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ABSTRACT 

THE MECHANICAL behavior of brittle matrix composites is strongly affected by the bridging of cracks by 
fibers. In random fiber composites, libers can lie at an angle to the crack plane. Under such conditions, 
the bridging stress for a certain crack opening is governed by various micromcchanisms including fiber 
debonding, fiber bending and rupture as well as matrix spailing. While fiber debonding has been widely 
investigated, the coupled fiber bending~m~trix spaliing mcch~nism has received little attention. In this 
paper, the fiber bending/matrix spilling mechanism is analyzed by treating the fiber as a beam bent on an 
elastic foundation with variable stiffness and the possibility of spalling. The foundation stiffness and 
spalling criterion are derived from a tinite element analysis. The bridging stress due to bending alone as 
well as the total bridging stress are then obtained for the case with brittle fibers. Through this analysis. the 
effect of various microstructural parameters (such as fiber and matrix moduli, matrix spalling strain and 
fiber/matrix interfacial friction) on the behavior of random fiber composites cztn be studied. Prediction of 
ln~fx~rnurn bridging stress for inclined fibers based on the present model is shown to be in good agreement 
with experimental results. 

I. INTROD~JCTION 

BRITTLE MATERIALS usually fail by the unstable propagation of cracks. When fibers 
are incorporated into a brittle matrix, provided the fiber/matrix interfacial bond is 
weak enough (COOK and GORDON, 1964; EVANS et ai., 19X9), the fibers can debond 
from the matrix and then act as bridging ligaments at the crack wake to reduce the 
stress intensity factor at the tip of the crack. As a result, the first cracking strength of 
the material (i.e. the applied stress at which unstable propagation of the largest 
inherent crack occurs) is increased (AV~STON eb al., 1971 ; HANNANT et al., 1983: 

MARSHALL er al., 1985; LI and LEUNG, 1991). Moreover, with bridging stress at the 
crack wake, there is a lower sensitivity of first-cracking strength to the variation of 
inherent flaw size (MARSHALL et al., 1985 ; KENDALL et nl., 1987; LEUNG and Lr, 

1989; LI and LEUNG, 1991). Reliability of the material is therefore improved. After 
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the formation of the first through crack, if the fibers can take further load by 
themselves, pseudo-dLlctile behavior with multiple cracking will be obtained. This 
pseudo-ductility provides warning to the material user before the occurrence of final 
failure and allows redistribution of stresses to less severely loaded parts of the struc- 
ture. 

The improvements in material performance with the incorporation of fibers can bc 
derived qua~tit~tti~~ely by analyzing the propagation of a bridged crack provided the 
bridging stress for a given crack opening (or the p II relation) is known ( M.ARSHAI.I. 

ef cd.. 1985; L.EIJXi and LI, 1989). When fibers are lying perpendicular to the crack 
plane, as in aligned fiber composites loaded in the fiber direction, crack bridging stress 
arises from the stretching of debonded fibers. For such a case, the p-lr relation 
has been derived through the analysis of fiber debonding for both continuous fiber 
(MARSHALL et cd.. 1985) and discontinuous fiber composites (LEUNG and Lr, 1990). 
When fibers are not perpendicular to the crack plane. as in randotn fiber composites, 
the opening of a crack will lead to fiber bending and shear in addition to fiber 
debonding (Fig. la). The crack bridging force (from a single fiber) is then made LIP 

of two components. one from the fiber/matrix interfacial stress and the other from 
reactions due to bending of fiber against the matrix (Fig. lb). Assuming that these 
two ~ornpo~lellts can be decoupled, the bridging force can be obtained as their vector 
suili. (Note, thecompositecrack bridging stresscan then be obtained frotn the product 
of the bridging force per fiber and the number of fibers per unit crack area.) The 
component due to interfacial shear stresses can be derived from existing fiber debond- 
ing theories as in the aligned fiber case. In this paper, a model for the derivation of 

V Fib& Subjected to 
Bending end Shear 

FIG. 1. (a) Bending and shearing of’liber across a cr:xk. (h) Components of a crack bridging force 
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bridging stress due to fiber bending will be developed for composites with brittle fiber 

and brittle matrix. 
For a brittle fiber reinforced brittle matrix composite. while bending and shearing 

may lead to fiber breakage, force acting on the matrix from the fiber may also lead 
to matrix spalling at the exit point (Fig. 1 b). Matrix spalling under inclined fibers have 
been observed in several matrix materials such as polyester resin (MORTON and 
GROVES, 1974) and mortar (Lr et al., 1990). Since the spalling of matrix can lead to 
relaxation of the fiber as well as the delaying or prevention of fiber breakage, it has 
a strong effect on the bridging stress arising from fiber bending. As a result, a coupled 
analysis of the fiber bending/matrix spalling mechanism is crucial in the derivation of 
crack bridging stress. 

In the following, previous work on the modelling of bridging effects of inclined 
fibers are reviewed and a new model, which effectively considers the fiber as a beam 
and the matrix as an elastic foundation, is introduced. Determination of stiffness and 
spalling criterion for the matrix foundation is then described. The bridging stress due 
to fiber bending is numerically obtained. Results are discussed in terms of the various 
microscopic parameters affecting the bridging mechanism. Then, the total crack 
bridging stress (due to both fiber bending and debonding) is obtained for several 
combinations of micro-parameters. Implications of the results to the choice of micro- 
parameters in the design of random fiber composites are discussed. Finally, theoretical 
prediction of maximum bridging stress from inclined fibers is compared with exper- 
imental results on a glass fiber reinforced polyester system to assess the validity of the 
present model. 

2. CHOICE OF AN APPROPRIATE MODEL 

2. I. Reciebrt of existing models 

Crack bridging by oblique fibers have been studied by several investigators for 
various material systems. PIGGOTT (1974) considered the bending of brittle fibers in 
a rigid perfectly plastic matrix. In the model, the fiber is considered to be a flexible 
string with no bending stiffness. The fiber/matrix interfacial stress is assumed to have 
a magnitude equal to r,., the yield strength of the matrix, and act at an angle n(d - $) 
to the fiber axis. 4 is the original angle a fiber element makes with the horizontal axis, 
$ is the angle it makes after deformation (Fig. 2) and n is a constant to be determined 

(a) (b) 

PK. 2. Assumptions of Piggott’s model : (a) a tiber bent on the matrix, (b) enlarged view of part of a tiber 
showing stress on a fiber. 
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empirically from experimental data. With these assumptions, the maximum curvature 
of the fiber can be obtained. From the maximl~In curvature, the nlaximum stress 
caused by bending and hence the strength reduction of the fiber due to bending are 
deduced. As a result of its assumptions, this model is only valid for cases with flexible 
fibers and matrix with very low yield stress and yield strain. Surprisingly, the model 
has been used successfully to fit experimental data of 0.76 mm glass fiber bundles 
(which are quite stiff) embedded in brittle polyester resin. It appears that the fitting 
parameter I? is able to provide some flexibility to the model so data that violate the 
basic assumptions may also be fitted. However, since IZ is an empirical constant, the 
dependence of composite behavior on micro-properties is not reflected in the value of 
II and so fitting data with n does not provide much insight to composite design. 

MORTON and GROVES (1974) analyzed the bridging effects of inclined ductile fibers 
in a yielding matrix by considering the bending of fiber across a crack. In the analysis, 
interfacial shear stress is neglected and the reaction stress from the matrix on the fiber 
is taken to be the matrix yield strength. With these simplifying assumptions, the 
bridging stresses for a certain crack opening and fiber inclination angle are derived 
for two different cases: the case with the fiber remaining elastic and the case with 
plastic hinges formed in the fiber. However, since the transition between these two 
cases (when the fiber is in an el~~sto-plastic stage) has not been considered, the rn~~xirn~lrn 
bridging stress for a certain fiber inclination angle can only be deduced approximately. 
The model tends to be in better agreement with experimental results at low fiber 
inclination angles. At higher angles. the discrepancy is attributed to extensive matrix 
yielding or matrix spalling that tends to relax the fiber. 

LI ct ~2. (1990) considered the case with flexible fibers bending on an elastic matrix. 
In this model, the fiber is so flexible that the reaction forces can be considered to be 
concentrated on a very small area at the exit point of the matrix rather than spreading 
over a large area as in Fig. I. The exit point can then be modelled as a pulley over 
which the fiber passes. The high local noi,mal stress at the exit point induces high local 
friction. By modeling the fiber as a string passing over a frictional pulley, Li et cd. 
obtamed a good prediction for the bridging stresses of inclined synthetic fibers in a 
mortar matrix. This model. which assumes large deforrn~lti~~n of the fiber into a curved 
string, is only valid if the fiber possesses a high rupture strain. 

Of the three models described above, Piggott’s and Morton and Groves’ models 
are based on the assumption of a yielding matrix, which renders them inapplicable 

to brittle matrix composites. On the other hand, Li cf crl’s model, which assumes a 
“string-like” fiber with high rupture strain. is not applicable to brittle hbcrs. For 
brittle fiber reinforced brittle matrix composites. a new model has to be developed. 

From the above discussion, a brittle fiber can be best represented by an elastic 
beam. Since the brittle matrix will remain elastic until the occurrence of spalling, it 
can be modelled as an elastic foundation supporting the fiber. The bridging stress due 
to bending of a single fiber can then be derived by analyzing the bending of fiber 
on an elastic foundation provided the foundation stiffness and foundation spalling 
criterion (in terms of the applied force per unit length when spalling occurs) arc 
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Constrained to 
Move Together 

FIG. 3. Plane strain model for the determination of foundation stiffness and foundation spalling criteria. 

known. Since the volume of matrix below the fiber varies with distance from the crack 
face (Fig. 3), the foundation properties are variable along the fiber. To obtain the 
properties of the foundation, we consider a section of the composite cut in a direction 
perpendicular to the fiber (Fig. 3). The section is assumed to be under plane strain. 
In Fig. 3, h, the distance from the bottom of the fiber to the crack face, is a function 
of the distance x along the fiber. The fiber and matrix are assumed to be unbonded 
to each other but under smooth or fictional contact. This is a reasonable assumption 
because the matrix reaction on the bent fiber drops rapidly with distance from the 
crack face and in the region close to the crack face where there is significant reaction 
stress, the fiber is very likely to have debonded from the matrix for most practical 
composite systems. In this model, only one fiber is considered, thus neglecting fiber 
interaction effects. Load is applied to the middle line of the fiber, which is constrained 
to move vertically with the same displacement along the whole line (Fig. 3). From 
the displacement of the middle line (u,) and the stress field produced by a certain 
applied force F, the foundation stiffness and spalling criteria can be obtained. It should 
be noted that when the fiber on an elastic matrix is bent at one end, it deforms in an 
oscillatory shape. In other words, the fiber can touch both the top and bottom of its 
groove. Therefore, foundation stiffness values have to be obtained for both cases with 
fiber pressing on the bottom or the top of its groove. Spalling, on the other hand, 
always occurs at the matrix at the exit point around the bottom half of the fiber and 
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so the spalling criteria need only be derived for the case with the fiber pressing on the 
bottom of its groove. 

In summary, to obtain the bridging stress due to fiber bending, the 3-D problem of 
a fiber bent in its matrix groove is simplified into two 2-D problems: a plane strain 
problem for the determination of the effective stiffness and spalling criterion of the 
matrix foundation and the problem of a beam bending on an elastic foundation with 
variable stiffness as well as the possibility of spalling. Since closed form analytical 
results for these problems are not available, numerical techniques involving finite 
elements arc employed. A solution of the problems and important implications of the 
results will be discussed in the following sections. 

3. DETERMINATION OF FOUNIIATIOX STIFFIGESS AND SPAI,T,ING CRITERION 

3. I. Detcrrninutiorl of’H, urzd HZ 

The geometry of the plane strain problem for the determination of foundation 
properties is illustrated in Fig. 3. In the model, H, and H2 are distances from the fiber 
to the outer boundary of the specimen and can be taken as infinite compared to the 
fiber size. However, in a finite element model, finite values of H, and H2 have to be 
employed. Since a stiffness value is to be obtained, the choice of H, is very critical 
because the displacement for a certain applied load increases with increasing H, (thus 
resulting in decreasing stiffness). To obtain a reasonable estimate of H,, it is realized 
that we have actually replaced a problem of stresses acting over a finite area (equal 
to the projected area of fiber on the matrix) over a semi-infinite medium (Fig. 4a) 
with one with an infinite strip of stress (Fig. 4b). A logical choice of H, is thus a value 
such that the relative displacement to the middle line of the infinite strip and a line 
at a distance H, below is equal to the displacement at the middle of the corresponding 
finite loaded area (see Fig. 4). To find the displacement below the finite loaded area. 

I-$ chosen so that displacement under line p-p and 0 are the same 

for the same applied load/area 

FIG. 4. Criteria for sleeting H, for the linite element mesh. 
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the length and width of the strip have to be known. The width is simply the diameter 
of the fiber while the length is arbitrarily chosen to be the length beyond which the 
foundation reaction stress is less than l/200 times the reaction stress at the exit point. 
After going through the mathematical details given in the Appendix, HI is deduced 
to be 34 times the radius of the fiber. 

The choice of N2 should ensure that the stress fieid outside Hz does not have 
significant effect on the displacement below the fiber. We arbitrarily take H, to be 
equal to H, and then compute the displacement and maximum stress (numerically, 
with finite element models to be described below) under the same applied load for 
two cases : one with rollers along the top boundary and free side boundaries and the 
other with top and side boundaries fixed. The real situation should be in between 
these two cases. The displacements at the middle of the fiber for the two cases are 
found to be within 3.5% of each other while the maximum stress in the matrix is 
found to be within 0.5% difference between the two extreme cases. The use of either 
boundary conditions is thus expected to give reasonable results. In all subsequent 
calculations, the more flexible boundaries (with rollers and free sides) are used. 

For the purpose of determining the matrix spalling criteria, we are interested in the 
stress field around the fiber. The finite element model therefore has to be very refined 
around the regions with expected high stresses. For small h (Fig. 5a), high tensile 

(a) Small h 

Large h 

Maxim;m Principal 
Tensile stress 

0 0 0 0 0 0 0 o_ 

Maximum Principal 
Tensile Stress 

FIG 5. Location of maximum principal tensile stress for both small and large h. 
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stresses are expected to occur at the bottom of the matrix ligament below the fiber 
due to bending, while, for large h, maximum stress is expected to be around the edge 
of the contact region between the fiber and matrix (Fig. 5b). (Note, this conjecture is 
indeed proven to be true by subsequent finite element results.) Mesh refinements are 
carried out in these regions until the stress values at a nodal point deduced by 
extrapolation from Gaussian points in the two adjacent elements are within 5% in 
most cases. Examples of final meshes are shown in Fig. 6. Due to symmetry, only half 
of the plate need be modelled. Double noding is carried out at the boundary of fiber 
and matrix so they are not connected to each other. In Fig. 6b, the thick black circular 
arc shows the region where contact between fiber and matrix is allowed. Shown in the 
figure are cases where the fiber is pressing on the bottom of its groove. To compute 
stiffness for the case when the fiber is pressing on the top of the groove. the contact 
region is prescribed on the upper half of the fiber circumference instead. 

Solution to this fiber/matrix contact problem is obtained with the ADINA finite 
element analysis program. Full Newton iteration is employed in the solution scheme. 
Results converge for all cases when smooth contact is assumed between fiber and 
matrix (i.e. frictional coefficient ,H = 0). For Coulomb friction models. results fail to 
converge when /I is small and I?, is high. Due to the use of highly refined meshes, the 
solution to the problem involves a lot of number crunching and hence requires 
significant computation power. The MIT Cray-2 supercomputer was used in carrying 

(b) 

See Fig.6c 

See Fig.6d 

‘\ 

1.1~~. 6. A typical finite clement mesh: (a) the whole mesh, (b) details around fiber 
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(d) 

FIG. 6. (c). (d) Refinements at regions of high stress 

out all the computations. Depending on the mesh size and other parameters such as 
frictional coefficient and moduli ratio, a typical run takes about 100~200 cpu seconds 
on the Cray-2. 

3.3. Linearity of the problem 

In general, the contact problem is a non-linear problem because the area of contact 
may change significantly with applied load. However, for the particular problem we 
are looking at, where the fiber is in contact with the lower part of a matrix groove 
with the same radius. there may not be much change in contact area with load and 
the displacement and maximum stress of the matrix foundation (more details in the 
following section) can be taken as linearly increasing with load. To confirm the validity 
of this argument, test cases are run with the same /I, same fiber and matrix parameters 
but with changing applied load. Results are shown in Fig. 7. It is observed that, for 
several combinations of fiber and matrix properties, both the fiber displacement (i.e. 
displacement at the fiber middle line, where load is applied) and the matrix maximum 
strain vary linearly with applied load. The range of load is selected so that the 
maximum matrix strain ranges from around 0.004%--0.2%. With linearity ascertained 
in this wide range of matrix strain, one can treat the matrix foundation as linear 
springs, which save a lot of subsequent computations. 
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FIG;. 7. Linearity of the contacl problem. (Note. units in upper figure arc arbitrarily chosen.) 

3.4. Deril~cd,fhl*,ltl~iion poprrrirs 

In the plane strain finite element model, a total load F per unit length is applied to 
the mid-line of the fiber cross-section. From the analysis, the vertical displacement of 
the mid-line (with all points on it constrained to move together). u,, and the maximum 
principal tensile stress produced by the loading, gn,,,x, can be obtained. The foundation 

stiffness defined as the force per unit length per unit vertical displacement is then given 
by h-,,, = F/u, or. in non-dimensional form, k,,,jE,,, = F/(u,E,,,), where E,,, is the matrix 
modulus. The spalling criterion can be expressed in terms of the applied force per unit 
length, F,,,. when spalling occurs, or. in non-dimensionalized form, F,,,/(ro,,,), where I 
is the fiber radius and n,,, is the matrix strength (= E,,J:,,,, with I:,,, being the matrix 
failure strain). Thus, spalling is assumed to occur when the matrix material in the 
vicinity of the fiber reaches the failure strain c,,,. For this problem, as a result of the 
linear variation of matrix stress (or strain) with applied force (Fig. 7), F,,,/(ro,,,) can 
be obtained directly as F/(Y(T,,,:,~) for any applied force. 

(k,l,/E,,I)B and (li,,/E,,,)T. with subscripts Band Tto indicate cases when fiber contacts 
with the bottom or top of the matrix groove respectively, as well as the spalling 
criterion F,,,((ro,,,) are functions of /I/Y (the normalized depth of matrix below the 
fiber), E,/E,,, (ratio of the fiber and matrix modulus), 11,. viri (Poisson’s ratio of fiber 
and matrix) and p, the frictional coefficient between fiber and matrix. In this paper, 
we will focus on the variation of foundation properties with /z/l and E,/E,,,. keeping 
the other parameters fixed at 11, = 0.25, 11,~~ = 0.25 and ,D = 0.25. The effects of varying 

v,, \I,,~ and p on foundation properties have been investigated and reported in LEUNG 
(1990). For the same h/r and E,/E ,,,, as v,. v,,~ and ,U are varied within reasonable 

limits, the values of foundation properties always lie within 10% of the values at 
\I, = 0.25, v,,, = 0.25 and p = 0.25. 
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The variation in foundation stiffness and spalling criteria with h/v and E,/E,,, is 

shown in Fig. 8 for E,/E,,, equal to 0.25, 1.0 and 6.0. While (k,,jEm)B and (~,~,/~,,,)~ 
vary a lot with E,/E ,,,, FJro,,, is relatively insensitive to E,/E ,,,. Values are cal- 
culated for h/r up to 33, when the distance of fiber center to the crack face (i.e. h+r) 

is equal to H,. For h/r > 33, values for foundation stiffness and spalling criteria are 
assumed to be the same as for h/r = 33. Since (k,,l/E,,I)r does not vary a lot with h/r, 

its value is only obtained at 3 points (h/r = 1, IO, 33). For h/r < 1, (~,,*~~,~~)~is assumed 
to be equal to the value at h/r = 1. For all cases, both the stiffness and spatling force 

(a) 

0.5 

k--l km 0.4 

m B 
I Ef=E, 

0.3 - Ef = 0.25 E,,, 
0.2 - Ef =6Em 

_._ _ 
0 10 20 30 

hlr 

(b) 

0.6 

0.4 - 

km 

k--I m T o.3 - l 
4, I Ef = E, 

- Ef = 0.25 Em 
0.2 - - Ef =6Em 

7 

Eli 
0 10 20 30 

hlr 

- Ef =Em 

1 - Ef = 0.25 Em 
- Ef =6E,,, 

hlr 

FIG. 8. Variation of foundation properties with h/r and E, !E,,,. 
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are expected to increase with increasing /Z/Y with gradually decreasing rate. This trend 
is shown in all data curves except the one for spalling stress with E,/E,,, = 6. The 
slight drop in spalling force at h/r = 22 is believed to be caused by numerical errors 
of the computational model. As mentioned before. there are several cases with high 
E, and low II/I. (< 1) in which the contact problem fails to converge when p = 0.25. 
In those cases, solutions are obtained for the cast with /L = 0 and corrected to the 
frictional case by assuming that the displacement and maximum stresses for a certain 
/z:‘R in the frictional and frictionless cases can be proportioned as in the cases when 
/I/I. = I (where convergence can always be attained). 

When E,;‘E,,, becomes larger, the stiffness curves and spalling force curves are 
expected to approach certain limiting curves corresponding to the case where the fiber 
can be considered rigid relative to the matrix. To obtain the value of E,/E,,, beyond 
which the fiber can be taken as rigid, foundation stiffness and spalling force are plotted 
at several values of h;r for E, /E,,, values of I. 3. 6 and IO (Fig. 9). While the numerical 
results for spalling force do not show an obvious trend (probably due to higher 
numerical errors in these results than the stiffness results). the foundation stiffness 
values show little change beyond E,jE,,, = 6. Consequently, when E,iE,,, is greater 
than or equal to 6, the fiber can be considered to be rigid with respect to the matrix, 
and foundation properties equal to those at E,!‘E,,, = 6 can be used. This is a useful 
finding because it allows direct applications of our data to composites of polymers 
and other soft matrices (whcrc E,/E,,, is usually greater than 6) without requiring 

another series of heavy computation. 

4. DERIVATION OF BRIIXING STRESS DUE TO BENDING AI,ONE 

After obtaining the foundation stiffness and spalling force. the crack bridging stress 
for a given crack opening can now be determined by analyzing a beam bent on a 
foundation with variable stiffness and the possibility of spalling. The formulation is 
similar to that in MOKTON and GROVES (1974) except that the matrix is considered to 
be brittle and elastic rather than plastic as in their case. In the analysis, the fiber is 
separated into two free bodies at the middle of the crack whcrc the point of inflection 
is located (Fig. IO). The force F, to produce a displacement (S at the fiber end (and 
hence to ensure connectivity of the fiber on the two sides of the inflection point) is to 
be computed. Note that F, is equal to the resultant of reaction forces due to bending 
of fiber on the matrix (R in Fig. I). The bridging force due to bending alone is then 
the component of F, in a direction normal to the crack plane. To obtain F, for a 
certain crack opening, the displacement ci and the free length of beam outside the 
elastic foundation, I,. have to be known. Following Morton and Groves, 6 and 1, can 
be exprcsscd in terms of the half crack opening. II. and the fiber radius. r, as : 

ci = II sin 0. (1) 

I, = I’ tan 0 + II cos f), (2) 

where I) is the angle between the fiber and the normal to the crack plane. In the 
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FE. 9. Foundation properties approaching the rigid fiber case for increasing E, !/I?,,,. 

expression for I,, the first term is contributed by the part of fiber separated from the 
matrix on bending (Fig. 10) and the second term is due to displacement of fiber into 
the crack. 

For the case of beam bending on non-spalling elastic foundation with uniform 
stiffness. once 6 and I, are specified, F, can be readily obtained from analytical 
solutions (TIMOSHENKO, 1976). With non-uniform stiffness and spalling, a closed form 
solution is not available and a numerical analysis employing finite elements is carried 
out. The fiber is represented by beam elements. The beam stiffness matrix is derived 
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Fiber Divided into Two Free Bodies 

I:IG. IO. Configuration for the determination of bridging stress due to bending 

by an approach suggested by SEVERN (1970), which takes into consideration shear 
deformation of the beam. To model the matrix, the volume of material from the mid- 
point of one beam element to the mid-point of an adjacent beam element is represented 
by a discrete spring (Fig. II). The spring properties can thus be obtained as the 
integral of foundation properties from one mid-point to the other. The foundation 
properties. derived as a function of h/r, are first transformed into a function of the 
distance along fiber, x (since h is also a function of s) and then quadratically interp- 
olated between the points with specified values. Numerical integration is then carried 
out to obtain the spring stiffness (for both fiber pushing up and down) as well as the 
spring spalling force. In the solution of the problem. two types of iterations have to 
be carried out. The first type of iteration determines whether a particular fiber element 
node is touching the upper or the lower side of its groove and hence identifies the 
appropriate stiffness to be used. The second type of iteration determines the number 
of breaking springs, which reflect the length of the spalled matrix. The iteration 
schemes, as well as other progratnming details are fully described in LEUNC (1990). 

After deriving F,. the fiber bridging force in the direction of crack opening can be 
calculated from I;, sin 0. An effective fiber bridging stress, 0,. is then defined as 

Continuum 
Foundation 

Volume of Material 
Represented by Spring 

Discrete 
Model 

1.~. I I. Representation of the matrix foundatmn by discrete springs 
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F, sin B/(w’). All the subsequent results on crack bridging stress due to bending are 
expressed in terms of 0, normalized with material parameters. 

The numerical program has been used to obtain bridging stress and matrix dis- 
placement for the limiting case where foundation stiffness is uniform and no matrix 
spalling occurs. Comparison with close form solutions shows excellent agreement. 

4.2. RemIts and discussion 

Results of the analysis for variable foundation stiffness are shown in Figs 12-17. 
In the figures, the normalized crack bridging stress due to fiber bending, the maximum 
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12. Effects of the step number on the solution of the fiber bending problem (0 = 
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30’. I?,/&, = I. 



134X C. K. Y. Lr,t.m and V. <‘. LI 

- Mare Elements 
1 _ Less Elements 

0 
0.0 01 02 0.3 04 0.5 

Half-crack Opening 
Fiber Radius 

OOT . , * , * , , . I 
00 0.1 0.2 0.3 04 05 

Half-crack Opening 
Fiber Radius 

57 I 

0.0 01 02 03 04 05 

Half-crack Opening 
Fiber Radius 

FIG. 13. ERects of element numhcr on the solution d the tihcr bending problem, (0 = 30 , 6, fE,,,, = I. 
c,,,:E,,, = 0.005). 

fiber strain as well as the spalled length (normalized by fiber radius) are plotted against 
half-crack opening (again normalized by fiber radius). To obtain the normalized crack 
bridging stress, the effective fiber bridging stress, (r!, is normalized with the parameter 

O.OOl~~(~,~~,~~), where k,bf is the value of foul~dation stiffness k,?, (for beam pushing 
down) at A/r = 33. In all the results, a fiber embedded length of20-fiber radius is used. 
For the range of Et/E,,, we considered this is for all purposes equivalent to a semi- 
infinite fiber. 

Since matrix spalling is described by a discrete increase in I, in this model, the result 
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FIG. 14. Effects of matrix failure strain on crack bridging by inclined fibers (0 = 30 , E, IE,,, = I) 

is expected to be dependent on the number of beam elements used to represent the 
fiber as well as the number of steps in getting to a certain crack opening. Figure 12 
shows the effect of step number on the results when the element number is the same. 
With more steps, the onset of spalling can be more accurately predicted. If a small 
number of steps is used (i.e. a large jump from one step to another), spalling may 
have started between the steps, but is not detected until the next step is reached. With 
more steps, spalling is always predicted to occur earlier. However, the fluctuation in 
bridging stress and fiber strain, which depends on the length of fiber relaxed on 
spalling, is of similar magnitude in both cases. When the number of elements increase 
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FIG. 15. Eff~~s of modular ratio on crack bridging by inclined fibers (0 = 30 . cr,,,/E,,, = 0.005) 

(Fig. 13), the situation is different. With the same step number, there is much less 
fluctuation in the stress and strain results. Theoretically, if a very large number of 
elements are used with a very large number of steps, smooth curves will be obtained. 
However, in reality, if materials spall, they spall in discrete pieces of finite size. 
Therefore, smooth curves resulting from spalling of infinitesimal pieces may be just 
an artifact of the model employed. Ideally, the beam element size used for each 
material system should be determined from experimental observations of the spalling 
mechanism (e.g. in the scanning electron microscope) from which the size of the 
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FIG. 16. Effects of fiber inclination angle on crack bridging (0 = 1545’), EJE,,, = I, u,,,/E, = 0.005) 

smallest spalled piece can be determined. This size would be an appropriate choice as 
the beam element size in the model. 

In Fig. 14, results are plotted for two different values of matrix failure strain (cr,J&). 
Higher matrix failure strain implies less spalling and higher bridging stress. However, 
the fiber strain is also higher and so it is easier for fiber breakage to occur. The effects 
of E, JE,, on crack bridging by inclined fibers are shown in Fig. 15. With higher EfIE,,,, 

there is more matrix spalling and hence a lower fiber strain. The normalized bridging 
stress is higher for a lower El/E,,. The normalizing factor, 0.001J(E,k,/~~), involves 
both E, and Em (since k,w is proportional to E,). If E, is kept constant, a lower E,/E, 
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FIG. 17. ElTwts of’ fiber mcllnation angle on crack bridging (0 = 35 75 _ E, /E,,,,, = I. a,,,;E,,, = 0.005) 

implies a higher E,,, and hence a larger normalizing parameter. The actual bridging 
stress (which is a product of the normalizing parameter and the normalized bridging 
stress) is therefore also higher. However, if E,,, is kept constant, the normalizing 
parameter increases with increasing E,/E,,, and the trend of actual bridging stress may 
be exactly opposite to the trend of normalized stress shown in Fig. 15. Therefore, if 
bridging stress due to bending is to be maximized, for a fixed matrix, one should get 
the stiffest fiber available and, for a given fiber, the stiffest matrix, providing the matrix 
failure strain is constant. 

In Figs 16 and 17. results for increasing inclination angle are shown. The bridging 
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stress, fiber strain as well as spalled length all increase with inclination angle initially 
but decrease at higher angles. This trend can be explained by considering the 
expressions for 1, and 6 [(1) and (2)]. For the same half crack opening U, both the 
required displacement 6 and the free length of fiber 1, increase with inclination angle 
0. The bridging stress (F, sin 0) increases with sin 0 and (5 but decreases with I,. 
Depending on the rate at which d; and 1, change with 0, the bridging stress can increase 
or decrease with increasing B. An interesting point to be noted is that the bridging 
stress curves in the range from 30” to 60’ (where most significant fiber bending is 
expected) do not differ significantly from each other and even the curves for 15‘ and 
75 do not lie too far away. This is due to the fact that increasing bending due to a 
change in the angle is accompanied by an increasing force on the matrix and hence 
more matrix spalling. Spalling of a matrix tends to relax the more heavily stressed 
fibers and hence reduce the difference between fibers lying at different angles. 

5. DETERMINATION OF TOTAL CRACK BRIDGING STRESS 

The total crack bridging stress can be obtained by summing the individual con- 
tributions due to fiber debonding and bending in the direction normal to the crack 
plane. In this work, for illustrative purposes, results are only evaluated for the special 
case with continuous fibers and purely frictional fiber/matrix interface. As in the case 
for fiber bending, we define an effective crack bridging stress due to debonding, ctlh, 
to be F, cos U/d, where F2 is the bridging force in the fiber direction due to debonding 
alone. For a purely frictional interface, following MARSHALL et ul. (1985), the relation 
between the half crack opening U, effective fiber bridging stress due to debonding 
alone, Q<,,, and length of debonded fiber I,/, can be obtained as : 

G,/,, = [4(rE,)(tl cos Q/r)(l _tq)]“’ cos fI (3) 

I,,/r. = [(ucos fI/r)(E,/r)]‘~‘/(l +?/)I’? (4) 

where q = ( V, E, )/( V,,,E,,,) is the relative contribution of fiber and matrix to composite 
modulus and u cos H is the extension of the fiber into the crack. 

In the following, total bridging stresses are evaluated for various combinations of 
composite micro-propertles to provide insight into the choice of micro-properties 
for the design of random fiber composites. All the results given below are evaluated 
for the case with a very low volume fraction of fiber. q in the above expression can 
then be taken as zero. Also, the fibers can be considered to be bent in a semi-infinite 
volume of matrix and the results of bridging stress due to bending derived in the 
previous section can be applied. For composites with higher volume fractions, the 
bridging stress due to debonding is the same as that for a low fiber volume composite 
with a higher value of E, [increased by (1 + q) times, see (3) above]. Also, in the analysis 
of fiber bending, when there is interaction between fibers, a first approximation is 
to replace the matrix modulus E,,, with the composite modulus E, and then change 
the failure strain (for the “equivalent” matrix) accordingly. (Note, this correction is 
expected to be reasonable for foundation stiffness but may not be very accurate 
quantitatively for the spalling force.) Hence, qualitatively, one can represent random 
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fiber composites with high volume fraction with an equivalent composite of low fiber 
volume fraction. The following qualitative discussions on the effects of various micro- 
parameters on the behavior of a low fiber volume composite are therefore expected 
to be valid for composites in general. 

The determination of total bridging stress, C, +a,,,,, is shown schematically in Fig. 

18. The total fiber maximum strain versus crack opening, obtained by summing the 
strains due to bending and extension are plotted together with the total bridging stress 
versus crack opening curve. When the total fiber strain reaches the failure strain of 
the fiber, fiber breakage occurs and the total bridging stress drops to Lero. For 
continuous fiber composites. the fiber strain increases monotonically with crack open- 
ing and breakage always occurs. For discontinuous fibers. however. fiber pull-out 
occurs as dcbonding reaches the fiber embedded end (i.e. li,,, becomes equal to the 
shorter embedded length of the fiber). Theoretically. after fiber pull-out begins. the 
total bridging stress can still continue to rise due to the bending of fibers and may 
lead to fiber breakage after part of it has been pulled out. However. for practical 
brittle fiber brittle matrix systems. the component of fiber bridging due to bending is 
usually much less than the debonding component and fiber breakage following partial 
pull-out of inclined fibers has never been experimentally observed. Therefore. one can 
compare the shorter embedded length of the fiber I,, with the value of I,,,, at peak fiber 
strain (I,,) to obtain a criterion for fiber brcakagc or pull-out. If I,. < I,,, fiber pull-out 
will always occur and, if I,, > I,,, the fiber will always break. In the following discussions. 

Tbtal , , Max. Bridging Stress 
Reached on Fiber Breakage 

due to Debonding 

due to Bending 

j HALF CRACK OPENING 

Fiber Breakage Strain 

due to Debonding 

due to Bending 

HALF CRACK OPENING 
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the effect of varying one particular micro-parameter (with the others kept constant) 

wilt be considered. For discussion purposes, fibers that always break (withi~l the 
particular variation of the micro-parameter) are referred to as relatively long fibers 
and those that always pull-out are called relatively short fibers. Fibers that change 
from breakage to pull-out while the micro-parameter changes are referred to as 
medium length fibers. 

Results for total bridging stress have been sii~u~ated for several cases and are shown 
in Figs 19-22. In all cases, the fiber failure strain is assumed to be 1% and bridging 
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stress is normalized by the fiber modulus. Bridging stress curves are plotted up to the 
point of fiber breakage. If the fiber length is short enough so that I(, < I,,, the bridging 
stress will increase with crack opening until the whole fiber is debonded and then drop 
slowly when the fiber is pulled out. It should be noted that a higher peak value on the 
bridging stress curves implies a higher ratio of composite strength/matrix strength 
(i.e. more improvement in strength over the matrix itself) while a larger area under 
the curve implies more energy absorption and hence higher toughness. 

In Fig. 19, the effect of interfacial friction on total crack bridging stress is shown, 
For relatively short fibers, a higher interfacial friction is clearly desirable as it results 
in a higher crack bridging stress for any crack opening. For relatively long and 
medium length fibers. the choice of interfacial friction depends on whether the strength 
or toughness is to be maximized. For higher strength, a higher maximum bridging 
stress and hence a higher interfacial friction is desirable. For higher toughness, 
however, for relatively long fibers, it appears that an intcrmediatc value of interfacial 
friction should be employed. (Note that in Fig. 19, the case with intermediate inter- 
facial friction has the largest area under the curve.) For medium length fibers, a lower 
interfacial friction will change the failure mechanism from liber breakage to libcr puli- 
out and will greatly improve toughness of the composite. 

In Fig. 30, the effect oT matrix failure strain is considered. For relatively long fibers. 
a lower matrix failure strain leads to higher maximum bridging stress as well as larger 
area below the curve. For medium length fibers. a lower matrix failure strength can 
result in ;I higher maximum breaking stress as well as fiber pull-out. which greatly 
improve the composite toughness. For relatively short fibers, however, a higher matrix 
failure strain will give slightly higher bridging stresses for the same crack opening. 
While a lower matrix strain may lcad to higher toughness for relatively long and 
medium length libers, the increase in bridging stress may not be enough to compcnsatc 
for the decrease in matrix strength. As a result, the composite first cracking strength, 
which depends on both the matrix failure strength and the fiber bridging stress. may 
be decreased. For a certain fiber. an optimum value of matrix failure strain thercforc 
exists. 

In Fig. 2 I, the normalized bridging stress is shown for different fiber/matrix moduli 
ratios. In this case, we have to distinguish between the cases with fixed E,,, or fixed 
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E,. In Fig. 21, the bridging stress is normalized with fiber modulus. If the matrix 
stiffness is fixed and the fiber modulus increased, the actual maximum bridging stress 
(without being normalized) as well as the area under the curve will both increase with 
fiber modulus for all fiber lengths. For a fixed matrix, the use of a stiffer fiber is 
therefore always desirable. If the fiber modulus is fixed, a stiffer matrix (lower E,/E,,,) 

will provide higher bridging stress for relatively short fibers while a softer matrix 
(higher E,/E,,,) will result in higher maximum bridging stress and higher absorbed 
energy for relatively long and medium length fibers. However, for a fixed matrix 
failure strain, a lower matrix stiffness implies a lower failure strength of the matrix. 
Again, the improvement in crack bridging stress under such cases may not be enough 
to compensate for the weaker matrix. Therefore, for relatively long and medium 
length fibers. if the fiber modulus is fixed, the matrix modulus has to be carefully 
chosen. 

In Fig. 22, the change of bridging stress with inclination angle is considered. For a 
higher inclination angle, the maximum bridging stress decreases. The total bridging 
stress versus crack opening curve for an inclined fiber, in comparison to that of an 
aligned fiber, is qualitatively shown in Fig. 23. The maximum bridging stress, the 
crack opening before fiber breakage and the total area under the curve are all higher 
for the aligned fiber. The results imply that the total bridging stress is mainly con- 
tributed by the debonding of fibers. Bending simply enhances the occurrence of 
fiber breakage and impairs composite performance. Inclination of brittle fibers can 
therefore weaken the composite. The trend of change in bridging stress with angle 
can be explained as follows. For a certain crack opening, provided fiber breakage has 
not yet occurred, the bridging stress is lower for a higher angle of inclination. This is 
because the bridging stress for composites (with micro-properties lying within practical 
ranges) is usually dominated by the debonding component which is proportional to 
(cos 0)“. The decrease in cos 8 with inclination angle thus accounts for the decrease 
in maximum bridging stress. The crack opening at maximum bridging stress decreases 
initially with angle and then increases. This is because the maximum strain on the 
fiber due to bending is relatively low for small and large angles but is most significant 
at medium angles (see Figs 16 and 17). 

As a summary, in brittle fiber reinforced matrix composites, bridging stresses arising 
from fiber bending are usually not enough to compensate for the decrease in debonding 

Bridging 
stress 

Crack Opening 

FIG. 23. Reduction of crack bridging stresses due to fiber inclination 
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component due to fiber in~iin~~tion and fiber breakage. However. when random fiber 
composites are used due to the processing di~culties associated with producing 
aligned fiber composites (such as in parts of complex shapes or when very small 
whiskers are employed), the choice ofoptimal micro-parameters depends on the length 
of fiber employed as well as whether the strength or toughness is to be maximized. The 
micromechanical models decribed in this paper provide a quantitative means to assess 
the effect of various microscopic parameters on crack bridging stress from inclined 
fibers and forms an essential part of the ultimate goal of developing qL~~ntit~~tive 
optimization guidelines for random fiber composites. 

6. COMPARISON OF MODEL PREIXCTION WITH EXPERIMWTAL RESULTS 

To verify the model developed in this investigation, a set of experimental data on 
the maximum bridging force from inclined fibers (PIGGOTT. 1974) is compared with 
model predictions. The specimen tested by Piggott is shown in Fig. 2421. Two glass 
fiber bundles (0.76 mm diameter). at the same inclination angle but in opposite 
directions, are embedded in two blocks of a polyester resin matrix separated by a 
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FIG;. 24. (a) Cihss fiber bundle:polyrstcr spec~mcn tested by Piggott. (b) Results f’rotn the test and prediction 
from our model. 
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small gap about the size of the fiber diameter. Here, both fiber and matrix are brittle 
and so the assumptions of our model hold. For a fiber inclination II, the applied load 
P,, that causes fiber breakage corresponds to the maximum possible bridging force 
provided by a single fiber at that inclination. In the experiment, P,, is measured and 
normalized with the breaking load of an aligned fiber PO. The normalized bridging 
force P,,/Po is then plotted against the fiber inclination angle 0. Results are shown as 
squares in Fig. 24b. 

Micro-properties of the glass fiber bundle/polyester system are given in FILA et al. 
(1972). The bundle consists of 78% fibers and the bundle modulus is 55 GPa. The 
bundle strength, obtained from direct tension test, is 1.35 GPa. The fiber/matrix 
interfacial strength T. is found to be 17 MPa (average value). The properties of the 
polyester are not given. However, as typical of most polyesters, we take a modulus 
of 2 GPa and a failure strain of 2%. Since Et/E,,, is much greater than 6 in this case. 
the fiber can be treated as rigid. Foundation properties for El/E,,, = 6 are used. 

Curves for P,,/Po are generated with the above values for the composite micro- 
properties. For each inclination angle, the maximum bridging stress u,, is obtained 
and normalized with the fiber strength cro (note, PO/P,, = o,,/oo). Three separate 
curves are generated. The first two curves (marked 1 and 2 in Fig. 24b) are generated 
for the case neglecting the presence of a gap between the two blocks (curve 1) and 
the case considering its presence (curve 2). It is noted that the gap does not have a 
significant effect on the bridging stress as the two curves are almost indistinguishable. 
The curves, though always underestimating experimental results, generally lie within 
10 to 15% of experimental values. Since the curves are obtained directly from mea- 
sured properties of fiber and interface and reasonable values for matrix properties 
without using any empirically fitted parameters, the close agreement is very encour- 
aging. If one takes into consideration the statistical nature of fiber bundle failure and 
assumes a higher failure strength in bending than in direct tension (due to the smaller 
volume of material under high stress), less strength decrease with angle 0 and even 
closer agreement with experimental results is expected. Curve 3 is obtained by 
assuming that the fiber strength increases by 10% for all inclination angles. Excellent 
agreement can then be obtained. The close agreement between experimental results 
and theoretical predictions provides support to the validity of the micromechanical 
model developed in this work. 

7. CONCLUSION 

In this paper, a new micromechanical model for the determination of crack bridging 
stress in random brittle fiber reinforced brittle matrix composites has been developed. 
Prediction of maximum bridging stress for inclined fibers based on the present model 
is shown to be in good agreement with experimental results. The present micro- 
mechanical model provides a means to quantitiatively investigate the effect of various 
microscopic parameters on the crack bridging stress from inclined fibers and con- 
tributes to the ultimate goal of developing a general set of quantitative optimization 
guidelines for random fiber reinforced brittle matrix composites. 
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APPENDIX: DETERMINATION OF H, FOR FINITE ELEMENT MESH 

To determine If ,, we have to compare the displacement below an infinite load strip to that 
below a finite load strip. This appendix covers the mathematical details of this procedure. 

Detcrminution of’ displucwnrnt hrlow an ir$inifr load strip 

A section of an infinite load strip is shown in Fig. Al with the coordinate axes and the 
geometric dimensions required in the following calculations. 

From POULOS and DAVIS (1974), the stresses at a point a distance z below the center line of 
the load strip are given by 

0; = [p/n][x+sin ~(1, (A. 1) 

0, = [P/7c][x-sin ~(1. (A.?) 

Under plane strain conditions, 

fJ,. = I@, +rr,] = 2\‘[p@]s(. (A.3) 

where r, defined in Fig. A 1, is given by 

tan x = hi:. (A.4) 
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Displacement u z = 0 

FIN. Al. Diagram for the calculation of displacement below an infinite load strip 

Assuming the ;-displacement u, equals zero at a point H, below the center line of the strip, 
the displacement p_ right below the center line is given by 

p;= ’ 
s 

,:’ [a;/E,,,-vrr,/E,,,-v’(rr,+a,);E,,,]d;. (A.3 

Substituting (A.l))(A.4) into (A.5). we have 

P: = ]/7(2h)(f -~‘)ILI~(H,IbL 

where 

(A.@ 

F(H,/h) = (l/rc)[[(l -v-2v’)/(l -v2)](H,/h) tan ’ (h/H,)+ln [I +(H,/h)‘]]. 

Detmninution of size of’,finite loud strip hrbcv fiber 

Let 2h be the width of the strip, which is equal to the fiber diameter 2r. The length of the 
strip, L, is chosen so that the reaction force from the matrix on the fiber at a distance L from 
the crack face is less than l/200 times the maximum reaction force (which is the reaction force 
at the fiber exist point). 

To estimate L, we have to know /3 and k,,. k,,, is dependent on L and so we have to choose 
L first and then iterate to see if the chosen L is good. 

From POULOS and DAVIS (1974), the average displacement below a finite load strip is given 

by 

Pz = ](I _l’“)/E,,,l(P)(2h)(,~,(L/26). (A.7) 

By definition, k,,,p, = force/unit length of strip = (p)(2h) 

k,, = E,J[(t -~%,(L/2@1. 

For L/(2h) = 9, frzr[L/(2h)] = 2.182 (from Poulos and Davis). We assume E,,, = O.lE, to 
obtain a lower bound for /I. Also, $1 is taken to be 0.25. 

[j = [k,J(4E,I)] ‘.‘I 

= [KAnE,(I -v')l,,,(Ll(2h))ll""(llr) 
= 0.3532/r. (A.@ 

For a beam bent at one end, the reaction force F(x) changes with the distance along the beam, 
x, according to 
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Note that 
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F(.u) = F(O)e “’ [cos /I.y-[{I/,/( 1 +/i/,)]sin p_\-1. 

Therefore. at .c = I,. 

lcos /I.\-- [p/,,:( I +/j/,)1 sin /j.\-1 < 2. 

IF(.Y),‘F(O)I < 2e ‘I’ = 2e ’ ‘. 

Since L = 1% and h = I’. 

F(.\-)/F(O) < 3.468 x IO ’ < I~200 for I>/(2h) = 9. 

L = 18R. h = r is a good choice for the strip size. 

(A.91 

The displacement below the center point of the finite loaded strip is given in Poulos and 
Davis 21s 

[L:‘(2h)] = 9, lC,[/,:(2h)] = 2.477. 

For the displaccmcnt under the center line of the infinite strip to be of the same value. WC 
required. by comparing (A.6) and (A.10). that 

F(/l,//I) = lo[1,.‘(2h)]. 

For H,;/J = 34. b-([[,,‘/I) = 2.457, which is very close to 2.477. 
Thcrcforc, II, is taken to bc 34h (or 34 timcs the tiber radius). 


