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sequential analysis 

Martha Bilotti-Aliaga 

Department qf Statistics, University qf Michigan, Ann Arbor, MI, USA 

Received 14 April 1989; revised manuscript received 20 September 1991 

Recommended by T.L. Lai 

Abstract: A drug is administered sequentially to incoming patients. A response Y to treatment and a covariate 

X is measured (X might be a side effect). The experiment is stopped when the covariate falls outside some 

acceptable region. We study the effect that this optional stopping has on the significance level of the test and 

we found that this effect is surprisingly small in the examples considered. An approximation to the problem is 

found. This approximation does not depend on the distribution of the variable X but only on the correlation 

coefficient between X and Y. 
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1. Introduction and summary 

Suppose that there is an infinite sequence (X,, yi), i= 1,2, . . . , of covariate- 

response pairs which are independent with common unknown distribution H, and 

that the parameter E(Y) =B is of primary interest. Let F,=o{X,, . . ..X.,} denote 

the smallest a-algebra with respect to which Xi, . . . ,X,, are measurable. We sample 

sequentially according to a stopping rule f depending on the Xi’s. 

Suppose that a one-sided hypothesis about 0 is of interest, say HO: 8<t?,, and 

that He is to be rejected if 

at the time t =n of stopping, where Y,, is the sample mean, CT,‘, n> 1, denotes a 

consistent sequence of estimates of the variance of Y, and c is a constant. If we stop 

at time t, then the actual significance level is 
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* =p mwo> 
I 0 ^ 1 >c 9 

ot I 
where PO denotes probability when 8= fJo for fixed values of any nuisance param- 

eters. 

We may determine the maximum possible effect of such optional stopping on the 

attained significance level as follows. Let 

z =p ficE-eo> 
n 0 1 . 

1 
>c(X ,,..., x, 

0, 
1 

Then 

at = ~o@t), 

so we may determine the maximal effect of optional stopping on a, by attempting 

to maximize E,(Z,) by choice of t. 

We present numerical solutions to the optimal stopping problem in Section 2 for 

some special cases. The effect of optional stopping on the significance level is 

surprisingly small in the examples considered, an increase by less than a factor of 

two. 

Patients may be measured individually, but treated in batches of different sizes. 

In many situations treating in batches could be a more economical way of treatment. 

When we consider this complication, from the data we obtain it seems that ‘the size 

of the batch’ has a modest effect. 

In Section 3, we find an approximation to the hypothesis testing problem which 

does not depend on the distribution of the variable X but only on the correlation 

coefficient (Q) between X and Y. The approximation is thus found when we 

formulate the analogous problem in continuous time. 

2. Numerical solutions 

2.1. Introduction 

We consider a numerical solution using the method of backward induction. The 

examples contain a number of important special cases and provide motivation for 

the general theoretical approach in Section 3. 

We calculate the maximal effect on the significance level for testing the mean of 

a response variable Y (E(Y) = 19) for a one sided null hypothesis He: 19 < 0,. The 

stopping time considered is defined with respect to a covariate X. 

2.2. Hypothesis testing 

Let H be the unknown common joint distribution of the pairs of observable 

covariate-response random variables (Xi, Y;), i = 1,2, . . . . We suppose that Y has an 
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arbitrary distribution with unknown mean f?=E(Y), and finite variance oi= V(Y) 

which is known under Ho. We want to perform a one side sequential test for 8, say 

H,: 6<0,. 

Lemma 2.1. If the conditional expectation of Y given X is a linear function of X, 
then 

E(Yn-8 IX,,...,X,)=6(&p) (2.1) 

and, if the conditional variance o2 of Y given X is independent of X, then 

V{y;,IX,,...,X,} =Jf 
n’ 

(2.2) 

where 6 is a constant and ,u = E(X). 

In the remainder of this section, the covariate variable X is assumed to be a 

dichotomous random variable taking the values 0 and 1 with probability 3 each. 

Then, the conditional expectation of Y given X is linear, say E(Y 1 X) = SX+/?. The 

conditional variance of Y given X is assumed to be independent of X, say V(Y 1 X) = 

0% 03. By Lemma 2.1, the Central Limit Theorem suggests approximating 2, by 

z,*= 1-G 
I 

coc-6fi(Xn-p) c-@fia,-‘(&/*) 

0 ]=l-@[ l/m ]* 

When Q = 0 this reduces to the nominal value 1 - @p(c). We solve the approximate 

problem, in which Z,, is replaced by Z,*. That is, we find 

V* = mEa; E,(Zy). 

Observe that Z,*=Z, if the conditional distribution of Y given X is normal. 

2.3. The binomial example 

Consider the symmetric case in Table 1. Then E(Y) = 8, corr(X, Y) =,Q and 

E(Y 1 X)=8+e(X-8). For 19=+, V(Y 1 X)=+(1 -e2) that is, the conditional 

variance of Y given X is independent of X, and the conditions of Lemma 2.1 are 

satisfied. 

We may write the approximate payoff as 

Table 1 

x=0 x=1 

Y=O 

Y=l 

(1-e)2+@e(l-e) 
e(i -e)-ee(i -8) 

i-e 

e(i - s)-ee(i - 8) i-e 
e2+ee(i -8) e 

e 
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2.4. Dynamic programming 

In this section we suppose that X takes the values 0 and 1 with probability + each 

and that the conditional variance of Y given X is independent of X. Then 

z,*= 1-Q 
i 

c-2fi@(x”-+) 

VG? 1 
= y/,(&A say, (2.3) 

where S, = I:= 1 Xi. 

Consider the restricted problem in which t is required to be at most some specified 

N, and at least some specified m. The value for this restricted problem is 

v,” = sup E*(z,*) 
(EC,: 

Table 2 

Actual values for testing hypothesis (without batches) 

m N=25, c= 1.96 

@=0.2 e=o.4 ~=0.6 

1 0.0302563 0.0347522 0.0388983 

2 0.0298616 0.0347522 0.0388983 

3 0.0291243 0.0336786 0.0338983 

4 0.0286438 0.0325705 0.0374607 

5 0.0282968 0.0318539 0.0360676 

6 0.0279349 0.03 11908 0.0351405 

7 0.02769 0.0305473 0.0342162 

8 0.02742 0.0300974 0.033292 

9 0.027203 0.029593 0.032616 

10 0.0269886 0.0291692 0.0318769 

11 0.0267989 0.0287644 0.0312053 

12 0.0266197 0.0283809 0.0306324 

13 0.0264521 0.0280448 0.0300252 

14 0.0262974 0.0277005 0.0295269 

15 0.0261482 0.0274142 0.0289993 

16 0.0260105 0.0271086 0.0285209 

17 0.0258765 0.0268451 0.0280584 

18 0.02575 13 0.0265709 0.0276085 

19 0.0256298 0.0263258 0.0271958 

20 0.0255143 0.026076 0.0267767 

21 0.0254034 0.025848 0.0264001 

22 0.0252955 0.0256176 0.0260112 

23 0.025 1935 0.0254053 0.0256582 

24 0.0250925 0.0251917 0.0252976 

25 0.0249974 0.0249896 0.024955 1 

Nominal 0.0249979 0.0249979 0.0249979 

Actual/nominal 1.21 1.39 1.56 
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where 
C,“= {t;t is a stopping rule, m<t<N}. 

To find the optimal solution for V,” we use the theorem which can be found in 

Chow, Robbins and Siegmund (1971, p. 50). 

Let N be a fixed positive integer. Define successively y:, yc_ i, . . . , yl by setting 

y;yN= ZG= Vi&N), 

yN = max(Z* Eo(yN 
(2.4) 

n n, n+, 1%)) (n=N-l,...,m). 

For each n=m,m+l,...,Nlet 

sN= inf(i>n,ZP = Y,?). n 

It follows from that theorem that s,” is optimal in C,“. 

In our problem, the recursion has a very simple form. Let k denote a typical value 

of S,, i.e., k=O,l,..., n, and let rN(N, k)= t,uN(k) as defined in (2.5). Then 

y,” = yN(n, S,), where 

f(n, k) = max w,(k), 
yN(n + 1, k) + yN(n + 1, k + 1) 

2 
(2.5) 

for m<n<N. 
It is straightforward to compute yN(n, k) numerically for fixed N and m. 
Table 2 presents the actual values and the nominal values for different values of 

Q, c, m and N. The effect of optimal stopping appears to be quite modest for the 

values of N and Q considered. For example, when N= 25, c= 1.96 and Q = 0.6, the 

actual (worst case) value is 3.89%, less than 1.5% larger than the nominal value of 

2.4970, and this is the largest increase reported in any of the tables. For N= 10, 

c= 1.96, and Q = 0.2, the actual (worst case) value is 2.91%, less than 0.5% larger 

than the nominal value of 2.49%. 

As expected, the effect increases with N and Q. By the law of the iterated 

logarithm, the value must approach one as N -+ m. The tables indicate that the limit 

is approached very slowly. 

One possible explanation for the small increase is that the Z, are conditional 

probabilities while the nominal alpha is unconditional. Comparisons with a nominal 

alpha computed conditionally given the covariates awaits future work. 

2.5. Hypothesis testing: observations taken in batches 

It might not be feasible to analyze the data one at a time; instead we might need 

to see them in groups of size M, say. We will study the effect of batch size in this 

section. 

Denote the reward by G(k, j) where the sample size n is n =Mk and j is a typical 

value of S,, i.e. j=O, l,..., A4k. Then, the recursion takes the form 

G(K,J’) = u(K,j) = VMK(J’) (j=O, 1, . . ..MK). 
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G(k, j) = max o(k j)* c [ , ,;~~(r)(~~G(k+l,j+j)j 

for j=O, . . . . A4k and k= l,...,K- 1. 

The stopping rule which maximizes this approximation is 

T= inf{n; M<n<N, u(k,j) = G(k,j)}. 

Tables 3 and 4 present the actual values and the nominal values for different 

values of batches’ size and total amount of observations. The size of a batch appears 

to have very little influence. 

Table 3 

Actual values for testing hypothesis (with batches) 

n K=25, M=5, c= 1.96 

p=o.2 @=0.4 ~~0.6 

5 0.0310776 0.0373151 0.0447215 

10 0.0297829 0.0352482 0.0421819 

15 0.0291408 0.0339142 0.0399647 

20 0.0286684 0.0328846 0.0382302 

25 0.0282947 0.0320360 0.0368202 

30 0.027962 0.0313182 0.0356413 

35 0.0276746 0.0307106 0.0346493 

40 0.0274260 0.0301735 0.0337392 

45 0.0271943 0.0296778 0.0329047 

50 0.0269879 0.0292301 0.0321442 

55 0.0267951 0.0288250 0.0314633 

60 0.0266171 0.0284414 0.0308259 

65 0.0264512 0.0280886 0.0302222 

70 0.0262946 0.0277563 0.0296635 

75 0.0261483 0.0274406 0.0291385 

80 0.0260081 0.0271473 0.0286339 

85 0.0258768 0.0268639 0.0281617 

90 0.0257500 0.0265977 0.0277078 

95 0.0256298 0.0263399 0.0272713 

100 0.0255141 0.0260954 0.0268590 

105 0.0254022 0.0258576 0.0264553 

110 0.0252960 0.0256319 0.0260730 

115 0.0251925 0.0254116 0.0256980 

120 0.0250937 0.0252011 0.0253400 

125 0.0249977 0.0249961 0.0249893 

Nominal 

Actual/nominal 

(n=M) 

0.0249979 0.0249979 0.0249979 

1.24 1.49 1.789 
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Table 4 

Actual values for testing hypothesis (with batches) 

n k= 10, M= 10, c= 1.96 

10 0.0292559 0.034177 0.0397833 

20 0.0282157 0.0318416 0.0363462 

30 0.0274905 0.0303149 0.0339215 

40 0.0269492 0.0291543 0.0319715 

50 0.0265096 0.0282175 0.0303981 

60 0.0261324 0.0274116 0.0290396 

70 0.025802 0.0267076 0.027881 

80 0.0255074 0.0260816 0.0268291 

90 0.0252417 0.0255155 0.0258703 

100 0.0249977 0.0249958 0.0249874 

Nominal 

Actual/nominal 

(n=M) 

0.0249979 0.0249979 0.0249979 

1.17 1.37 1.59 

3. Theoretical solution to the hypothesis testing problem 

In Section 3.1 we prove that 2, - Zz + 0 with probability one. In Section 3.3 we 

approximate the discrete problem with the corresponding continuous problem. In 

doing so, we find that the approximate solution depends only on the correlation 

coefficient (Q) between X and Y, and not on the distribution of X. 

3. I. Convergence of Z, - Z,* to zero with probability one 

Since Zn=Po{fi(Yn-8,)/ao>cIX,,..., Xn> we see that 1 -Z, is a random 

variable. In addition to that, we know that Y,, . . . . Y, are conditionally independent 
variables given X,, . . . , X,, and that the conditional distribution of Y given Xi, . . . ,X,, 

is the same as the conditional distribution of Y, given Xi. 

Let 

e(xi) = E(Y, 1 xi), o*(Xi) = V(yi 1 Xi), 

e = corr(X, Y), ff,” = V(X), Sf = i a2(X;). 
i=l 

Then, by the law of large numbers, 

d 
--+ a2 = 
n s 

V(Y 1 X) dF(x) and a* = a:(1 -e2). 

We see that 
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If we define 

G,(z) = G,(z;X,, . . ..XJ = PO 
CL (Y,-W;)) <z/x,,...,x, 9 

sn I 
then 

Theorem 3.1. Z, - Z,*+ 0 with probability one. 

Proof. We can write 

Q,(z)= l-@[$(c+~z)]. 

Part 1. We first prove that 

If we define 

then 

S, = S,, = ~ Y,i = 
Cy= 1 (K- e(xi)) 

i=l %I 

Thus, we are dealing with a double array of (conditionally) independent random 

variables: 

61 

y21, y22; 

y317 y32, y33; 

ml, yn2, ***, y,,; 
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for which 

i f?(Y,j) = 1. 
i= I 

The Central Limit Theorem asserts that S, converges in distribution to the unit 

normal distribution if Lindeberg’s condition is satisfied. 

Let 

LF&) :=’ i 
S,” i= 1 I 

ly~-~(Xi)I’dGi(yi)* 
. ~v,-o(x,)~ a&se 

If LF,(&) -+ 0 for all E, then S, converges in distribution to the standard normal 

distribution. Thus, we must show that LF,(&) +O w.p. 1 for all E>O. 

Define the event 

B,, = {s~~$ul} where A = c$(l -e2). 

Then, the indicator function of the complement of B, 

Is,+0 w.p. 1. II 

If B, occurs, then for all c>O there exists n, such that for all n>n,, we have 

If we define 

%Wi> = ~ ,y_B(x),,c IYi-e<xi)I”dGi(Y;) I , 
I / 

we see that the random variables z&X,) are i.i.d.; so, applying the law of large 

numbers 

I?= i uc(xi) ~ m u (*) dFtxJ 
c 

n -cv 

where 

s 

co _11 

u,(x) d F(x) = 
!I 

I Y - Q(x) I ’ dH(x, Y) 
-co ’ IY-&)l>c 

and H denotes the joint distribution of X and Y. Then, if c-+ 00, 

1.i 
IY-e(x)(2dH(x,Y)+0. 

lY~Bor)J2C 

The Lindeberg-Feller condition is satisfied w.p. 1, so G, converges weakly to @ 

w.p. 1 Polya’s theorem asserts: If F, and F are distribution functions, and if F,, 

converges weakly to F, and F is continuous, then the convergence is uniform, i.e. 

sup,lF,(x) - F(x)1 -+ 0. Using Pblya’s theorem, we see that G, converges uniformly 

to @. so 
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Part 2. We now show that 

This follows easily from P6lya’s theorem with 

for --03<z<oo. Then F,, converges weakly to F w.p. 1. So 

IZ,*-FA-fi(%-/4)I = IF(-fi(%-&)-FA-fi(xn-01 

<sup IF,(z)-F(z)1 -+O. 
z 

Theorem 3.2 will give us an approximation which does not depend on the distribu- 
tion of X. We use the corresponding continuous problem. 

3.2. Approximate solution using the corresponding continuous problem 

Let ( W(t)},,, be a normalized Brownian motion, then we will show that 

sup E(Z:)- s;$,/ 
t?l<T<N 

as m, N + m with m/N + E, where Z,* was defined in (3.1) and the suprema extend 
over stopping times. 

Let W(t) be a normalized Wiener 

W”(t) = fi W i 
( > 

is also a Wiener process. For this 
theorem to construct stopping times 

S” g Wrn(c7,,). 

process, then 

W”(t) we use Skorokhod’s representation 

Brnlr o&9 ... such that the partial sums 

There is no loss of generality in supposing that S,, is equal to Wm(o,,) for all 
n= 42, . . . . 

We define 

We know that 

sup 1 w,(t) - W(l)1 J+ 0 asm+w (3.2) 
0gt<c 
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for any c. Now we define 

D,(t) = o{IV,(s):s<f}, D(t) = a{W(.s):s<t} 

and let C, be the class of all T s.t. ‘SE [l, l/s] w.r.t. D,(t) and C be the class of all 

r s.t. 5~ [l, l/e] w.r.t. D(t). Further, let 

Then 

Z:= U(T, W,(T)) and u(r, W(T)) = 1 - @ 

Theorem 3.2. 

SUP E{u(r, w,(r))> - ;;pC E{u(r, w(t))) + 0 
TECm 

as m, N-+ 03 with m/N+ c. 

Proof. With W,(T) as defined in (3.2) let Cm,,+ be the class of all T s.t. TE [l, l/e] 

w.r.t. D,(t), which are of the form s=j/k, j= k, . . . , k/c, and let C, be the class of 

all T s.t. TE [l, I/E] w.r.t. D(t), which are of the form s=j/k, j=k, . . . . k/e. Then 

= I + II + III. 

Next we prove that III --f 0. If T is a stopping time, let 

[(k+ l)r] 1 
rk = A-. 

k E 

Then rk E C, (rk < t iff kTk < kt iff (k + 1)s < [kt] which implies that rk E C,) and 

Irk- Tl < l/k. It fOllOWS easily that III + 0 as k + co and a similar argument shows 

that sup, I + 0. 

For a fixed k, we can use the backward induction technique of dynamic program- 

ming to obtain 

lim II(m, k) = 0 for all k. 
m-m 

To see why, fix K, let K= k/c, and define functions u,? and Vj, j = k, . . . , K, by 

@Km(Y) = V,(Y) = 24 f,Y , ( > 
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and 

uj(Y) =max[u(i,Y), 1 uj+,(y+Z)d@k(z)j 

for -m<y<oo, j=k ,..., K-l, where 

and 
@k(z) = @P(z 1/-l, Fm, j (Z) = P(Smj < Z I/m ) 

m,=[m(~l)]-[$] 

for -w<z<cr, andj=k,...,K-1. Then 

sup E{u(r, W,(r))> = q&WKAl))1 

and 

;:Fk E{u(r, W(r))1 

by the dynamic programming 

W(1) as m + 03, it suffices to 

Ukm(Y) -+ Q(Y) 

uniformly on compacts (in y). 

then ~j”(y)=~(K/k,y)=~j(Y) 
that 

u?(y)+ r+(Y) 

uniformly on compacts in y as 

converges weakly to @,, 

relations. Since W,(l) converges in distribution to 

show that 

(3.3) 

This may be done by backward induction. If j = K, 
for all m. So the relation is obvious. Now suppose 

m + 03 for all i> j, where k< j<K. Then, since Fm,j 

as m -+ 03. So the induction is complete and (4.4) follows. This completes the proof 

that II -+ 0 and therefore the proof of the theorem. 
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