last line is a direct corollary of M-Z inequality. So Condition M is satisfied. 
Step 2. Show that Condition SL holds. i.e., 

P{15,-5,_[,alI>~]=0(n-1’2) Ve>O. 

Write m = n - [nay]. Then on A, nA,, 

s,-<,,,=nh(F,)-mh(X,) 

=nh’(X,)(X,-ji;,) + $zh”(A.,,)(X, -Em)‘+ (m -n)h(X,) 

= I, + I, + 13. 

where A,, m is between 52, and x, and Zi denotes the ith term. The Markov Inequality and M-Z 
inequality’ give 

P{ALuAk} glE[~X,~]/6p+IE[/X,~]/6p9C,(p)n-p/2=o(n-1/2). 

So it suffices to show that 

P(IZ,+Z2+Z,(l,~~,m>~}=o(n-‘~2) V.5>0. 

By the Markov inequality, it is enough to prove that 

E[ I Zi I1-l,n-l,] = o(n-‘/2) V.5 > 0, for i = 1, 2, 3. 

By the independence of the Xi’s, 

E[Z, lgm] =nh’(~~)IE[~~-~~ ILZ~] =h’(X,)(m-n)F,. 
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Since h E 2?‘([ -6, 61) and h’(0) = 0, there is a constant C, for which I h’(x) I G C, I x I for all x E 
[ -6, 61. By M-Z inequality, 

+E[I, 19&J2] <CP”(iI-m)“‘%[iXJ] 

G C,(p)((n -+my2 

G C,( p)nP’*-‘)/2 = o( nP’12) (since (Y < 1 - l/p). 

Let S,,, =X,+1 l tXm+2 
x, 

+ . . . +Xn. Then I, - E[Z, IL%‘~] = h’(X,)S,,,. Using the independence of 
and S,,, and the property of h(x) in [ -6, 61, M-Z inequality gives 

~[l~,-w%11A,~] ~cp~[l#wn,mIpl 
=G C,( &7-q n - mp2 
< C,( p)n-P’1-4/2 = o( &/2). 

Consequently, for all E > 0, 

‘[ 11, lL,,,A ml +w%l!4m~] +q~,-w%lLm] =Ow”2). 

To prove EL I 1, I l,,tnA,,l = o(K’/~), note that there is a constant C E (0, m> for which 
I h”(A,,,)lAn, n A, I G C. Then 

11, II AnnAm =$“lh”(A,.,)I(‘~-‘~)21A,,nA, 

< ;nc( x, -q2 

1 

1 2 

= +nC -S,,, - 
n-m 

n -S, nm I 

< c, 
(n -m)2si 

nm2 I 

Therefore, 

bc,((~)p’2+(~)p} =O(n-‘/2). 

Since I h(x) I G Cx2 on [ -6, 61, M-Z inequality yields 

E[ ~Z,Ip’21,~,A,,,~~C[E[(rr-m)P/2~X,,~P1,~~] ~C,([na])P’2m-P/2=o(n-‘/2). 

The proposition follows. 0 

Note 

The results presented here are part of the author’s dissertation under the direction of M. Woodroofe. 
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