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Abstract: The main result reported here is a Stone type local limit theorem for perturbed random walks Z, = §, + £, when some
slow variation conditions are imposed on £,’s.
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1. Background

When specialized to one dimension and non-lattice distributions, Stone’s Theorem (1965) asserts the
following: Let X;, X,, Xj,... denote ii.d. non-lattice random variables for which E[X;]=0 and
E[X?]=1. Let

S, =X, +X,+ - +X,, n=1,2,3,...,

be the sums, called ‘random walks’. Then for each L [0, «),

e,(L) = sup sup |[VaP{b < S, <b+c} —cd(b/Vn)| —= 0,
c<L beR

where ¢(x) is the standard normal density and R is the real line. A consequence of this is
VnP(S, €1} w=2 UI/V2x

for any interval J C R of length |J|. This is the result of Shepp (1964).

There has been recent interest in sequences of random variables, called perturbed random walks. See,
for example, Siegmund (1985), Woodroofe (1982) and Lalley (1984). A perturbed random walk has the
form

Z,=8,1t¢&,,

where S, is a random walk, £, is independent of X, ., X, ,,,... forall n=1,2,... and the sequence
> 1 = 1, is slowly changing in a sense described by Woodroofe (1982, p. 41).
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2. A local limit theorem

The main result of this paper is a local limit theorem for perturbed random walks. The following
conditions are imposed.

Condition C (Cramer’s condition). A random variable X; is said to satisfy Condition C if the characteris-
tic function :

(1) = E[e"X] =fe""F(dx), tER,
R

has the property
lim sup |¢(2)| < 1.

{—>

Cramer’s condition is also known as the strongly non-lattice condition.

Condition SL (Slow variation condition on &;’s). A sequence of random variables, ¢, 1s said to satisfy
Condition SL if there is a number a € (%, 1), such that

lim v P{|¢, — &, | >2} =0
for each £ > 0.

Condition M (Moment condition on £;’s). A sequence of random variables, ¢;, is said to satisfy Condition
M if for the a in Condition SL,

E[1¢,1]

700 na—1/2

For &, satistying Condition SL and M, and independent of X, , |, X, ,,,... forall n=1,2,..., the
sequence Z, =S, + ¢, is called a perturbed random walk, even though the conditions imposed differ
from those imposed for nonlinear renewal theory.

Theorem 1 (Stone type local limit theorem). If E| X | < » and Conditions C, SL and M hold, then
e,(LY= sup sup |\/17I]3’{b <Z,<b+c} —cq&(b/\/ﬁ)l — 0

n—w
O<c<L beR

forany L <,

Examples. A class of examples of perturbed random walks may be constructed by letting
Z,=ng(S,/n)

where g(0) =0, g'(0)=1, and g€ %[, 8] (i.e., g is twice continuously differentiable on [ -8, 8]
for some 6 > 0. Assume [ | Xf | <o and Condition C holds for the X,’s. Write

§n=ng(Sn/n)_Sn=Zn_Sn’ n&N.
If there is a k > 0 and C > 0 such that

lg(x)| <C(lx|+1)*, xeR,
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and F| X7 | < for some p >k, then Z, =S, + £, satisfies all the conditions in the local limit theorem
for perturbed random walks (Theorem 1).
The verification of these assertions will be given in the last section.

The following lemma is an important tool in the proof of the theorem.

Lemma 2 (Edgeworth expansion, Woodroofe, 1988). Assume E| X | < and Condition C holds. Let M
be given, 0 <M < . Then for b€ R and c €[0, M},

F*'(b+c)—F*"(b—c)=®((b+c)/Vn)—®((b—c)/Vn)+0O(1/n)

uniformly in b and c. O
The lemma follows directly from Theorem 1 in Section 3 of Woodroofe (1988).

Proof of Theorem 1. For 0 < B <y <wand n> 1, let

e,(B,v)= sup sup I\/E[P’{b <Z,<b+c} —c¢(b/\/r7)|,

B<se<sy beR
Then it is easily seen that
e, (L)y=¢,(0, L) <¢e,(0,8) +e,(8, L) Vée (0, L).

So it is sufficient to show that for all >0, €,(5, L) > 0 as n — .
Let a € (3, 1) be as in Condition SL. Let b €R, ¢ €[8, L] and ¢ € (0, 38). For sufficiently large n, let
I=[n*]and m =n —1I. Then

Pb<Z,<b+c}<Pb<Z,<b+c, 1§, &, <e}+P{Ig, &, | >¢}
<Pb-e—-2,<S,-S,<b+e—Z,+c}+8,/Vn

where 8, -0 as n — o by Condition SL. Let &, =o{X|, X,,..., X,;; &, &,,...,&,,) be the o-field
generated by {X,, X,,..., X,,, &, &5,...,£,,) and

V(x,c)=F*(x+c+e)—F*(x—¢).

Then
Plb-e—-2Z,<S,-S,<b+e—-2Z, +c}
=E[Plb-e-2Z,<S,~S,,<b+e—-Z,+c|%,}]
=E[¥.(b—2Z,, c)].
Similarly,
Pb—e<S,<b+c+e} =E[¥,(b-S,, )]
So

VnP{b<Z,<b+c)<VnP{b—e<S,<b+e+c}
+VnE[|¥(b—-Z,,c)— ¥ (b-S,,c)|] +5,. (1)

The first term on the right-hand side will give the desired upper bound by Stone’s theorem. The second
term will approach zero as n — « by using the local Edgeworth expansion (Lemma 2). The third term
goes to zero as n — % as above.
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For the first term, by Stone’s theorem,
VnP(b—e<S,<b+e+c)—(c+2e)p((b—¢)/Vn)| —=2 0 (2)

uniformly for b€ R and c €[5, L].
By Lemma 2 and a Taylor series expansion, there are constants C,(L) depending only on L for which

‘/;Iq,n(b _Zm’ C) - lIfn(b _Sm’ C)]

btc+e-2, b—e-Z,
{2552
_[q)(b+c+e—Sm)_ (b—s—S,,, ] +C1(L)£
VI VI !
b—e-Z2, b—e—S,\]c+2¢| Vn 2
<\/r7[¢(—7——)—¢( 7 ) 7 +—l—[(max<,b’)(c+23)+Cl(L)]

Vn Vn
<C2(L)T|Zm_5m!+c3(L)T

for all b € R and ¢ < L. Observe that the last line does not depend on b or c. For large n, [ » %n". So by
Condition M,

Vn E[1£.1]
'E[—l—llm—Sml =7 wee O

It follows from (1) and (2) that there is a sequence o,, n > 1, for which

VnP(b<Z,<b+c}—(c+2e)p((b—¢)/Vn) <o, 0,

n—ow
uniformly in b € R, ¢ €[8, L]. Similarly, there is a sequence &, with ¢, > 0 as n — « and

VnP{b—Z,<b+c})—(c—2e)((b+e)/Vn)>6, —2 O

n—oo

uniformly in bR, c €[5, L]
The theorem follows by letting n — o and then £ (0. O

3. Directly Riemann integrable functions

The following definition is taken from Feller (1966). For a bounded real valued function 4 defined on R,
8>0and k€ Z, let J, =(k8, (k+1)8] and

m, =min{h(x): x€J,}, M,=max{h(x): x €/},

T=05(h) = Y &M, g=g5(h)= )X om,.

k= o0 k=—o

Then A is said to be directly Riemann integrable (A € DR) if: (a) o, o converge absolutely for
sufficiently small § > 0; (b) lim; _, (55 — g;) = 0. Then A € L' and for all £ > 0,

g, < lim &= [h(x) dx= lim ¢, <37..
80 R 8—0
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Theorem 3. Suppose that conditions of Theorem 1 are satisfied. If h € DR, then

lim Vn E[A(Z,)] = /h(x) dx.

H =0

Proof. There is no loss of generality in supposing that 4 » 0, since otherwise positive and negative parts
may be considered separately.

Given ¢ > 0, there is a 8 > 0 for which &; — g; < e. With this choice of 3, by Theorem 1 there is an
Ny € N for which

|V (ks < Z, < (k +1)8} ~ 8e(kd/Vn )| <e8/V2Im

for all n > N, and all k € Z. There is K€ N for which
Y m(8) < L M(d)<e

|k|=>K lkl>K

and there is an N; € N for which

(1—&)/V2w <d(kd/Vn)<1/V2m
for all |k| <K, n> N,. Then

WmE[R(Z)] < ¥ MnPlké <2, < (k+1)5}

kel

< ¥ M[86(kd/Vn) +ed/V2m |

kel

< ¥ M (1/V2% +¢/V2m)

keZ
1+

\/g([kh(x) dx+e)

and for all n > N,V N, (i.e,, n > max{N,, N,}). Similarly,

VRE[R(Z,)] > %H};@h(x) dx— e} - 58}.

The theorem now follows by letting n— o, § >0 and then e = 0. O

<

The local limit theorem (Theorem 1) is the special case when A(x) =14, 4,

4. Proof of the examples

Recall the Marcinkiewicz—-Zygmund Inequality (see Section 10.3 in Chow and Teicher, 1978): Assume
EH X, |?] < o, for some p = 3. Then

E[1S,17] <E[1X;1?]Cn?/?

for some constant C depending on p.
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Proposition 4. Suppose g € #*((—5, 8]) for some 6> 0 and there exists a constant C >0 such that
lg(x) <CA+ |xDF for all xeR. If EHI|X, Ip]<oo for some p with p >k and p >3 where the X;'s
satisfy condition C, then with &, =ng(S,/n) — =S, + &, satisfies Theorem 1.

Proof. Let A, —{I)? | <8}. Thenon A,, £,=g"(4,)S2/n, 14,1 <8 and |g"(4, )lA | < C, for some
C, (0, ») 1ndependentofn Let h(x)= g(x) xX. Sohe%z([—ﬁ 8D, h(0) =0, h'(0) = 0, £, —nh(S /).
It is easy to see that |A(x)| < Czlxl for all |x|>6 for some constant C, (0, «), and that
|h(x)] < C;x?, for x €[ -8, 8], for some C3E(O ),

Step 1. Show that condition M is satisfied. ie., E[|¢,|]1=0(n*"'/?) for some a € (3, 1). Choose
ae(3,1-1/p)c(3, 1. Now

E[1€, 1] <E[1&, 11, ] +E[1&,114]
where A, is the complement of A4,. By the boundedness of g” on A4, and M-Z inequality,
E[ 16,114, =E[l&"(4,)11,,82/n] < CE[S2] /n< C,=o0(n*"172).
By the properties of h(x),
E[1€, 114,] = nE[|A(S,/n) |Ly,] <nCiE[1S,/n1"1,]
<Cyn* P =o0(n*"/2) (since p > 3).

The last line is a direct corollary of M—Z inequality. So Condition M is satisfied.
Step 2. Show that Condition SL holds. i.e.,

P{l€, = £, puey| > €] =0(n™1/?) Ve >0.
Write m =n — [n*]. Then on A4,,NA4,,
&, — £, =nh(X,) —mh(X,)
=i (X,)(X,~ X,) + tnh"(4,,)(X, - X,) + (m~n)h(X,,)
=1, +1,+1,.

where 4, , is between X, and X,, and I, denotes the ith term. The Markov Inequality and M-Z

,m

inequality give
P, ud,) <E||X,[] /57 +E[| X, ] /57 <C(p)n 272 = o(n=12).
So it suffices to show that
PUL+ L+ 111, 4 >} =0(n"'?) Ve>0.
By the Markov inequality, it is enough to prove that
E[11114,n4,] =0(n"'/?) Ve>0, fori=1,2,3.
By the independence of the X;’s,

E[1,12,] =nh’()?m)[E[ ] = ) (m—n)X,.
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Since h € #*([—§, 8]) and h’'(0) =0, there is a constant C, for which |A'(x)| <C,|x| for all x €
[—86, 8]. By M-Z inequality,

e[JE[1,1 9,11, ]

<C”(n-m)f| X, ]
<Cy(p)((n=m)/m)""*
< Cy(p)nP @D/ 2=0o(n""/?) (since @ <1-=1/p).

_LetsS, =X, +X, ,+ " +X,. Then I, —E, | 8,]=h'(X,)S,,,. Using the independence of
X,, and S, ,, and the property of A(x) in [—8, 8], M-Z inequality gives

t|1 - E[118,]1,, ] <coE|| %, €15, ,.17]
<C(pym="(n~m)""”
< Cy(p)n~PU /2= o(n~1/2),
Consequently, for all £ > 0,
E[1 110, | <E[[ELL 1,00, |] +E[11 - E[ 1 18,,] |1, | = o(n™1/2).

To prove |/, 11, 4 1=0(n""?), note that there is a constant C & (0, ©) for which
|h"(4, )14 4 | <C.Then
- = .2
| 12 |1AnmAm = %nIh”(An,m)l(Xn _Xm) 1A,,ﬁAm

<inC(X,-X,)

Therefore,

1 (n—m)”
E[1 51771, o4 ] <Cz{m[5[ S 171+ =7 o E '5m|p]}

<C3{(n " )p/2+ (n " )p} =o(n"1/?).

n n

Since |h(x)| < Cx? on [—8, 8], M=Z inequality yields
{11,171, 04, L5 CE[(n = m)” Y X, (1, | < C[no]) " *m 272 = o(n=17%),

The proposition follows. O

Note
The results presented here are part of the author’s dissertation under the direction of M. Woodroofe.
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