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Abstract-A geometry-based rigorous approach to the detection of global and internal mobility of skeletal 
structures (trusses and frames) is presented. The method is useful for automated design of skeletal 
structures at the conceptual stage where the overall topology of the structure is known, but no exact detail 
on geometry and size is available. Such topologies are, for example, those generated by interpreting 
homogenization images in topology optimization. The two-dimensional theory is illustrated utilizing two 
design examples, a classical two-bar truss design, and one generated in the framework of the integrated 
structural optimization system (ISOS), introduced in earlier publications. An extension to three-dimen- 
sional structures is also provided along with a space truss design example, solved in the literature using 
force-based techniques. 

1. INTRODUCTION 

The recent introduction of homogenization techniques for 
rigorous determination of proper structural topologies [l] 
has started to affect the research in the field of structural 
design. Indeed, it has worked counter to established intu- 
ition where conceptual design is performed by humans (or 
by some sort of ‘intelligent’ computer programs), the sub- 
sequent details handled by computer-based analysis. Rather, 
in an integrated design environment using homogenization 
as part of the strategy [2,3] the conceptual design phase is 
performed by a rigorous analytical optimization method- 
ology, resulting in a gray scale image of the proposed 
topology. It is then that the human (or ‘intelligent’ computer 
program) is called to interpret this image into the form of 
a realistic, manufacturable structure. In a three-phase pro- 
cess, described in the cited references, a design task is 
initiated by specifying only boundary conditions, type and 
amount of material, and generating the image by using a 
homogenization-based optimization procedure (phase I); 
image processing and interpretation, possibly including 
alterations due to manufacturability requirements, yield a 
parameterized CAD-type representation (phase II); detailed 
shape and size optimization that may include additional 
constraints puts the finishing touches on the design 
(phase III). An early computer implementation of this 
strategy is the Integrated Structural Optimization System 
(ISOS) [2,3]. 

One class of structures resulting from processing and 
intepreting homogenization images is skeletal structures, 
i.e., trusses and frames. As one may expect, mathematical 
optimization will tend to push the topological layout to its 
limits of efficiency, so skeletal interpretations of homogeniz- 

t Throughout this paper the phenomenon of mobility and 
immobility of structures is investigated. In order to maintain 
consistency same terms are used in reviewing the work of 
other researchers, even though they have used different 
terms. For instance, stability and instability are avoided 
because they are used in the context of buckling and 
equilibrium bifurcation, kinematic stability is an oxymoron, 
and rigidity is used for structures which are not deformable. 

ation images may yield kinematically mobile structures. The 
homogenization process itself does not generally result in 
mobile structures, but the skeletal interpretation may do so. 
To illustrate this phenomenon two examples for skeletal 
structures developed through ISOS are provided here. The 
input to homogenization, consisting of an initial design 
domain, and boundary and loading conditions, is depicted 
in Fig. l(a), and its output for a solid/void ratio of l/3 is 
shown in Fig. l(b). Figure l(c) shows an intermediate 
output of ISOS, that is a skeletal interpretation of the image 
shown in Fig. l(b). Is this skeletal structure mobile or not? 
(In structural mechanics and kinematics the former is called 
a ‘structure’ and the latter a ‘mechanism’.) For this particu- 
lar design example, a truss (pin-joined) interpretation is 
mobile, whereas a frame (welded) interpretation is not. 
Another example is shown in Fig. 2 where both interpret- 
ations are immobile; this example has been extensively 
treated in [3]. 

A design engineer can use intuition and visual inspection 
to detect any mobility in the structure and subsequent 
detailed structural analysis would reveal any undetected 
mobility problems. Automating this task in the preliminary 
design stage using only geometric information requires 
operationally useful necessary and sufficient conditions for 
immobility. This paper addresses the development of such 
conditions and the computational implementation in the 
ISOS environment. The ideas are akin to those in classical 
kinematics, but tailored to the presnt needs. Note that the 
developed theory is applicable outside the framework of 
ISOS as well, and can be used in any automated conceptual 
design environment. In the remainder of this introductory 
section we will make some links with previous work, before 
we proceed with developing the needed conditions. 

The well-known rule of static determinancy (indetermi- 
nacy), that twice the number of nodes minus the number of 
bars has to be equal to (greater than) the number of 
unknown external components, is mentioned in elementary 
texts as the necessary condition for immobility of trusses, 
see, e.g., [4-61. Obviously necessary conditions do not 
guarantee immobility. Norris and Wilbur [4] introduce a set 
of heuristic rules based on engineering intuition as sufficient 
conditions for immobility. Weaver [5] suggests that the 
number and position of supports and members be adequate 
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Fig. 1. (a) Input to homogenization, (b) optimal topology generated by homogenization, (c) mobile truss 
interpretation of image (b). 
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Fig. 2. Input to homogenization, (b) optimal topology generated by homogenization, (c) immobile truss 
interpretation of image (b). 
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for immobility of the structure but without giving specific 
means of determining such adequacy. 

In early work, Southwell[7] introduced tension CO- 
efficients to determine the forces in the bars of statically 
determinate trusses. Generalizing the set of loads applied at 
the nodes can reveal a unique relation of internal forces to 
external loads. This uniqueness, referred to as determinacy, 
is equivalent to immobility of the structure. Such a force- 
based method was applied as recently as 1980 to detect 
mobility of space trusses [8]. A similar approach was taken 
by Timoshenko and Young[9] as a basis for deriving the 
zero-load test which is less attractive for automation than 
the original tension coefficient method. One may note that 
these procedures cannot be formally extended to statically 
indeterminate structures, and that no formal definition of 
immobility of skeletal structures is used for rigorous proofs. 
An additional disadvantage is that components of the 
structure have to be treated as external forces, resulting in 
a lack of differentiation between global and internal immo- 
bility, as will be discussed later in this article. Using classical 
mobility criteria based on potential energy of mechanical 
systems, such as, Dirichlet’s criterion (see, e.g., [lo]), has the 
disadvantage of global kinematic complications. 

In a typical kinematics treatment, e.g., in [1 I], Griibler’s 
formula is discussed as a method of determining the degree 
of freedom of a mechanism. A degree of freedom equal to 
or less than zero, although necessary for immobility of the 
structure, does not guarantee that the structure is not 
mobile. Even more sophisticated formulae for the degree of 
freedom, such as the one derived by Kutzbach [12], rep- 
resent only a necessary condition. Hunt [13] discusses how 
screw theory can be applied to determine the so-called actual 
degree of freedom of mechanisms. He also indicates (with- 
out elaborating) that the theory may be applied to cases 
where the degree of freedom of the mechanism is less than 
or equal to zero, i.e., where one is dealing with structures. 

As mentioned earlier, one way of detecting mobility is 
structural analysis, for example, using finite-element 
methods. For every skeletal structure a stiffness matrix is 
computed which, multiplied by the displacement vector, 
gives the loading. If the stiffness matrix of a structure is 
singular, without applying any loads there exist nonzero 
displacements. From our present viewpoint, the disadvan- 
tage of this approach is that detailed information on the 
structure is not available at the conceptual level of a design 
process. 

The approach taken here is purely geometric and ignores 
the loading conditions. The definition of immobility is in 
terms of geometric quantities (see Sec. 2), the loads con- 
tributing to mobility of the structure rather than causing it. 
The geometric configuration of the structure is considered as 
the primary cause of mobility. This approach is based on 
ideas introduced by Griining [14] for two-dimensional skel- 
etal structures (both trusses and frames). The theory has 
been applied to two-dimensional statically-determinate to- 
pologies generated in the framework of ISOS with exten- 
sions to three-dimensional structures. As most of the 
homogenization results to date are two-dimensional, we will 
start with the two-dimensional case. 

The remainder of the article is as follows. In Sec. 2 some 
terms are formally defined and necessary and sufficient 
conditions for immobility are derived. In Sec. 3 some 
remarks useful for application purposes are provided. Two 
two-dimensional examples are given in Sec. 4 for illus- 
tration. A three-dimensional extension of the theory is 
provided in Sec. 5, followed by a space truss example in 
Sec. 6. 

2. NECESSARY AND SUFFICIENT CONDITIONS 
FOR IMMOBILITY 

We begin with some definitions. 
A node orjoinr is a point in space used to connect one or 

more members of a skeletal structure. A linear member or 

CAS 45,1--N 

element is the linear connection between two nodes. The 
linear elements are divided into bars and beams. Bars can 
carry only axial forces whereas beams can carry axial and 
shear forces and also bending moments. Bars and beams can 
be connected at the nodes using hinges or welds. If a linear 
element is connected via a hinge, at its respective end it 
accepts only forces. In contrast, if a linear element is 
connected via to a weld, at its respective end it accepts both 
forces and moments. A weld is considered stiff about those 
of its axes that can transmit moments. A clamp or a 
clamped-end supports a structure by providing an external 
moment around a given axis. A (simple) support supports a 
structure by providing an external force component in a 
given direction. 

Definition 1 

A skeletal structure is defined as a set of distinct nodes 
connected by a set of linear elements and externally sup- 
ported by a set of clamps and supports. Bars, beams, nodes, 
simple supports, and clamps are collectively referred to as 
the members of the structure. 

A skeletal structure with only pin-joined bars is referred 
to as a truss, while one with only beams joined by welded 
joints is called a frame. A skeletal structure that is neither 
a truss nor a frame is referred to as a hybrid structure. If not 
explicitly specified, the term ‘structure’ is used for hybrid 
structures for the remainder of this paper. 

Definition 2 

A skeletal structure is globally immobile, if and only if 
changes in the positions of its nodes (i.e., node displace- 
ments) with respect to fixed points are possible only by 
simultaneously deflecting the bars and beams, and/or 
deforming the stiff joints, and/or moving the supports, 
and/or deforming the clamps of the structure. 

Definition 3 

A skeletal structure is internally immobile, if and only if 
changes in the positions of its nodes, relative to each other, 
are possible only by simultaneously deflecting the bars and 
beams and/or deforming the stiff joints of the structure. 

As it will be explained later, the internal and global 
immobility of a structure differ only in terms of the kin- 
ematic boundary conditions used to support that structure. 
A skeletal structure is mobile (internally or globally), if and 
only if it is not immobile. An obvious simple theorem can 
be then stated as follows. 

Theorem 1 

A structure is mobile, if and only if displacing any 
combinations of its nodes is possible without deflecting or 
deforming members of the structure. 

Proof 

The proof follows trivially from the following logical 
equivalences and Definitions 1-3. (1) p o q E lp o lq 
and (2) T@ o q) sp A 14. In case of Equivalence (2), 
p corresponds to existence of nonzero nodal displace- 
ments and q corresponds to existence of nonvanishing 
deformations in the structure. 

Theorem 1 means that a nodal displacement in a rigid 
structure (where no deformations take place), exists if and 
only if the structure is mobile. This statement can be easily 
verified for any mechanism. 

Based on this theorem, analytical expressions for necess- 
ary and sufficient immobility conditions of two-dimensional 
structures can be derived. The following symbols are used. 
All coordinates of the nodes and their deflections are 
expressed with respect to a Cartesian coordinate system as 
shown in Fig. 3. The position of node i is expressed in terms 
of its coordinates xi and yi. The differentials Axi and Ay, 
denote the infinitesimal displacement components of that 
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Fig. 3. Positions of nodes and dimensions and orientations 
of their connections. 

node along the x and y axes, respectively. The length of 
linear element (ik) connecting nodes i and k is denoted by 
So, its change by A.r,. The welded joint r connects linear 
elements (ri) and (rk), ~9, denotes the angle between those 
members and AO, the infinitesimal change in that angle. A 
simple support r constrains the movement of node r along 
a prescribed direction for a given distance c,, (see also 
Fig. 4). A clamped-end I constrains the angle of rotation of 
beam (r/c) about an infinitesimal angle of r,. Note that a 
clamped-end r does not necessarily impose any constraints 
on the displacement of the corresponding node r. 

With the above notation, the following corollary to 
Theorem 1 can be stated. 

Corollary 1 

A structure is mobile, if and only if the deformation 
quantities (A,r, At?, c, and r) can vanish while the displace- 
ment quantities (Ax and Ay) do not. 

Note that this corollary and other theorems discussed 
here are not limited to two-dimensional structures. 

We now proceed to derive operationally useful ex- 
pressions for necessary and sufficient conditions for immo- 
bility (or mobility) of skeletal structures. As it can be readily 
seen from Fig. 3 

s:,=(Xt-Xi)2+Cyk-yi)* (1) 

(sk + As,)* = [(x,, - x,) + (Ax, - hi)]* 

+ KJQ - YJ + (Avk - Au,)l*. (2) 

The deflection Ask of member (ik) is presumably small 
compared to sI so that the quantity Ass, /s* is much smaller 
than one and can be neglected. The same is true for 
(Axk - Ax, )/~a and (Ayk - A~,)/s~. Subtracting the two 
equations above, dividing by s,~, and taking this approxi- 
mation into account, we obtain 

~, = (A.% - AX,)& - x,) + (AYE - AY)& -vi) 
!k 

c31 

Sik 

Fig. 4. Support r whose movement is constrained along a 
given axis. 

As shown in Fig. 3, let a, be the angle between the x axis 
and the direction of element (rk), and let CZ,~ be the same 
angle after the nodal positions have changed. The change in 
that angle is denoted by Aa,k; i.e. 

Aark = (z,k - h 

For small Aa, we have 

Aa,k z tan(Aa,) = tan&,k - aa) 

tan&k) - tan(ark) 

(4) 

= 1 + tan(a,k)tan(a,k) 
c5j 

The following equation can be easily derived from geometry 

tan(a,k) = s, (6) 
k , 

where x, # x,. Similarly for ~r,~, we have 

tanb k) = Yk -Y, + AYk - AY, 
I 

xk - x, + Ax, - Ax, 

Again assuming that the absolute values of quantities (Axk 
- Ax,)/s,~ and (Ayk - A~,)/s,~ are much smaller than unity 
the following equation is obtained from eqns (5) and (7) 

Aa = (xk-x,)(AYk-AY,)-cvk-Y,)(~k-AX,) (*) 
* 2 

s,k 

The case where xk = x, can be treated by the following 
coordinate transformation: x * = y and y * = -x, where the 
new coordinates have an asterisk as a superscript. A back 
transform leads to the same final result [eqn (S)] as for the 
case where xk # x,. Noting from Fig. 3 that 

AtI, = Aari - Aa,k 

and using eqn (8) we obtain that 

(9) 

A0 =(x,-x,)(A~i-A~,)-cYi-~,)(Ax,--x,) 
, 2 

S,, 

_(Xk-X,)(AYk--Y,)--k-Y,)(AXk--X,) t1oj 
2 

s,k 

As illustrated in Fig. 4, for every simple support r which 
constrains the deflection of node r for a distance c, in a 
direction along a line at an angle r with the x-axis, the 
following relationship is obtained 

c, = Ax, cos(<) + Ay, sin(e). (11) 

A relation can be derived from eqn (10) for every clamped- 
end r where the angle of deflection of the beam (r/c) is 
restricted to an angle r,. Note that if da,, = 0, then 
r, = -Aa,. Therefore 

~ _(x,-x,)(Ay*-AyY,)-C-y,)(Axk-~,) 
I 2 . (12) 

s,k 

Equations (3) and (1 0)-( 12) provide the sought immobility 
criteria in the form of linear equations relating the displace 
ment quantities (Ax and Ay) to the deformation quantities 
(As, A& c, and 7). 

The following symbols are used for the numbers 
of various members: k = number of nodes, r = number of 
linear elements, w = number of welds, a = number 
of support components, and e = number of clamped- 
ends. Now, eqns (3) and (IO)-(12) can be uniformly 
represented in the matrix notation Ax=b, 
where x=(~,rAY,YI,...rhXk,AYk)‘, an n-vector, 
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b=(A.r ,,..., A.r,,Ae ,,..., AB,,c ,,..., c,,? ,,... ,r,)‘,an 
m-vector. and A is an lm x nl matrix. Note that n = 2k and 
m = r + w + (I + e. Uiing Corollary 1 we conclude that a 
structure is globally mobile, if and only if the linear system 
Ax = 0 has a nontrivial solution. Linear algebra theory leads 
to the following results (see, e.g. [15]). 

Theorem 2 

A structure is globally immobile, if and only if rank (A) 
= n. 

Corollary 2 

A structure is globally mobile, if and only if rank (A) # n. 
Comparing Definitions 2 and 3, one can conclude that 

internal immobility can be studied the same way as global 
immobility by removing the external constraints on the 
structure and fixing the Cartesian coordinate system to the 
structure. Removing the external constraints corresponds to 
neglecting equations for supports and clamped-ends, i.e., 
eqns (11) and (12). Fixing the Cartesian coordinate system 
to the structure can be done by fixing one node to be the 
origin of the coordinate system (without loss of generality, 
we can assume that node to be Node 1) and constraining the 
motion of an additional node along one axis, such that the 
other axis passes through that node (again without loss of 
generality, we can assume that node to be Node 2). This 
procedure corresponds to translating and rotating the co- 
ordinate system and also setting to zero the displacement 
components Ax,, Ay, , and Ayr . Note that the Cartesian 
coordinate system needs to be translated such that Node 1 
is its origin and the x-axis passes through Node 2 (see [15] 
for details on coordinate transformations). Now the 
linear system of equations represented by eqns (3) and 
(10) remains to be studied, that is A,x = b, where 
x=(Ax,,Axx,,Ay ,,..., Axhxk,Ayk)=, an n,-vector, b= 
(As I,..., A.r,, A&,..., Ae,)‘, an m,-vector, and A, is an 
[mi x nil coefficient matrix, with ni = 2k - 3, and mj = r + W. 
Note that eqns (3) and (10) need to be represented in terms 
of the transformed nodal coefficients. The following result 
is then easily shown. 

Theorem 3 

A structure is internally immobile, if and only if rank (A,) 
= ?li. 

This concludes the basic two-dimensional immobility 
results. 

3. REMARKS ON APPLYING THE THEORY 

Some remarks are now in order regarding the proper 
application of the above results in practice. 

For trusses no welded joints and clamped-ends exist, 
therefore e = w = 0. No other difference exists in the study 
of their immobility compared to that of hybrid structures. 
However, note that according to our earlier definitions, 
trusses have certain modeling restrictions: (a) no moments 
can be applied; (b) forces can he applied only at the joints. 
As stated in [8], if a truss is mobile its equivalent frame 
model may be immobile. In most of such cases the nodal 
deflections of the frame are still considerably large, since the 
bending effects are dominant in order to sustain the struc- 
ture which would be mobile if only axial forces were used. 

For a joint with k beams welded on it, there exists only 
k - 1 linearly independent angular equations of type 
eqn (8), although the number of possible combinations of 
enclosed angles (pairs of linear elements) equals k(k - 1). 

The quantity a denotes the sum of the number of linearly 
independent constraints for each support. For example, for 
a pinned support that number is equal to 2, the correspond- 
ing equations being Ax = Ay = 0. 

Half-hinges are used to model some hybrid structures. 
Figure 5 depicts a half-hinge. The coordinate changes of 

I 

Fig. 5. A half-hinge h in the middle of linear element (ii) and 
at the end of (lch). 

half-hinges are not treated as independent unknowns of x, 
the vector of the displacement quantities. This is due to the 
fact that the coordinates of half-hinges are linear functions 
of the end nodes of the beams on which they appear. 
However, the length of the bars or beams whose end nodes 
are half-hinges provide us with a constraint. Alternatively, 
one can introduce two independent displacement com- 
ponents (Ax,, and Ay,J for each half-hinge and add two 
deflection equations (constraints) for every beam on which 
the half-hinge appears. These equations are 

Axi+t(Axj-AxJ-Axh=O (13) 

Ayj + t(Ay, - Ay,) - Ayh = 0, (14) 

where i and j refer to the two end nodes of the beam on 
which the half-hinge appears. Parameter 

xh - x, 
t = - if xi # xj 

xj - xi 

otherwise 

1 __y,-yi. 
Y,_Yi 

Note that according to the definition of a skeletal struc- 
ture (Def. 1), xi # xi or yi # yj. Equations (13) and (14) can 
be derived using the fact that a half-hinge h belongs to the 
line passing through nodes i and j, both before and after 
nodal displacements take place. 

A comment needs to be made on the completeness of the 
set of joints used to connect linear elements for both two- 
and three-dimensional structures. Although the joints com- 
monly used in structural design are treated in this article, the 
set of joints is by no means complete. Equations for other 
joints, mainly used in mechanism design, can be derived 
similarly. 

Finally, we recall that the rank of a matrix is the number 
of linearly independent rows or columns and the most 
commonly used algorithm to determine the rank of a matrix 
is some sort of Gaussian elimination. After performing 
Gaussian elimination, the matrix consists of some rows 
containing only zeros and some with nonxero elements, the 
rank of the original matrix being equal to the smaller of the 
two numbers of nonzero rows and columns of the trans- 
formed matrix. In practice, zero will be a number which is 
small relative to the others. Thus, prior to performing the 
Gaussian elimination, we should normalize (scale) the row 
vectors of the original matrix which represent comparable 
physical quantities. Any number in the resulting matrix 
whose absolute value is smaller than a certain amount, 
should be regarded as zero. The condition number of square 
matrices is a good measure of finding how singular or full 
rank these matrices are. 

4. TWO-DIMENSIONAL EXAMPLES 

In this section two truss examples are discussed to illus- 
trate the applicability of the above results. 

Figure 6 shows a statically determinate two-bar truss with 
two pinned supports. This configuration is immobile except 
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Fig. 6. Two-bar truss design example. 

for the case where the angle a becomes zero or n: radiants. 
This fact will be verified using the theory. According to the 
first comment in the previous section e = iv = 0, r = 2, 
a = 4, k = 3, and therefore the matrix A is 6 x 6. The four 
equations for the supports [eqn (ll)] are easily written by 
setting the x and y displacement components of Nodes 2 and 
3 to zero, i.e., Ax, = Ayr = Ax, = Ayr = 0. Two equations 
are set up for the deflection of the two bars according to eqn 
(3): for Bar ‘a’ (connecting Nodes 1 and 2): As, = A+ - Ax, 
and for Bar ‘b’ (connecting Nodes 1 and 3): 
A+ = (Ax, - Ax, )cos(a) + (Ayr - Ay,)sin(a). Thus, the 
homogeneous system of linear equations has the following 
matrix representation - 

The second example is a skeletal structure generated by 
homogenization in ISOS. Figure 7(b) shows a computer- 
generated skeletal image of the stiffest possible topology for 
a given amount of material for the design problem illus- 
trated in Fig. 7(a). Using computer vision techniques the 
image of Fig. 7(b), i.e., the output of homogenization, is 
transformed into the truss structure shown in Fig. 7(c). The 
nodal coordinates and their connectivities are extracted, and 
support conditions are retrieved automatically and stored in 
data structures, serving as the input to the mobility detection 
algorithm. For this particular problem this information has 
the form shown in Table 1. 

The size of matrix A for this problem is 18 x 18. The 
output of the algorithm shows the rank of the matrix to be 
equal to 18, and hence the structure is globally immobile. 
Note that because of the given support conditions global 
and internal stabilities are equivalent. 

5. EXTENSION TO THREE DIMENSIONS 

Definitions and theorems introduced in Sec. 2 are also 
valid for three-dimensional structures. The main difference 
is in the equations derived in Sec. 2, even though some of 
them can be easily extended. Some types of joints do not 
exist in two-dimensional structures. Equations for them will 

-1 0 10 0 0 
-cos(a) -sin(a) 0 0 cos(a) sin(a 

0 0 10 0 0 
0 001 0 0 
0 0 00 1 0 

L 0 0 00 0 1 

Now, rank (A) = 6, if and only if sin(a) # 0. Therefore, 
according to Theorem 2, the necessary and sufficient con- 
dition for the mobility of the structure is that a be equal to 
zero or n. One may also verify that regardless of the value 
of angle a, the structure is internally mobile. 

4000 [mm] 

p- 6000 [mm1 ,-q 

-Ax, 
AY, 
A% 
AYYZ 
Ax, 

_AY, 

= 0. 

also be derived in this section. Derivatives of those 
equations trivially extendable from the two-dimensional to 
the three.-dimensional case are not discussed here. The 
nomenclature introduced in Sec. 2 is still valid unless stated 
otherwise. 

(4 

Fig. 7. (a) Initial design domain and specifications as input to ISOS, (b) computer-generated optimal 
topology, (c) final design interpretation of the structure as a truss. 



Technical Note 203 

Table 1. Input to the mobility detection algorithm. 

Position Boundary 
Node x y Connected nodes conditions 

1 40 12934615 Force applied 
2 8 19 148 
3 12 19 159 
4 19 31 126 
5 62 31 137 
6 35 37 147 
I 41 36 156 
8 1 112 roller along x-axis 
9 80 1 13 pinned joint 

t This fact is not needed for the purposes of mobility 
detection. Fig. 9. A clamped-end and its characteristic dimensions and 

angles. 

Equation (3) can be extended to eqn (16) where z, denotes 
the z-coordinate of node along the z-axis 

Equations for supports where the movement is restricted 
along a given direction are derived as follows. Two angles 
characterize the restricting direction of support r. These two 
angles are shown in Fig. 8 and are denoted by 0 and cp, c, 
being the amount by which the support is forced to move. 
The following equation can be derived for c, as a function 
of the displacement components of the node and the two 
introduced angles 

c, = Ax, cos(rp)cos(0) + Ay, sin(cp)cos@) + Az, sin@). (17) 

For the two-dimensional case equations for angles of 
clamped-ends and welds were derived similarly, whereas in 
the three-dimensional extension different approaches need 
to be taken to derive those equations. We will start with 
equations for clamped-ends. Figure 9 shows a clamped-end 
r in three-dimensional space supporting member (ri). The 
displaced positions of the nodes are underlined. An orthog- 
onal coordinate system (e,, e,, es) is introduced where e, is 
a unit vector along the initial position of member (ri), and 
ez and e3 are perpendicular to e, and to each other, i.e. 

(18) 

(LO,O) ifx,=y,=O 

ez = (_%, -% 0) otherwise (19) 

Jm~ 

e,=e,xez, (20) 

where x indicates a vector product. To simplify notation, 
we set x, = xi - x,. Similar notation is introduced for the 
other coordinates and nodes. The displaced position of node 
i is denoted by i and its coordinates can be expressed in the 
initial (e,, e,, e,j and the new (e,, ez. ez) coordinate systems 
as follows: 

i = (xi, + &,)e, + ot + Ayyi, )e, 

+(z,+~i,)e.=i,e,+~~e,+~~e,. (21) 

Without loss of generality we can assume that the origin of 
both coordinate systems is !, the displaced position of node 
r. Taking the inner product of both sides of eqn (21) with 
ez and e, gives the equations for iz and $, respectively 

f’2=(~~,Ayyb,~~)e2=LLx,e,+Ayy,e,,+~z,e, (22) 

$ = (Ax,,, Ayi,, Az*)e, = Ax,e,, + &,e,,, + AzZirear. (23) 

Components of ez and ez can be found from eqns (19) and 
(20), respectively. As mentioned earlier [for the derivation of 
eqn (17)], two angles are needed to prescribe the position of 
a line with respect to a given reference frame, assuming that 
one point of that line is fixed. In the clamped-end case these 
two angles are y, and a,, shown in Fig. 10. For small angles 
the following approximations are valid 

13 7, x ; 
sir 

(24) 

‘2 6, Z = (25) 
% 

so that, approximately 

6 = (A+% + Aw,, + beA 
, 

sir 
(27) Fig. 8. Spatial position of a constrained support r. 
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a right-handed coordinate system. Thus, the following 
equations can be derived for these vectors 

e, = 
(xi-x,~Y,-Y,,~i-z,)=(xi,,Y,,z,) 

SW 
(28) 

si, 

e =(Xk-WJk-Yrr 
I; 

sk, 

%-Z.)=(xk,.~JkJ (29) 

(9 x ed 

e’ = Ile, 
(30) 

(9 + ed 
e’=119 
e2 = e3 x e, , 

(31) 

(32) 

Fig. 10. Cross-sectional view of a clameed-end without where 11. I( denotes the Euclidean norm of a vector. 
in-plane angular constraints. The first projection is along the vector e, (thus, onto the 

plane spanned by e, and e,). The infinitesimal in-plane angle 

Figure 10 depicts the cross-section of a type of clamp for 
of deflection u, equals the-difference of the two angles ei and 

which the angular deflection of the linear element (ri) in a 
0,. The final result for this angle is given in eqn (33) below. 

given plane, with the given normal vector ez = (ez,, e,, eti), 
Replacing the components of the given vectors in that 

is not restricted. The out-of-plane angular deflection about 
equation will lead to unnecessarily long expressions and is 
therefore avoided 

e,, denoted by v., is specified and can be obtained in a 
manner similar to 6, in-eqn (27). 

A slightly more complicated situation arises when one is 
dealing with welded joints. Figure 11 shows a yielded joint 
r connecting two elements (ri) and (r/c). The displaced 

Q, = (Ax,, , bytl &I 6% x et) 

-(Ax,,, AYkr, hkr)(e3 x 4). (33) 

positions of nodes are underlined. As mentioned earlier, two 
angles are needed to determine the relative position of two 

The second projection can be carried out along any vector 

elements with respect to each other. The only way to obtain 
in the plane spanned by e, and e,. However, in order to 
avoid singularities and also for the linearization to be valid, 

two meaningful angles is to project the nodes onto two 
different planes. There are infinite possibilities for two 
normal planes in the three-dimensional space. However, as 
it will be explained later, there is only one alternative pair 
of projections which provides us with reasonable results. 
First we discuss the unit vectors introduced for the purpose 
of the projections. The origin of all unit vectors is assumed 
to be in r. Vectors e, and e, are parallel to elements (ri) and 
(rk) res@ctively and e, is their cross-product. Vector e, is 
along the vector sum of e, and e,, and (e,, er. er) represents 

the projection of either of the elements may vanish or even 
become small compared to the original lengths of the 
members. The following procedure provides a general pro- 
jection fulfilling the above requirements. The projection is 
carried out along er (thus, onto the plane spanned by e, and 
e3) as long as the angle between e, and e, is less than or equal 
to n/2; otherwise the projection is carried out along e, (thus, 
onto the plane spanned by er and e,). The following 
equation gives a general formula for the out-of-plane angu- 
lar deflection denoted by $,. 

(Ax,, AYE,, bk, (A-%, AYkr. 1Lz,,h - 

G,= 

(Xi,,Yv, zwh (xk,,Ykr,zk,)e, 

(Ax,, AYE,, b,)ea Ww AYkr> b,)e:, 

CXir9Yir,Zirh - (Xkr9Ykr9Zkrh 

ife,e,>O 

if e,e, < 0. 

(34) 

Fig. 11. A welded connection and its associated angles and dimensions. 
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Note that #, is a smooth function of e,%, since at e,e, = 0 
projection of the vector (xir, y,, zi,) onto e, and e, are equal 
and the same is true for the vector (x~, ykr, zkr). Equations 
(33) and (34) are derived for the case where nodes r, i, and 
k span a unique plane. They can be easily extended to 
include the singular case where the three nodes are aligned. 
The vector e, is then a unit vector parallel to the line (rik), 
and vectors e, and es are any pair of orthogonal unit vectors 
perpendicular to e,. Equations (19) and (20) give one way 
of computing these vectors. 

An equation relating displacement and deformation of 
reuolutejoinrs can be derived similarly to eqn (34). Revolute 
joints act as a hinge in the plane spanned by the three nodes 
and as an out-of-plane weld. A door hinge is an example of 
a revolute joint. It is obvious that although eqn (33) is still 
valid, angle y is no longer prescribed. The prescribed 
out-of-plane angle of deformation is denoted by Iz and 
computed exactly as @ in eqn (34) for welds. 

Similar immobility arguments are valid as for the two-di- 
mensional case and will be discussed here. Equations (la), 
(17), (26), (27), (33), and (34) provide the sought immobility 
criteria in the form of linear equations relating the displace- 
ment quantities (Ax, Ay, and AZ) to the deformation quan- 
tities (As, c, y, 6, v, u, + and 2). The following symbols are 
used for the numbers of various members: k = number 
of nodes, I = number of linear elements; a = number of 
support components, e = number of clamped-ends, 
p = number of clamped-ends where the in-plane angle is not 
restricted, w = number of welds, and h = number of welded 
(stiff) joints where the in-plane angle is not restricted. 
Now the equations numbered above can be uniformly 
represented in the matrix notation Ax = b, 
where x=(~,,AY,,...,~~,AY~)‘, an n-vector, 
b=(& ,,..., As,,c ,,..., c,, 719.. ,Y.. 
V1,...rVp, Ol,..., a,,$ ,,..., *,,A I,..., A*)~,6,‘,‘il2: 
tor, and A is an [m x n] matrix. Note that n = 3k and 
m = r + (I + 2e + p + 2w + h, Theorem 2 and its corollary 
derived in Sec. 2 are valid for three-dimensional structures 
as well. 

In a way very similar to the two-dimensional case, internal 
immobility is studied by ignoring the external constraints 
and fixing the Cartesian coordinate system to the structure. 
Ignoring the external constraints corresponds to discarding 
eqns (17), (26), and (27). Fixing the coordinate system to the 
structure is analogous to the two-dimensional case and 
requires two steps. First a secondary coordinate system 
attached to the structure must be introduced. Second, the 
coordinates of nodes must be transformed from the initial 
coordinate system to the newly introduced one. Since the 
procedures to perform the second step can be found in 
references on elementary analytical geometry, such as [15], 
we will discuss only the first step in more detail. We assume 
that the structure has at least three non-aligned nodes, 
otherwise it can be treated by means discussed in Sec. 2. The 
origin of the new coordinate system is Node 1, its x-axis 

passes through Node 2, and Node 3 is on the xy plane. In 
order to uniquely determine the new coordinate system we 
assume the y coordinate of Node 3, y,, is positive. There- 
fore, the following displacement components have to vanish: 
Ax, = Ay, = AZ, = Ayz = AzL, = Azz, = 0. The new coordinate 
system is now uniquely fixed to the structure; its unit vectors 
(e., ey, e,) can be found as follows: 

e, = (x2 - *I 9 Yz - Yl, zz - 2,) 

42 

(35) 

” = 63 - XI 1 Y3 - Y I > 23 - ZI ) 
s13 

(36) 

e, = e, x v 

e,=e,xe,, 

where v is an auxiliary vector. 

(37) 

(38) 

As in the two-dimensional case, the system of eqns (16), 
(33), and (34) represented in the form A,x= b, determines 
the internal immobility of the structure, where 
x=(Ax2,Ax,,Ayyj,Ax~,Az., ,..., Axk,Ay,,AzJ is an n,- 
vector, b=(As ,,..., As,, ~l,...,~w, *,.....*vt 
A , , . . . , QT an m;vector, 4 is an [nij x nil coefficient matrix, 
n, = 3k - 6, and mi = r + 2w + h. Theorem 3 and its corol- 
lary can be applied here to determine the internal immobility 
of the structure. 

6. A THREEDIMENSIONAL TRUSS EXAMPLE 

As mentioned earlier, an immobility problem of a three- 
dimensional structure using a force-based approach is 
solved in [8]. We will solve the same problem using the 
theory developed in this article and obtain the same results. 

Figure 12 shows the front and right-side view of a truss 
structure which consists of two regular n-sided polygons (in 
this case penagons) lying in parallel planes and connected 
via triangles. Structures of this type have applications in 
aerospace engineering. The corners of the polygon lying in 
the xy plane are pin-supported. The structure has 2n nodes 
and 3n bars. Since the structure is assumed to be a truss, 
only equations like eqns (16) and (17) need be considered. 
Equation (17) for the pinned-supported nodes (on the xy 
plane) can be expressed as follows: 

O=Axi=Ayi=Azi fori=n+1,...,2n. (39) 

Replacing the displacement components of the pinned nodes 
in equations for length deformation similar to eqn (16) 
provides us with the required immobility matrix A, which in 
this case reduces to a [3n x 3n] matrix. One can verify that 
matrix A has the format of eqn (40) by writing eqn (16) for 
each of the bars in the n connecting triangles; we only state 

YA 

Fig. 12. A three-dimensional truss structure (n = 5). 



206 

. 

-zoo 

00-X 

Technical Note 

According to [8], the structure is immobile if n is odd, and 
mobile if n is even. The Appendix provides an outline of a 
proof that the determinant of A vanishes only for even ns. 
Using known facts from linear algebra and Theorem 2 of 
this article the above result can be confirmed. 

7. CONCLUSION 

A rigorous procedure has been introduced to detect 
internal and global mobility of skeletal structures without 
performing any stress or force analysis. The computations 
require information of the nodal coordinates, their connec- 
tivity, and the support conditions of the structure. The 
two-dimensional analysis has been computationally inte- 
grated into the structural synthesis program ISOS. 
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APPENDIX 

To obtain the determinant of matrix A in eqn (40) the 
following procedure should be performed. The first row is 



Technical Note 201 

multiplied with - 1 and added to the last row. The only 
non-vanishina member of the last row is 2R sinQa). stand- 

= (cos(2a) - l)detp,, . . . , B,_,, B,_,, BJ 

ing in the se&&d column. Thus, the determinant is expanded 
with respect to that row. A [3n - 1 x 3n - l] matrix remains + sin(2a)det[B,, . ,& _ *, BJ, 
whose only non-vanishing member (h) is in the second 
column and the first row. Expanding this determinant with 
respect to its second column gives us a [3n - 2 x 3n - 21 

Where C, a nonzero number, is used for later reference, and 

matrix of the form 
k equals to 3n - 4. The determinant of A (the immobility 

r(1 - cos(2a)) r(cos(2a) - 1) r sin(2a) 0 . . . 

0 

B, s B, . Bk--2 B,-, B, , 

0 

r(1 - cos(2a)) 0 r(cos(2a) - 1) -r(sin(2a)) 0 

where B,, i = 1, . ,3(n - l), are (3n -4)-dimensional vec- matrix) can be written in the following form 
tors. The following equation can be verified by induction on 
even and odd ns 

C=(cos(2a)-l)det[B,,B,,...,B,] 

det(A ) = (- 1)“” + ‘)2 RhrC sin(2a) (1 + ( - 1)c3” + I)). 

-sin(ta)det[B,, B.,, , B,] 
It can be easily verified that det(B) vanishes if n is even, and 
is nonzero otherwise. 


