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Abstract-Two new explicit time integration algorithms are presented for solving the equations of motion 
of rigid body dynamics that identically preserve angular momentum in the absence of applied torques. 
This is achieved by expressing the equations of motion in conservation form. Both algorithms also 
eliminate the need for computing the angular acceleration. The first algorithm employs a one-pass 
predictor-corrector scheme while the second algorithm is based upon the staggered time integration 
approach of Park. Numerical results are presented comparing the new algorithms to the algorithms of 
Simo and Wong and Park et al. The predictor~orr~tor algorithm is shown to suffer weak instabilities 
while the staggered conserving algorithm exhibits improved performance compared to the staggered 
algorithm of Park et al. 

1. INTRODu~ION 

The development of time integration schemes for 
solving equations associated with finite rotations has 
received considerable attention during the past 
several years. These research efforts have been motiv- 
ated by the development of structural models in 
which proper orthogonal matrices are used to de- 
scribe the motion; see, e.g., [l-5] as well as the 
references contained therein. The work of Simo and 
Wong is particularly interesting in that they present 
an implicit, single-step, time integration algorithm 
that identically preserves angular momentum and 
energy in the absence of applied torques. The basic 
idea of their approach is to write the equations 
of motion in conservation form. Integrating the 
equations over a time step ensures conservation of 
angular momentum for torque-free motions provided 
the configuration and angular velocity updates are 
computed properly. The algorithm obviates the need 
to compute the angular acceleration; if needed. the 
acceleration may be obtained by post-processing. An 
explicit version of the algorithm is presented in their 
paper that preserves angular momentum but requires 
the angular acceleration to be computed. 

Within the context of linear structural dynamics, 
Tamma and Namburu developed an explicit 
algorithm in which the acceleration need not be 
computed [6]. An extension of their approach to 
rigid/flexible body dynamics is given in [8]. However, 
this extended algorithm loses the desirable momen- 
tum conservation property achieved by the original 
version for linear structura1 dynamics. One purpose 
of this paper is to present an algorithm that conserves 
angular momentum using the Tamma-Namburu 
approach. As described in Sec. 4.3, this requires a one 
pass predictor-corrector strategy. 

Park et al. developed an explicit-implicit time 
integration procedure for multibody dynamics that 
uses a staggered form of the central difference algor- 
ithm coupled with a midpoint update of the configur- 
ation[9]. One advantage of their procedure is the 
implicit treatment of constraint equations; compared 
to standard central difference methods, twice the 
number of equations needs to be solved per time step, 
Their algorithm is not cast in conservation form and 
thus does not conserve angular momentum. In this 
paper, an alternate staggered algorithm is presented 
that inherits the momentum conservation property. 

An outline of the paper follows. Since the time 
integration algorithms for the rotation group may be 
considered as extensions of algorithms developed for 
structural dynamics, a review of the classical and 
staggered central difference algorithms and the 
Tamma-Namburu algorithm is given in Sec. 2 for 
linear structural dynamics. Section 3 briefly presents 
the notation and fo~ulation of rigid body kin- 
ematics and dynamics. In Sec. 4, parametrization of 
the rotation group is discussed, the Simo-Wong 
algorithm and the proposed momentum conserving 
predictor-corrector and staggered time integration 
algorithms are presented and different choices for 
evaluating configuration-de~ndent moments are 
given. Results from numerical simulations are 
provided in Sec. 5. Conclusions are drawn in Sec. 6. 

2. EXPLICIT SECOND-ORDER ACCURATE 
ALGORITHMS FOR LiNEAR STRUCTURAL DYNAMICS 

To provide a basis for presenting explicit algor- 
ithms for rigid body rotations, we review two explicit, 
second-order accurate algorithms for solving the 
equations of linear structural dynamics: classical cen- 
tral differences and the algorithm of Tamma and 
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Namburu. For the undamped case, the ordinary 
differential equations for structural dynamics have 
the form 

MX+KX=F, (1) 

where M is the mass matrix (assumed to be a diagonal 
matrix), K is the stiffness matrix, F is the vector of 

applied loads (a given function of time), X is the 
vector of displacement unknowns, and superposed 
dots indicate differentiation with respect to time. The 
initial value problem consists of finding a function 
X = X(t) that satisfies (1) for all t E [0, T], T > 0, and 
the initial conditions 

X(0) = d, (2) 

A(O) = vg . (3) 

where do and v0 are given vectors of initial displace- 
ments and velocities, respectively. In what follows, d,,, 
v,, and a,, denote corresponding approximations to 

X(t,,). ir(t,,) and it(t,,). 

2.1. Central difference algorithm 

The equations of motion, (I), are replaced by their 
discrete approximation at time t,, +, as follows: 

Ma,+,+Kd,+,=F,,+i, (4) 

where F, + , = F(t,+ ,) is prescribed. Given the values 
of d,), v,, and a,. d,,+, is obtained using 

d ,1+, =d,,+Atv,,+$At2a,2, (5) 

where At = t,,, , - t,l is the time step. After solving (4) 

for a,, + I, v,, + I is computed using 

v,, + I = v,, + f Ma,, + a,, + ,I. (6) 

The central difference algorithm is a one-step, three- 
value algorithm since only the displacement. velocity 
and acceleration values at time t,, are needed to 
compute the solution for the next time level, t,, + , As 
discussed in [lo], second-order accuracy necessitates 

computing a, using 

Ma, = F, - Kd, (7) 

for problems in which F, # Kd,. 
Often the central difference algorithm is cast in 

‘staggered’ form, particularly for nonlinear problems. 
In this alternate form, (5) and (6) are replaced by 

d ,,+,=d,,+Afv,,+,z 

v,,+,z=~.+I~+Ata,,+,. 

That is, the velocities are computed at 
of time intervals while displacements, 

(8) 

(9) 

the midpoint 
accelerations 

(and internal forces) are evaluated at the end of the 
time intervals. The staggered scheme is useful for 
nonlinear dynamics since constitutive equations typi- 
cally are given in rate form. Note that a special 
starting condition is needed to obtain v,:,; often the 
motion is assumed to be quiescent at time t, = 0. 

2.2. Tamma-Namburu explicit algorithm 

In the algorithm of Tamma and Namburu [6], the 
equations of motion are written in conservation form, 
i.e. 

Mb+KX=F. (IO) 

where V = X. Integrating the expressions on both sides 

of (10) from t,l to t,,+ , and rearranging terms yields 

M(V(t,,+,)-V(t,,))= j,;*‘Fdr - j,“+‘KXdr. 

(11) 

The integrals on the right-hand side of (1 I) are 
approximated using 

s 

1. + I 
KX dt =z AtK(d,, +; Atv,,). (13) 

In 

In (I l), V(t,,) and V(t,,+ ,) are replaced by their 
approximations, v, and v,, + , . respectively. After 
solving (1 I), d,,+ , is obtained using 

d ,, + , = 4, + i WV,, + v,, + I ). (14) 

The Tamma-Namburu explicit algorithm is a one- 
step, two-value method. This algorithm is interesting 
in that there is no need to compute accelerations; 
in this sense, the algorithm is a true self-starting 
method. The spectral properties of the Tamma- 
Namburu and central difference algorithms are iden- 
tical, thus the two algorithms have the same rates of 
convergence and the same maximum stable time step. 
However, the error engendered by the Tamma- 
Namburu method is smaller; see [6] for numerical 
examples. 

Remarks 

1. The staggered form of the central difference 
algorithm may be viewed as being based upon writing 
the equations of motion in conservation form. This 
may be seen as follows: let t,,+, 2 = (t,,+, + t,,)/2. 
Integrate the expressions on both sides of (10) from 

I ,,+,? to t,,+?: to obtain 

M(V(r,, ii 2 ) - V(L+ 12)) 

= j,;;,‘;Fdl -j;;,‘,:KXdt. (IS) 



Approximate the integrals on the right-hand side of body. Particles of the rigid body are labeled by p; the 
(15) using the midpoint rule initial position vector of a particle, measured from the 

origin of an inertial reference frame, {e, , e2, e,}, is 

5 

f” t3’2 
Fdt zAtF,+, (16) 

given by X. Given the density, pot of the rigid body 

in + I 1 in the reference placement, the inertial reference 
frame is chosen such that 

c 

1. + 3.2 
KX dt z AtKd,, 1, (17) 

i. + / ‘2 p,X dS1= 0. (23) 

Replace V(t, + I!>) and V(t, + j/z ) by v, + I;? and v, + l/23 
respectively, in (15); using (15)-(17) we obtain For a rigid body, the motion, x: R -+ @, must be of 

the form 

M(v,+3,*-~,+1!2)=AfF,~+,-AtKdn+,. (lg) 
x=x,.(t)+n(t)X, (24) 

This equation is equivalent to that obtained by 
solving (9) for a,l + , and substituting the result into (4). where A(t) is an orthogonal transformation 

2. In the Tamma-~amburu scheme, the midpoint [A (t) E 50(3)] and x, defines the position of the center 

rule is used to approximate the integral of the forcing of mass at time t [assuming x,.(O) = 01. 

term; the approximation of the integral of the internal Let (b,(t), b*(t), b3(f)} be a set of nonparallel, 

force term may be considered to arise from either noncoplanar unit vectors fixed in fi and attached at 

application of the midpoint or trapezoidal rules; both the center of mass. This set of vectors is called the 

are equivalent in the linear case. Using the midpoint body frame. The body frame is time dependent since 

rule they move with the body. For notational convenience, 
let 

s 

Gi 1 i 
KXdr =AtKd,+I;r, (19) 

1. 
E,=b,(O), A =1,2,3. (25) 

where From (23)-(25), the orientation of the body frame is 
obtained using 

d ,,, ,;z = d,+;Atv,,. (20) 
bA(t)=n(t)E,. A = 1,2,3. (26) 

Using the trapezoidal rule 
The velocity field, with respect to the inertia1 frame, 

I 

h T/ is given by 
KXdt = +AtK(d,, + a,,. 1). (21) 

1. v(r) = k,.(r) + A(t)X. (27) 

where 
Since A(t) o SO(3), .&4 T = 1, so 

a,,. I = d,, + Atv,,. (22) 
A(t) = w(tJ4(t) = n(t)w(t), (28) 

Equally valid is the use of the trapezoidal rule to 
approximate the integral of the forcing term. where 

3. The conservation form of the equations of 
motion used by Tamma and Namburu, i.e. (1 I)-( 13), w(f) = ii( r(l) and W(f) = Ar(r)A(t). (29) 

was first presented in [l 11 with 0 = l/2, 3: = 0. The 
success of the Tamma-Namburu method is due to The matrices w(f) and W(r) are in SO(~), the vector 

adding the displacement corrector equation, (14). space of skew-symmetric matrices. The axial vectors 
associated with w(t) and W(t) are denoted by o(t) 

3. RIGID BODY DYNAMICS AND THE 
and n(t) and are called the spatial and convected 

ROTATION GROL’P angular velocities, respectively. 
Using (23)-(24) and (27) and (28), the angular 

The purpose of this section is to define terminoiogy momentum vector is given by 
and briefly summarize the notions of rigid body 
dynamics; a more complete exposition may be found 
in Simo and Wong[5] and the references contained J(r) = p,x x v dG 

R 
therein. 

s 

3.1. Rigid body kinematics and dynamics 
= x, (1) x P(f) + n(r), (30) 

Consider a rigid body occupying an open, bounded where p(t) is the total linear momentum and n(t) is 
region $2 c 2’; R is the reference placement of the the total spatial angular momentum relative to the 
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center of mass. Expressions for p(t) and n(t) are as The balance equations of linear and angular 
follows: momentum are given by 

p(t) = 
1 

p. dQt,.(r) = Mk,(t) (31) 
R 

dp z=n (37) 

where 

n(r) =&w(t), (32) and 

dn 
x=m, (38) 

M= Pod!2 
s n 

(33) 

in which 

I, = A(t)JA ‘(t) (34) 

where n(t) and m(i) are the applied force at the center 
of mass and the torque, respectively. We shall restrict 
our attention to solving the angular momentum 
balance equations. To complete the statement of the 
initial-value problem, initial conditions are prescribed 
having the form 

J = 
j 

pO((X.X)l -X @I X) dZ2 (35) 
R 

A (0) = 1, w(0) = wg. (39) 

is referred to as the convected inertia dyadic while I, 
is the time dependent spatial inertia dyadic. The 
convected angular momentum relative to the center 
of mass is defined by 

The vectors E, must also be prescribed. 

4. EXPLICIT ANGULAR MOMENTUM CONSERVING 
ALGORITHMS 

(a) 

k 

(cl 

2 

n(t) = AT(t)n(t) = Jfi(r). (36) 

Convected Angular Velocity 
l”-,<.*., “““1 

In this section, the principal difficulty with integrat- 
ing the rotation group is discussed; parametrization 

(b) Kinetic Energy 

(4 Rotation Vector 

3 

2 

1 

x 0 

-1 

-2 

-3 

Fig. 1. Unstable motion about intermediate moment of inertia axis. Simo-Wong algorithm with 
AI =O.OOl. (Vector components: ------se,, ---=e,, -----=q.) 
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of the rotation group is reviewed. The explicit 
momentum conserving algorithm of Simo and Wong 
is reviewed. A new momentum conserving algorithm, 
based upon a predictor-corrector version of the 
Tamma-Nambnru method, is presented that obviates 
the need to compute the angular acceleration. Also, 
a new staggered central difference algorithm is given 
that conserves angular momentum. Different treat- 
ments of configuration-dependent moments are pre- 
sented; their performance is evaluated in the 
numerical results section. 

4.1. ~arame~er~~ation of the roration group 

Standard time integration algorithms used to inte- 
grate equations associated with translational motion 
cannot be applied directly to solve the angular 
momentum balance equations since SO(3) is not a 
linear space. Given an incremental rotation vector, 
the corresponding finite rotation is desired. The finite 
rotation matrix is obtained in closed-form using the 
exponential map and the formula of Euler and 
Rodrigues 

sin!Izll _ 
A =exp(p)=t+- 

1 sin2($Ix II) _* 

/lx II x + 1 (fllxii)* x ’ 
(401 

where x is the rotation vector and i is the correspond- 
ing skew-symmetric matrix. (Throughout the paper. 

the skew-symmetric matrix corresponding to a 
given rotation vector is denoted by a superposed 
‘hat’.) 

Efficient parametrization of the rotation group is 
performed using the four unit quaternion parameters 
{go, q) (Euler-Rodrigues parameters 171) and the 
formula 

A = (2q:, - 1)l + 2qoQ + 2q 0 q. (41) 

Given the configuration at time t,, the configur- 
ation after appfying an incremental rotation, 2, is 
needed, i.e. 

n 0, + , ) = A (4JwNi 1. (42) 

Computing the configuration update simply requires 
quate~ion multiplication. 

4.2. Explicit momentum conserving algorithm of Simo 
and Wong 

An essential feature of momentum conserving 
algorithms is to integrate (38) over the time interval 

fL tn+tl 

i 

h + 1 

nn+I - II” = m dt. (43) 
1. 

Kinetic Energy 
200-~‘.-,‘.-.~. ,./ * 

Rotation Vector 

Fig. 3. Unstable motion about intermediate moment of inertia axis. Predictor-corrector algorithm with 
At =O.OOl. (Vector components: --=e,, -----e2, -------eel.) 
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It is important to emphasize the configuration-depen- 
dence of x; the left-hand side of (43) may be written 
as 

%+t - %=&+, JJZ, + I - 4, JR. (4) 

Let A, denote the convected angular acceleration 
vector at time t,l. Then, the explicit algorithm of Simo 
and Wong proceeds as follows: 

1. Given: A,. 52,: and A,,. Compute the relative 
rotation vector, 8, + , , using 

@,Z,, = A&, + f At’A,. (45) 

2. Compute the configuration at time t, +, using 
the exponential map 

A ,,+ I = 4 exiMi,+ i ). (44) 

3. Compute the convected angular velocity at time 
t II + , using (43) and (44) 

n .+,=J-‘A,Ttt(n,,J~tl+Aftfi,+,). 147) 

where fin+, is an appropriate evaluation of the 
impulse [the right-hand side of (43)]. Impulse 
evaluation is discussed in Sec. 4.5. 

(a) 

k 

(cl 

5 

Spatial Angular Momentuni 
50--,., r _rr___T_/ 

Convected Angular Velocity 
101.. ,“‘I “, 

4. Update the convected angular acceleration 
using 

A n+ I = -A,,+-+.fn,+,). (48) 

Note that (48) is equivalent to (6) with appropriate 
substitution of notation. The initial convected 
angular acceleration may be computed using 

A, = J-‘(Aim, - fL, x Ja,,), (49) 

where m, is the applied initial torque. 

4.3. A predictor-corrector explicit momentum con- 
sewing algorithm 

The algorithm presented in this section achieves for 
the rotation group what the Tamma-Namburu algor- 
ithm attains for linear structural dynamics, namely, 
convected angular acceleration need not be com- 
puted. Boutaghou et al. [8] applied an alternative 
form of the Tamma-Namburu algorithm to planar 
multibody systems; however, their approach does not 
conserve momentum. The main difficulty in applying 
the Tamma-Namburu scheme to the rotation group 
is the configuration-dependence of the angular 

Kinetic Energy 
200 F-------1___1 

R.&&ion Vec%or 

“y- 
3 

2 

1 

0 

-1 

-2 

-3 

-ilL-,.* “’ ’ 0 1 2 ;I I 5 (i 7 S !) 10 

Fig. 3. Unstable motion about intermediate moment of inertia axis. Staggered conservation algorithm 
with Ar =O.OOl. (Vector components: Pze,, ---se>, ----.- =e,.) 



Explicit momentum conserving algorithms 1297 

momentum. Angular momentum is conserved, in the 
case of torque-free motions, using (43) and (44). 
Thus, the configuration and convected angular vel- 
ocity must be consistent in the sense that given the 
configuration A, + , , (43) and (44) are used to com- 
pute &+ , . As noted in Remark 3 of Sec. 2.2, the 
displacement update equation, (14), may be viewed as 
a displacement corrector equation. A similar ap- 
proach might be employed for the rotation group; 
i.e.. given a,, and R,, I, the incremental rotation 
vector and hence the configuration at time t,,+ , could 
be obtained using 

8 II+1 =fAt(Q,+fZ,+,) (50) 

However, if f2i,+ j is not updated based upon the 
configuration computed using (Sl), then conservation 
of angular momentum is lost. This problem is elimi- 
nated using the following predictor-corrector explicit 
momentum conserving algorithm: 

1. Given: II,, and fL,. Compute the predictor rela- 
tive rotation vector, 8, + , 

(a) 

k 

4+, = AtR,. 

Spatial Angular Momentum 
50 ‘*...I a.. ,./,,,, 

-101 
0 1 2 3 4 5 6 7 8 9 10 

10, 
Convected Angular Velocity 

I’,‘, ,I,,., 

1 
-150L 1 2 3 4 5 6 7 8 9 10 

2. Compute the predictor configuration at time 
t n+l using the exponential map 

&+,=&exp(~,+,). (53) 

3. Compute the predictor convected angular 
velocity at time t, + , using (43) and (44) 

8,+, = J-‘;i%+,(n,JJa,+At~~+,). (54) 

4. Compute the corrector relative rotation vector 

8 nit =;At(Q,+jlT,+,). (55) 

5. Compute the corrector configuration at time 
t n+l 

n n+i =~,exp(@Ll). (56) 

6. Compute the corrector convected angular 
velocity at time t, 

52 tr+,=J-‘n,r,,(~“Jsa,+Attit,,+,). (57) 

Compared to the algorithm of Simo and Wong, an 
additional pass over the quaternion computations is 

Kinetic Energy 
2001.. >‘I .,.. / 

‘0 1 2 3 4 5 6 7 8 9 10 

t 

Rotation Vector 
I’,‘I’I I.,. 

-*- 
0 1 2 3 4 5 6 7 8 9 10 

t 
Fig. 4. Unstable motion about intermediate moment of inertia axis. Park-Chiou-Downer algorithm with 

Af = 0.001. (Vector components: -=e,, ----=e:, ----- mel.) 
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required. If the applied moment is not configuration- 
dependent or if the midpoint rule is used to evaluate 
the impulse, then A, Jn, + Atl,, , needs to be 
computed only once per time step. 

4.4. A staggered explicit momentum conserving ulgor- 
ithm 

Direct application of the staggered form of the 
central difference algorithm written in conservation 
form, (15), to the rotation group yields 

s 

1. + 1:2 
A n+3,2552,1+3~2=~,+,,2J~n+r12+ mdt. (58) 

f” + I .‘1 

Note that the con~guration at time t,+3iZ is needed; 
however, using the basic form of the staggered 
scheme, the configuration is defined only at the end 
of time intervals using 

8 ,,+, =AtQ,+,j2. (59) 

Park et al. [9] developed a staggered algorithm for 
rigid body dynamics that resolves this difficulty. 
Basically, the equations of motion are solved 
twice for every time step which enables con- 
figurations to be obtained at the end and midpoint 
of time intervals. However, their approach is 
not based upon the conservation form of the momen- 
tum balance and so is unable to preserve angular 
momentum during torque-free motions. The follow- 
ing staggered algorithm preserves angular momen- 
tum: 

1. Given: A,, a,,, A,, ,,2 and a,,+ ,,*. Compute the 
relative rotation vector, O,, ,, using 

8 n+, =Atftn+,!2. (60) 

2. Compute the configuration at time t,,+ , using the 
exponential map: 

A n + , = A, ev@,,+ I 1. (61) 

3. Compute the convected angular velocity at time 
I ,,+ , using (43) and (44) 

a ,,+,=J-‘Af+,(A,~Jn,+At~,,+,). (62) 

4. Compute the relative rotation vector, S,X+3:,, 
using 

8 ,, + ,il = At% + I . (63) 

5. Compute the configuration at time t,, + 3,2 using 
the exponential map 

A, + ri2 = A,, + j ‘? ev@,, + v ). (64) 

6. Compute the convected angular velocity at time 
t ,,+3,2 using (58) with appropriate evaluation of the 
impulse. 

For n = 0, a separate starting procedure is needed 
to compute A,, and Jzm. A typical procedure is as 
foliows: 

(9 
(ii) 

(iii) 

(iv) 

Obtain A,, using (49). 
Compute the relative rotation vector, @,;*, using 

9,,* = f A&, + a At’A,. (65) 

Compute the configuration at time t,,* using the 
exponential map 

Am = A,exp(%). (66) 

Compute the convected angular velocity at time 
I,, using 

l(;dli2= J-‘AI?(n,Jn,+~,~*mdt). (67) 

With the exception of the starting condition, the 
angular acceleration need not be computed. The 
angular acceleration calculation associated with the 
starting procedure may be eliminated completely by 
using the predictor-corrector algorithm as the 
starting procedure with At replaced by l/2 At and 
n = 0. 

4.5 El7~~~at~~n of the impulse 

Of principal concern in evaluating time integrals of 
m is appropriate treatment of configuration-depen- 
dent moments, e.g., the fast. symmetric top described 
in Sec. 5.2. In this study, the midpoint and trape- 
zoidal rules were employed to approximate time 
integrals. Using the midpoint rule 

s 

f*r + 1 
m dt c Acm(t,,+ ,,:) = Al@,+, . (68) 

I” 

el 

Fig. 5. Fast spinning top with fixed end. 
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Thus, for configuration-dependent moments, the 
configuration at t, + ,,* is needed. Different formulae 
were used for the various explicit momentum 
conserving algorithms. 

Simo- Wang algorithm 

8 n+ 112 = f At&, + i At’A, 

A n+ l,2 = &exp@,+ & 

(6% 

(70) 

Predictor-corrector algorithm 

8 n+,/2=;Atf2, (71) 

Recall that the angular momentum balance 
equation needs to be solved twice when using the 
predictor-corrector algorithm [see (54), (57)]. Em- 
ploying the midpoint rule requires only one evalu- 
ation of the residual, A,, .I& + At& + , , per time step 
since none of the quantities is a function of the 
solution at time t,, + I. 

(a) Spatial Angular momentum 
50 .(‘. 8.S.S I’,‘.‘). . . . . . . . . . I.__ . . . . .._................. _...__..i.._ . . .._._.. _.__ ._.. __ ._.. _.. 

0 --I02 3 4 5 6 7 8 9 10 

f 

(cl Center of Mass Position Vector 
1.0 ‘\‘I’I’I’I’I ,‘I’/’ .r._._._____._._.___._.~._~._.~.~._._._.~._.~.~.~ 

0.8 

Staggered algorithm 

In addition to (68), approximations are needed for 
integrals appearing in (58) and (67). Using the 
midpoint rule 

s 

C+32 
m dt z Atm(t,,+ ,) 

b + k 2 
(73) 

s 

(I,2 
mdt zf A.tm(t,:& (74) 

ro 

where t,,4 = t,/4. For (73), the configuration at t,,+ , 
was computed in (61), thus no additional calculations 
are needed. For (74) 

@,,4 = a AtQ, + & At’A, 

n1,4 = A0 exp@%,.J. 

Using the trapezoidal rule 

(7% 

(76) 

mdt %jAt(m(t,)+m(t,+,))=Atl,,+,. (77) 

1270+ 

1265 Total - 

1260 
Kinetic -.-. 

1255 

! 
1250 ._.C._.-.~-._.~~~-._.-._.~~~~.-.-._.~_.-.~ 

I ,I.<. I * G ,...I. I 
12450 1 2 3 4 5 6 7 8 9 10 

t 

Nut&ion Angle 

o.290 1 2 3 4 5 6 7 8 9 10 

t 

Fig. 6. Fast spinning top with fixed end. Staggered conservation algorithm with Af = 0.01. (Vector 
components: ----se,, ---=e2, ------~a~.) 
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The configuration at time t,+ , is obtained using 
(46) for the Simo-Wong algorithm, (53) and (56) for 
the predictor-corrector algorithm and (60), (63) and 
(66) for the staggered algorithm. For the predic- 
tor-corrector algorithm, a corrector residual must be 
computed when configuration-dependent impulses 
are approximated using the trapezoidal rule. 

5. NUMERICAL RESULTS 

Results from numerical simulations are presented 
in this section to compare the performance of the 
explicit momentum conserving algorithms. Also, 
evaluations are given of the two choices for approxi- 
mating the impulse for the case of con~guration- 
dependent moments. These example problems are 
taken from [5]. 

5.1. Unstable rotation about the intermediate moment 
of inertia axis 

Rotation about the axis of intermediate moment of 
inertia results in unstable motion if a small 
disturbance is introduced. The problem formulation 
is 

1. A constant torque about the axis of intermediate 
moment of inertia is applied to a rigid body that is 
initialiy at rest. 

Total Energy 

1269.117--‘7 
1269.12 

?A 
; 

$ 
2 

1269.10 - 

1269.08 - i 

1269.06 - 
-l-I 

0 5 10 15 20 25 30 35 40 45 50 

t x lo-” 

(cf Total EINY~Y 

2. At time t = t,,, the constant torque is removed 
and a constant disturbance torque is applied about an 
axis perpendicular to that of the intermediate 
moment of inertia. This disturbance torque is applied 
for a duration of At after which the body remained 
in a torque-free state. 

The convected inertia dyadic, with respect to an 
inertial basis (e, , e2, e3), moment history and initial 
conditions are 

i 

Be,, if 0 < 1 < t,, 
m(t) = (5At)-‘e,, if t,b I C t,+At 

0, ift>r,+At 

x(0)=0, Q(O)=O, 

where t, = 2 - At. 
Results obtained from the Sirno-Wong, predictor- 

corrector, staggered and Park-Chiou-Downer algor- 
ithms, with At = 0.001, are shown in Figs 1-4, re- 
spectively. By design, the first three algorithms 
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Fig. 7. Fast spinning top with fixed end. Simo-Wong algorithm with Af = 0.001. (Top: trapezoidal rule; 
hotrom: midpoint rule.) 
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identically conserve angular momentum. The results 
from the Simo-Wong and the staggered conserving 
algorithms are virtually identical. While the kinetic 
energy appears constant during the torque-free 
motion, the pre~ctor~o~ector algorithm exhibits a 
weak growth in energy for long times. The rate of 
growth is a function of time step size but the growth 
still appears using smaller time steps. These results 
imply that the predictor-corrector algorithm is 
unconditionally unstable. The Park-Chiou-Downer 
algorithm also exhibits energy growth in the form of 
‘bursts’ when the e3 component of convected angular 
velocity has large magnitude. 

5.2. Fast, symmetric top with fixed tip 

A symmetric top with fixed tip is moving in a 
uniform gravitational field; see Fig. 5. For this prob- 
lem, the applied torque is configuration dependent. 
The problem data are 

w=20, &=I 

(4 
1270.2,~,.~., 

Total Energy 
.,,,.,.,,,, 

d 
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I. I .I.l.l.z,,.I,,.,. 1 
126g’o0 5 10 15 20 25 30 35 40 45 50 

t x 10-s 

Cc) 1”‘““, , ?-‘9tai En”Sgy , ] 

1269.8 - 

B 1269.6 - 
$ 

!3 1269.4 
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0 
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ii 50 

where J is given in terms of the principal moments of 
inertia about the center of mass, and the components 
of x(O) and St(O) are relative to the inertial basis 

(eI,ez,e,l. 
Figure 6 shows results obtained using the stag- 

gered conserving algorithm with At = 0.001. For the 
short time duration shown, the results obtained from 
the different algorithms are indistinguishable. 
However, the long-term behavior of the algorithms is 
clearly different, see Figs 7-10. (The apparent 
oscillations in the nutation angle are due to the 
plotting frequency rather than the actual oscil- 
lation.) For the Simo-Wong algorithm, instability is 
observed when the configuration-dependent moment 
is evaluated using the midpoint rule. Weak instability 
is present in the predictor-corrector algorithm 
regardless of the choice of integration rule. While the 
staggered conserving algorithm is stable for both 

@I 
0.34 

Mutation Angle 

I----- 
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0.33 i 

i /.I.,,,., ,,,.,,,, 1 
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Fig. 8. Fast spinning top with fixed end. Predictor-corrector algorithm with A$ = 0.001. (Top: trapezoidal 

rule; bottom: midpoint rule.) 
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Fig. 9. Fast spinning top with fixed end. Staggered conservation algorithm with At = 0.001. (Tq: 
trapezoidal rule; bottom: midpoint rule.) 

midpoint and trapezoidal rule evaluations, it is ap- 
parent from Fig. 9 that the midpoint rule is a superior 
choice. Finally, in contrast to the first numerical 
example, the Park~hiou-Downer algorithm does 
not exhibit instability for the fast top problem; we 
note that this algorithm uses the midpoint rule. 

6. CONCLUSIONS 

Two new explicit algorithms have been pre- 
sented for integrating the equations of rigid 

body dynamics; these algorithms exactly preserve 
angular momentum in the absence of applied 
torques. Numerical results show that only the stag- 
gered algorithm, as well as the Simo-Wong algor- 
ithm, avoid weak instabilities. A potential advantage 
of the staggered method. compared to the 
Simo-Wong approach, is the straightforward 
abihty to incorporate constraint equations, in 
the spirit of Park and colleagues [4.9. 121. Such 
extensions shall be addressed in future publi- 
cations. 
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Fig. 10. Fast spinning top with fixed end. Park-Chiou-Downer algorithm with Ar = 0.001. 



Explicit momentum conserving algorithms 1303 

REFERENCES 

1. M. Geradin, G. Robert and P. Buchet. Kinematic and 
dynamic analysis of mechanisms. A finite element 
approach based on Euler parameters. In Finite Element 
Methods for Nonlinear Problems (Edited by P. G. 
Bergan, K. .I. Bathe and W. Wunderlich), pp. 41-60. 
Springer, New York (1985). 

7. 

8. 

2. M. Geradin and A. Cardona, Kinematics and dynamics 
of rigid and flexible mechanisms using finite elements 
and quaternion algebra. Camp. Mech. 4, 115-135 9. 
(1989). 

3. M. Iura and S. N. Atluri, On a consistent theory and 
variational formulation of finitely stretched and rotated 
3-D space-curved beams. Comp.Mech. 4,73-88 (1989). 10. 

4. K. C. Park. J. C. Chiou. J. D. Downer. C. Farhat. G. S. 
Chen and B. K. Wada,‘Dynamics of three-dimensional 
space crane: motion requirements and computational 
considerations. 90-WA /Aero- 7. ASME, New York 11. 
(1990). 

5. J. C. Simo and K. K. Wong. Unconditionally stable 
algorithms for the orthogonal group that exactly 
preserve energy and momentum. Int. J. Numer. Merh. 12. 
Engng 31, 19-52 (1991). 

6. K. K. Tamma and R. R. Namburu. A robust self- 
starting explicit computational methodology for 

structural dynamic applications: architecture and rep- 
resentations. In:. J. Numer. Merh. Engng 29, 144-1454 
(1990). 
H. Cheng and K. C. Gupta, An historical note on 
finite rotations. ASME J. Appl. Mech. 56, 139-145 
(1989). 
Z-E. Boutaghou, K. K. Tamma and A. G. Erdman. 
Continuous/discrete modeling and analysis of elastic 
planar multibody systems. Comput. Strucr. 38, 605-613 
(1991). 
K. C. Park. J. C. Chiou and J. D. Downer, 
Explicit-implicit staggered procedure for multibody 
dynamics analysis. AIAA Jnl Guidance Control 13, 
562-570 (1990). 
G. M. Hulbert and T. J. R. Hughes, An error analysis 
of truncated starting conditions in step-by-step time 
integration: consequences for structural dynamics. 
Earthquake Engng Strucr. Dyn. 15, 901-910 (1987). 
0. C. Zienkiewicz, W. L. Wood and R. L. Taylor, An 
alternative single-step algorithm for structural 
dynamics. Earthquake Engng Struct. D,n. 8, 31-40 
(1980). 
K. C. Park and J. C. Chiou, Stabilization of com- 
putational procedures for constrained dynamical 
systems. AIAA Jnl Guidance Control 11, 365-370 
(1988). 


