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ABSTRACT : In many circumstances, it is desired to move a mass from one position to another 
without initiating a vibration in the mass being moved. Two such problems are considered 
here : the motion of a mass initiated by another mass, and the motion of a pendulum initiated 
by the spectfied motion of its support. In each case, it is desired that the system start at rest 
and come to rest in the second position. A simple strategy for the spect$ed motion is given 
here. The method is motivated by engine cam-follower design. The force required to move the 
system in question is determined as well as the maximum value of the force required (and the 
times at which these forces take place) is determined. 

I. Introduction 

In several circumstances, it is desired to move a mass from one position to 
another without inducing any vibration in the mass being moved. Examples include 
cam-follower systems in engines, recording heads on computer disk drives and the 
motion of robot arms. In fact, the general design of a typical engine cam gives the 
motivation for the specified motion we attempt below. There are several approaches 
to the problem posed here, see, for example (1,2). 

II. Moving a Mass from One Point to Another 

Suppose we wish to move the mass m in Fig. 1 by moving the cart in a prescribed 
motion. Suppose both the mass and cart are at rest initially. And suppose that we 

l-77 l-77 
FIG. 1. The system : movement of a mass. 
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wish to move the cart so that the mass m comes to rest again after a displacement 
D. 

The differential equation of motion of the mass m is 

F, = ma, : k[x,(t) - x] = m.2 

or 

.;t_tC$X = co;.&(t), 

where 

(1) 

(1’) 

co,, = Jkjm. 

Since we want m to move a distance D with no overshoot, it is important that 
the cart move a distance D as well. This means the spring which is unstressed 
initially will be unstressed in the final position as well. Thus each of the two masses 
will end up with a displacement D. 

In order to accomplish this, let us suppose that the specified displacement has 
the form : 

x,(t) = iD[l -cos(cu,/r)t)], 0 < t < (c(Tc/w,~) 

= D, t > (WC/o,). (2) 

The motivation for the (1 - cos 0) in (2) comes from typical shapes used in engine 
cam-follower systems (2). A plot of (2) is shown in Fig. 2. Notice that the shape 
of the curve gives hope that the strategy might work. Notice also that the speed 
with which we can make the move is determined by c( since n/w, is fixed. 

We will see that the values of a which will work are 

c( = 3,5,7,. . . 

That is, the frequencies of the prescribed motion x,(t) can be 

x,(t) 

D,&.- -- - _ 
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FIG. 2. Prescribed motion .v,,(t). 
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u,/3, w,/5, 0447,. . . , o,/(2n+ I), n = 1,2,3,. . . 

We construct the solution to (1’) with the specified displacement x,(t) given by 

(2) : 

z+fo,2x = $Doi[l -cos (On/CI)t]. (3) 

The right-hand side of (3) consists of a constant term plus a cosine term. As such, 
we guess a particular (forced) solution of the form 

XP = P+ Q cos (o,/cc)t, (44 

where P and Q are constants to be determined so that (3) is satisfied. Inserting (4a) 
into (3) and cancelling the common term (w,)‘, gives 

P=$D, 

The homogeneous solution to (3) has the form 

xh = Asin(o,t)+Bcos(o,t) 

Adding (4a) and (4b), we get 

1 +Asin(o,)+Bcos(w,t). 

We determine the constants A and B from the initial conditions : 

x(0) = i(0) = 0. 

These conditions yield 

A = 0, B = $D[~/(u’- I)]. 

Thus, we have the complete solution : 

2 

l- 2, cos(o,/a)t+ &, cos(u,t) 1 

(4b) 

There are two conditions which we must now impose on (5). First, we want 
x(t,) = D, where t,, = (~rc/w,,). And finally, we want the velocity of m to vanish at 
t, (i.e. _t(t,) = 0). Note that: 

(w,/c() t, = n rad and o,, t, = cm rad. (6) 

Thus from (5), we get 

The terms inside the [ ] must add to 2 if x(tf) = D. This will happen when 
cos (an) = - 1 if CX- 1 # 0. Thus, this condition requires 
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a=3,5,7 ,..., (2n+l). 

Now we require that .~?(t,) = 0. From (5) and (6), we get 

(a) 

a(+) = @o, 
[ 

&sin (MC) 1 . @I 
This expression vanishes if CI = 2, 3, 4, 

The terms which are common to (a) and (b) are then the odd integer values of 
CI from 3 on. Thus the solution for the motion of the mass m is 

[ 

7 
x = $D 1 - ;-~~icos(~,/~)If &os(~J) 1 , O<t<t, 

= D, tt < t, (7) 

where 

t, = (an/w,) and LX = 3,5,7,. . . , (2n+ 1). 

A plot of x,(t) and x(t), the specified motion of the cart and the resulting motion 
of m, is shown in Fig. 3. Notice that at tr the distance between m and the cart is the 
same as it was initially. Thus the spring is unstressed. And since the velocity of m 

is zero and the prescribed motion of the cart remains at x, = D, the mass m will 
remain at rest at the point x = D. 

Equation (7) gives the design equation for the motion shown in Fig. 3. As noted, 
a can take the values 3, 5, 7,. . . . Thus the time required to move the mass m a 

distance D is 

r, = (cUr/o,). (8) 

In order to minimize the time tl, we should select a = 3 and select a large value of 

D/2 -* 
s(t)... cart motion I 

I 

I 

I 
I 
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FIG. 3. The motion x,(t) and the mass motion .x(t). 
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the spring constant k (to increase the natural frequency w, = Jkim). The solution 
is not unique since we can take CI = 3,.5,7,. . . and adjust o, accordingly. 

The design equations for the strategy are contained in Eqs (2) and (7). 
One final consideration is the force F,(t) required to move the cart. Writing 
F, = m,a,, where a, is the second (time) derivative of the motion (2), we obtain 

2FJDk = [(m,/ma’) + 1/(a2 - l)] cos (ant/a) - [l/(a’- l)] cos (co,t), (9) 

where 

The maximum amplitude of 2FJDk depends on CI and the mass ratio m,/m. Suppose 
we take CI = 3 (the case for the fastest transit from A to B). Then we can determine 
the positions and heights of the maximum amplitudes as shown in Table I. 

TABLE I 

Time and values qf the maximum ,force-mass movement, a = 3 

R,, = m,lm 

0.0 
0.1 

0.2 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
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t I * %/an t z * w,/ax 
Amp. 

W,lW 

0.304 0.696 0.192 
0.302 0.698 0.199 
0.299 0.701 0.205 
0.297 0.703 0.212 
0.294 0.706 0.219 
0.292 0.708 0.225 
0.289 0.711 0.232 
0.287 0.713 0.239 
0.284 0.716 0.246 
0.282 0.718 0.253 
0.280 0.720 0.260 
0.277 0.723 0.267 
0.275 0.725 0.274 
0.272 0.728 0.282 
0.270 0.730 0.289 
0.268 0.732 0.296 
0.265 0.735 0.304 
0.263 0.737 0.311 
0.261 0.739 0.319 
0.258 0.742 0.326 
0.256 0.744 0.334 
0.244 0.756 0.373 
0.232 0.768 0.414 
0.220 0.780 0.456 
0.208 0.792 0.500 
0.196 0.804 0.544 
0.183 0.817 0.590 
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ZF,IDk 

0.205 

(a=3 ) 
0.022 

FE. 4. The force required to initiate the motion r,,(t) for the movement of a mass 

The initial and final amplitude of 2F,,/Dk is also a function of the mass ratio 

m,,/m : 

(2F,,/Dk)I,=,, = (m,,/ma’) = R,,,lcc’. (10) 

A plot of 2FJDk is shown in Fig. 4. Here x = 3 and m,/m = 0.20. From Table I, 
we see that the maximum amplitude of 2FJDk in this case is 0.205. From (1 1) the 
initial and final values of 2FJDk is 0.022. 

III. A Strategy for Moving a Pendulum from One Position to Another Without 
Overshoot 

Suppose now that we have a simple pendulum whose support o is to be moved 
a distance D. Suppose at t = 0, the pendulum is at rest : 0 = 4 = 0. We then seek 
a strategy for moving the support o in a prescribed fashion so that when o has 
moved the distance D, the pendulum again comes to rest; see Fig. 5. 

FIG. 5. The system : movement of a simple pendulum. 
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Moving a Mass without Vibration 

The above situation could be a model for a crane system designed to move 
material from one point to another. The amount of material moved is unimportant 
since the design parameter w, = ,&p does not depend upon the mass of the 
pendulum. 

We denote the prescribed motion of o by x,(t). Writing F = ma in the direction 
perpendicular to the pendulum string. we have 

- mg sin 8 mfS’+m.& cos 0. 

Suppose the angle 0 remains small so that we can make the approximations 

sinO=G and COS~ZZ 1. 

Thus we have the differential equation for the pendulum 

e+o,:e = -a,//, (11) 

where 

W” = me. 

Suppose that we take the same displacement function as we chose for the problem 
in Fig. 1 (i.e. Eq. 2): 

x,(t) = {D[l -cos (w&t], 0 d t < (a7c/o,) 

= D, t > (cut/o,). (2) 

From (9), we need the second (time) derivative of x,(t). Thus (11) becomes 

@+w,20 = - (Dw,2/2c~~P) cos (o,/a)t, 0 < t < (cur/w,). (12) 

The initial conditions are 

G(O) = &O) = 0. (12a) 

For a particular solution to (12), we try 

Q, = Q cos (w,/a)t. 

Inserting this in (12) and cancelling the common cosine terms, we get 

(1 - l/cr2)Qo,? = -Dw,2/2a2d 

or 

Q=-; ,2&. ,( > 
Adding the particular solution to the homogeneous solution, we get 

cos (o,/cc)t+A sin (w,t) +Bcos (o,t). 

(13) 

Imposing the conditions (12a), we determine 
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And finally, we have the motion 0(t) 

e(t) = ;j A, ( 1 [cos (OJ) -cos (a,,/!+], 0 < t d f, 

= 0, t > t,. 

At this point, we must determine the values of x which give 

tI(t,) = &t,) = 0, where t, = (wx/w,~). 

Note that ~,,t, = art and w,,r,/rx = rr. Thus from (14), we obtain 

(14) 

In order that e(t,) = 0, we set cos (WC) = - 1. Thus 

CL= 1,3,5,7 ,.... 

Differentiating (14) and evaluating at t,, we obtain 

f&r,) = p/ & ( > [-sin(o,t,)+(l/cr)sin(w,/x)tll 

Noting again that w,t, = cuc and o,,t,/x = rr, and if E = 1, 2, 3,. . the sine terms 
inside the brackets vanish. Thus the values of 0 and 6 are zero at t = tf as desired. 
Once again, we note that cx = 1 makes the denominator in (14) vanish. Thus 
acceptable values of c( are 3, 5, 7,. , (2n+ I). 

The prescribed motion x,(t) and the response 0(t) are shown in Fig. 6. In order 

FIG. 6. The motion x,(t) and the pendulum motion O(t). 
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to understand fully the results shown in Fig. 6, we must compute the maximum 
amplitude of the response, fJmax. 

If tl = 3, it can be determined that I@,,,( occurs at t = 0.304 tf and 0.696 tf. 
Plugging either value in (14), we obtain 

Q,,, = (0.096);, (a = 3) UW 

and again, the final time is 

tf = (37c/oJ, (LX = 3). (15b) 

It is important to note that while CI = 3 gives the minimum time to move the 
system a distance D as well as the smoothest motion, the price which is paid is that 
the maximum angle 9 occurs at this value of a. If we select tl = 5,7,. . . the maximum 
angle 8,,, will be reduced, but the time tf will be extended and the motion will 
involve higher harmonics not seen in the case CI = 3. 

Suppose that we generalize the discussion by considering a compound pendulum 
instead of a simple pendulum ; see Fig. 7. We will find that the fundamental design 
equations are essentially the same as above. In addition, we consider the force F,,(t) 
required to generate the motion. 

From Fig. 7, we can determine the two equations of motion for the system 
(assuming small angular motions e(t)) : 

R, + (Jojme)8’+ge = 0 (164 
(m, +m)R, +md = F,(t). (16b) 

Rewriting (16a), we get 

8’+o,2e = - (mepo)jt,, 

where 

0, = J(Gzi. 

As before, we use x(t) from (2) : 

(17) 

FIG. 7. The system : movement of a compound pendulum. 
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x,(t) = $D[l -cos (w,/cx)t], 0 < t < (m/o,) 

= D, t > (m/w,). 

Thus (17a) becomes 

ri’+o,;‘e = - (Dw;m//2~‘J,) cos (o,/a)r. 

(2) 

Comparing this to (12) shows that we can replace (D/2!) in (12) and (13) by 
(Dm//ZJ,) to get the results for the present case 

e(t) = [cos (U&t) -cos (W,,/CL)t], 0 d t G t/ 

= 0, 

Similarly, we can determine Q,,, (here for u = 3) : 

o,,,, = 0.096 D;L rad (a = 3) 
0 

t > t,. (18) 

(19a) 

and again, the final time is : 

t, = (an/to,,), CI = 3,5,7,. . (19b) 

To determine the force required to give the motion (IQ, we note the equation 
(16b): 

(m,+m).;t,+m/~= F”(t). (16b) 

Inserting -u(t) from (2) and 0(t) from (18), we get 

1 
(R,,, + 1) + jj@ _1> 

I 
cos (%/~)t? 

(20) 

where 

R,,, = m,/rn and fl = J,lm/ ‘. 

Notice that (20) is a function of both the mass ratio R,,, and the moment of 
inertia ratio /I. In the case of the simple pendulum, J, = nzP’. Thus fl = 1. 

In Fig. 8, we plot (20) for the case R,,, = 0.25, a = 3 and fl = 4/3. This is the 
value of /I for a thin homogeneous bar of length 2rO suspended from one end. 

The equation for the force required to move the compound pendulum (21) is a 
function of the mass ratio R,,, and the inertia ratio fl. The minimum value of fl is 
1.0 (for a simple pendulum of length /). Thus R,,, >, 0 and p 3 1. From (20), the 
initial and final values of (ZF,/Dmo~) are : 

Initial and Final (2F,/Dmo,j) = [- l//Y+ 1 + R,,]/cx’. (21) 

Clearly if fi > 1 and R,, 3 0, this quantity is greater than or equal to zero. 
Table II gives the location and maximum values of the required force. Each cell 
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0.056 

-0.178 

FIG. 8. The required to initiate the motion x,(t) for the movement of a compound 
pendulum. 

TABLE II 

Times and value of’ maximum .fovce-pendulum mot’ement, r = 3 

& 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.0 

2.0 

3.0 

1 .oo 1.25 1.50 1.75 2.00 

0.192t 0.167 0.150 0.139 0.130 
0.304, 0.6961 0.298, 0.702 0.292, 0.708 0.286, 0.714 0.280, 0.720 

0.199 0.174 0.157 0.146 0.137 
0.302, 0.698 0.295, 0.705 0.288, 0.712 0.281,0.719 0.275, 0.725 

0.205 0.180 0.164 0.153 0.144 
0.299, 0.701 0.292, 0.708 0.284, 0.716 0.277, 0.723 0.270, 0.730 

0.212 0.187 0.171 0.160 0.152 
0.297, 0.703 0.289, 0.711 0.281, 0.719 0.273, 0.727 0.265, 0.735 

0.219 0.194 0.178 0.167 0.159 
0.294, 0.706 0.286, 0.714 0.277, 0.723 0.269, 0.73 1 0.261, 0.739 

0.225 0.201 0.185 0.175 0.167 
0.292, 0.708 0.283, 0.717 0.274, 0.726 0.265, 0.735 0.256, 0.744 

0.260 0.237 0.223 0.213 0.207 
0.280, 0.720 0.268, 0.732 0.256, 0.744 0.244, 0.756 0.232, 0.768 

0.334 0.315 0.304 0.298 0.295 
0.256, 0.744 0.238, 0.762 0.220, 0.780 0.202, 0.798 0.183, 0.817 

0.414 0.400 0.394 0.392 0.393 
0.232, 0.768 0.208, 0.792 0.183, 0.817 0.156, 0.844 0.126, 0.874 

t Upper value = Amp. (2FJDmw,f). 
$ Lower values = t, * w,/m, t, * on/cm. 
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lists the value of the maximum amplitude of (2F,/Dm4 on the top line and the 
positions of these maxima t , * O,/GYI and t2 * o,/m on the second line. 

IV. Conclusions 

Simply stated, a mass can be moved from point A to point B without inducing 
vibration if we use a [l -cos (cot)] specified motion, where w is one third (or one 
fifth. .) of the natural frequency o, of the system which is being moved. Clearly, 
the [ 1 -cos (wt)] term must be applied from 0 < t < tl = (c~n/w,,). Taking a = 3 
gives the smoothest transition from A to B in the minimum time. In the case of the 
pendulum, the cost of using (x = 3 is that the amplitude of the pendulum is highest 
at that value of TY. 

A number of questions remain unanswered at this point. For example, we have 
considered only undamped single degree of freedom systems here. Can the ideas 
here be expanded to include systems with damping or systems with several degrees 
of freedom? 

If there is damping in a single degree of freedom system, we will not be able to 
bring 1 to zero at the end of the cycle with the open-loop procedure outlined in 
this paper. However, the procedure given here could be used in conjunction with 
a mechanical capture system or a closed-loop control to achieve the desired goal. 

Multiple degree of freedom systems can be investigated by using modal analysis, 
as is done in (4). While this study is outside the scope of the present work, this 
might prove productive. 

References 

(I) P. H. Meckl and W. P. Seering, “Minimizing residual vibration for point-to-point 
motion”, ASME J. Vib. Acoust. Stress Reliubil. Des., Vol. 107, pp. 378-382, 1985. 

(2) D. M. Aspinwall, “Acceleration profiles for minimizing residual response”, ASME J. 
Dyn. Syst. Meas. Control, Vol. 102, pp. 3-6, 1980. 

(3) H. A. Rothbart, “Cams-Design, Dynamics, and Accuracy”, p. 238, Wiley, New York, 
1956. 

(4) J. L. Wiederrich, “Residual vibration criteria applied to multiple degree of freedom 
cam followers”, ASME J. Med. Des., Vol. 103, pp. 702-705, 1981. 

892 
Journal of the Franklin lnst,tute 

Pergamon Press Ltd 


