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Abstract-Recent developments in the theories of the dynamics of nonlinear systems and bifurcations 
provide a means for studying nonlinear oscillations and stability problems. The analysis methods require 
that equations of motion for the system of interest be derived in a certain form. Such derivation can involve 
substantial algebraic manipulation. However, by using recently developed computer algebra software, the 
entire derivation can be performed automatically by a computer. The level of automation associated with 
the analysis makes it practical for general use by engineers. An application from vehicle system dynamics 
is given as an example. 

1. INTRODIJCITON 

Many engineering problems require both symbolic 

and numerical analysis to gain insight into the behav- 
ior of some system of interest. That is, a specific 
system is analyzed symbolically, and as a result of 
the analysis, an algorithm is selected to perform 
an appropriate numerical procedure. Automated 
numerical analyses are routinely applied by computer 
to obtain quantitative answers. In contrast, symbolic 
analysis are commonly still performed with pencil, 
paper, and the knowledge of algebra and calculus. 
With these tools, a symbolic analysis involving more 
than a few hundred steps becomes a large and tedious 
undertaking that requires considerable motivation 
and time on the part of a human analyst. 

This paper describes a type of study in which 
substantial symbolic analysis is necessary. Specifi- 
cally, we will describe how new computer methods 
are used to perform the extensive symbolic manipula- 
tions needed to apply bifurcation theory for investi- 
gating the stability of tractor-semitrailers and 
combination vehicles involving multiple trailers. Be- 
cause the derivation of the required equations can 
involve thousands of steps, the methodology requires 
that the symbolic manipulations be performed auto- 
matically by computer. 

The study is motivated by the observation that 
ground vehicles can experience a flutter instability at 
high forward speeds, whether they are heavy-duty 
truck combinations [l] or railway vehicles [2]. Several 
new developments in nonlinear dynamics theory [3-51 
and in computer algebra [6] provide tools that can 
now be applied by the vehicle engineer to gain more 
insight into this problem. 

When certain combination vehicles are driven in 
a straightline motion at high forward speeds, self- 

excited yaw oscillations can be initiated. The steady- 
state straightline motion can lose its stability due to 
a bifurcation of a limit cycle from the original 
equilibrium position. The stability boundary can be 
readily calculated with linear methods, but the analy- 
sis of the behavior at the limit requires nonlinear 
methods. A critical question is whether the bifurcat- 
ing periodic motion is stable or unstable. For the case 
where the limit cycle branch shows a limit point, a 
global analysis becomes necessary. The application of 
the methods of bifurcation theory allows a nonlinear 
stability analysis to be performed in a systematic 
manner. Detailed numerical and experimental results 
are presented in the following papers: [ 1,7,8]. 
Throughout this paper we concentrate on the compu- 
tational aspects. 

2. MECHANICAL MODEL 

For the truck combinations of interest, a heavy- 
duty tractor is towing one or more trailers. (See for 
example the mechanical model of a twin-trailer truck 
in Fig. 1.) To study the yaw stability of such articu- 
lated vehicles on a horizontal flat road, a simplified 
rigid body model can be used. This model neglects the 
roll, pitch and bounce motions of the sprung masses. 
We always consider symmetric vehicle combinations. 
The tractor is assumed to move forward with a 
constant forward speed, V. The forward speed is the 
main parameter in the system. Additional parameters 
are the loading conditions of the trailers, which are 
expressed by the distances d, and d2, respectively. The 
investigations are done for open-loop systems with a 
fixed steering wheel (6 3 0). 

To calculate the lateral tire forces, &, we use 
the static tire vertical loads, Qi, and apply an ad- 
hesion/sliding approach proposed by Schallamach 
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Fig. 1. Mechanical model of a combination vehicle with five 
degrees of freedom (u, w, 4,) &, 4,). 

and Turner [9] that accounts for tire slip angle, ~1, and 
vertical tire load, Q, at each wheel 

s=“e 2K tan u 

x 1 + K2(tan a)* 

+ arcsin 
2K tan u 

1 + K2(tan LX)~ 1 ’ (1) 
where K = (nC,/4pQ). 

The cornering stiffness, C,, and the friction level, 
g, are tire-parameters that are set to match exper- 
imental data. The dependence of the cornering stiff- 
ness on the vertical tire load is expressed by an 
empirical formula. The friction level is assumed to 
decrease linearly as the vertical force increases. The 
slip angles are obtained from the kinematics of the 
system. For the trailing units they are highly nonlin- 
ear expressions, which involve many of the state 
variables. 

3. NONLINEAR EQUATIONS OF MOTION FOR 
MECHANICAL SYSTEMS 

To investigate the stability behavior for the vehicle 
systems of interest, we need equations of motion in 
the form: 

i=f(y,1)=A(I.)+B(1)a3(y) 

+ W)a5(y) + Q(luY), (2) 

where y is the vector of state variables defined locally 
with respect to an equilibrium position, and 1 is the 
vector of parameters. The vectors a%) contain only 
polynomials of order i in the state variables, e.g. 
[a’b)]‘= (Yl *yl *yl,yl *yl *y2,yl *yl* 
~3, . . .). Due to the symmetry of the vehicle combi- 
nations, only third and fifth order terms appear as 
nonlinearities. Equation (2) can be derived by power 
series expansions in terms of the local state variables 
in respect to the steady-state straightline motion. To 
perform a local stability analysis, the expansion must 
include terms up to the third power. For a global 
stability investigation, terms up to the fifth power are 
needed. 

For very simple vehicle models, eqn (2) can be 
derived manually. However, a considerable amount 
of algebraic manipulation is needed even for models 
with only a few degrees of freedom. Alternatively, a 
symbolic multibody program can be used to aid in the 
analysis. 

There is a large body of literature covering 
systematic analysis methods for mechanical systems 
composed of rigid bodies [lo-151. In most of these 
methods, called ‘multibody formalisms’, the 
equations of motion are essentially defined for once 
and for all in generic form. The analysis for a specific 
multibody system consists of plugging in dimensions 
and inertia parameters in the appropriate spots in the 
equations. Most of the formalisms that have been 
developed could conceivably be implemented either 
numerically or symbolically. 

For the analyses reported in this paper, a software 
package called AUTOsIM was used to automatically 
generate symbolic equations in the exact form of eqn 
(2). AUTOSIM was developed to form equations of 
motion for multibody systems and generate simu- 
lation codes that numerically solve the equations 
using numerical simulation algorithms [6]. It also 
includes some techniques that are well suited for 
obtaining the power series expansion of eqn (2). 

To start a multibody analysis with AUTOSIM, 
we first have to describe the mechanical system in 
AUTOSIM notation. For example, Fig. 2 shows a 
sketch that describes a model of a tractor-semitrailer 
vehicle. The figure shows two rigid bodies, A and B, 
that move in a plane parallel to the road. Each body 
has its own coordinate system, whose origin is a point 
named by appending ‘0’ to the symbol of the body. 
Also, each body has a point for its center of mass. For 
body A, the origin and center of mass are the same 
point. For body B, the origin is the hitch location, 
which differs from the center of mass. Axes of the 
coordinate system of A are in directions defined by 
unit-vectors aI, a2, and a3. The third of these, a3, is 
defined as a, x a2, and is parallel to the vertical 
direction fixed in the inertial reference, n3. A similar 
convention is used for body B. 

The bodies are acted on by six forces due to 
tire-road interactions: S,, . . . , S’,. The forces are 
applied at points labelled Pl, . . . , P6, as shown in the 

Fig. 2. Rigid-body representation of a tractor-semitrailer. 
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figure. The lateral tire forces are defined by the 
mentioned adhesion/sliding model [eqn (l)]. 

The AUTOSIM analysis then involves six steps: (1) 
describe the system, (2) constraint analysis, (3) kin- 
ematics analysis, (4) dynamics analysis, (5) uncouple 
the equations of motion, and (6) write the equations 
of motion. 

The six steps performed by AUTOSIM to obtain 
the equations of motion have been described in detail 
elsewhere [6] and are only viewed briefly below in the 
context of the tractor-semitrailer vehicle model. Note 
that the multibody analysis is performed symbolically 
only once, using symbols for vehicte and tire para- 
meters. Thus, the resulting equations can be used for 
any set of parameter values. 

Step 1. Describe the system 

In this step, an input file is prepared to communi- 
cate the model to AUTOSIM using commands such 
as ‘add-body*, ‘add-point’, ‘add-constraint’, and 
‘add-line-force’. Also, global variables are set to 
enable and disable options involving the symbolic 
manipulation. The entire description for the trac- 
tor-semitrailer model is listed in the appendix. 
Bodies, points, and directions appearing in the 
appendix are shown in Fig. 2. 

An important feature of AUTOSIM is that it is 
easily extended. Just as AUTOSIM was written in 
Common Lisp [16] to extend Lisp, additional soft- 
ware can be written in Lisp to extend AUTOSIM. A 
case in point is a new macro called ‘add-tire’ that was 
added for this analysis to simplify the vehicle descrip 
tion. Given a point P as an argument, the macro 
develops a symbofic expression for tan a, where a is 
the angle between the forward direction of the body 
containing P and the velocity of P. The expression for 
tan a is expanded and terms equal or above the 
specified threshold are dropped. Equation (1) is then 
applied to develop an expression for the magnitude of 
the lateral tire force. The force is applied to the body 
containing P via the AUTOSIM function ‘add-line- 
force*‘. 

As each body is entered (via the ‘add-body’ com- 
mand), generalized coordinates and generalized 
speeds are introduced automatically to account for 
degrees of freedom of the joint connecting the 
new body to its parent. (The parent is either another 
body or the inertial reference.) A set of three unit-vec- 
tors is introduced to define directions of the axes of 
a coordinate system fixed in the new body. A direc- 
tion cosine matrix is formed to relate the unit-vector 
fixed in the new body to the unit-vectors of the 
parent. 

The example system has four degrees of freedom 
after the two ‘add-body’ commands are processed. 
Each degree of freedom is characterized by a general- 
ized speed. The four speeds are: forward and side 
velocity of the tractor mass center, yaw rate of the 
tractor, and the rate of the articulation angle between 
tractor and trailer. 

Step 2. Constraint analysis 

In addition to constraints defined by the joints 
connecting bodies to their parents, the multibody 
system might be subject to additional constraints. In 
the case of the example tractor-semitrailer system, 
there is one such constraint: the forward speed of the 
tractor is constant. This information was provided 
with the ‘add~onstraint’ command, that states that 
the forward speed minus a constant is equal to zero. 
Each constraint equation is used to symbolically 
eliminate one state variable, selected automatically 
based on criteria for minimizing the likelihood of 
a singularity. Thus, the example system has three 
degrees of freedom after the constraint is added. (The 
forward speed is eliminated as a state variable and 
will be the main parameter in the bifurcation analy- 
sis.) 

Most of the constraint anaiysis is actually per- 
formed when the ‘add-constraint’ command is pro- 
cessed. A few remaining steps are performed when the 
‘dynamics’ command is processed, to define co- 
efficients used in the dynamics analysis. 

Step 3. Kinematics analysis 

A set of differential equations is formed to define 
derivatives of coordinates in terms of speeds 

4 = &oh NY (3) 

where q is a one-dimensional array of generalized 
coordinates, 4 is an array of their derivatives, and u 
is an array of generalized speeds. These equations are 
based soiely on kinematical considerations, and are 
called kinematical equations. In the example, four 
equations are formed to define the derivatives of the 
generalized coordinates in terms of the three indepen- 
dent generalized speeds. 

Step 4. Dynamics analysis 

A set of implicit differential equations is obtained 
using a rule-based method derived from Kane’s 
equations [17]. These equations are represented in 
matrix form as follows: 

Wq)u = f’tq, u), (4) 

where M is the mass matrix and P is a force array. 
They are called the dynamical equations, and satisfy 
the Newton and Euler equations for a dynamical 
mechanical system. The dynamical equations include 
references to the articulation angle, q4, but not any of 
the other three generalized coordinates. For this 
reason, the three kinematical equations for the other 
coordinates are not needed m the stability analysis. 

Step 5. Uncouple the equations 

The dynami~l equations are linear with respect to 
u and can therefore be uncoupled sym~lically using 
linear algebra. In AUTOSIM, Grout’s algorithm is 
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used to perform lower-upper decomposition (LUD) boundary is reached if one or more eigenvalues 
of the mass matrix. Fo~ard-b~kward subs~tution crosses the irna~na~ axis. One purely imaginary pair 
is then used to obtain the desired form of the of eigenvalues at the critical speed indicates a flutter 
equations instability caused by a Hopf bifurcation. 

iI = M(q)- V(q, u) = P(q, u). (5) 

In normal use of AUTOSIM, the array f’ is not 
obtained. Instead, a recursive set of equations is 
derived in which expressions for derivatives of gener- 
alized speeds can include other derivatives that have 
already been defined. The recursion results in simpler 
equations that lead to better computational efficiency 
in a simulation code. However, for nonlinear stability 
analyses, a nonrecursive form is needed. It is obtained 
by expanding any derivatives appearing on the right- 
hand side of the equations, to define elements in f’ 
that are functions only of q and u. (That is, f’ is not 
a function of ii). 

Step 6. Print equations 

A linear transformation of variables y-2 of the 
form y = Tz ~ansfo~s the linear part of eqn (2) into 
diagonal form. The matrix T is given by the eigen- 
vectors of A(1). At the critical equilibrium point (V,) 
we can reduce the originally high-dimensional system 
to a low dimensional bifurcation system by using 
center ~~~i~ld theory [4]. For the cases considered, 
the bifurcation system is two-dimensional, because at 
the critical speed, V,, one pair of complex eigenvalues 
crosses the imaginery axis. To transform the bi- 
furcation equation to its simplest form, we apply 
the averaging principle up to the fifth order 
terms [18, 191. For generic cases of loading con- 
ditions, we end up with the normal form of a Hopf 
bifurcation. Nigher than third order terms can then 
be neglected. In polar coordinates, the equation for 
the averaged amplitude becomes: 

The final step is to print the equations. Depending 
on which simpIification options were in use when the 
equations were derived, some terms may have been 
derived which are not required to compute the 
derivates in eqn (3) or (5). These equations are 
removed. In normal use, the equations are printed in 
the middle of a self-contained computer program that 
simulates the system of interest by numerically inte- 
grating the equations of motion. However, it is also 
possible to print just the equations and use them for 
other purposes, as was done for the analyses de- 
scribed in this paper. 

i = v,1 + Kg’ + O(l#q5). (7) 

Equation (7) has already been unfolded with the 
mathematical unfolding parameter 

The kinematical and dynamical equations are com- 
bined into the form of eqn (2) by defining 

where o, is the real part of the critical eigenvalues, 
and I ,=v-v,. 

For a twin-trailer truck, we can adjust the loading 

y’= [q%‘I, F = [grPl. (6) 

4. THE METHOD OF THE NONLINRAR STABILITY 
ANALYSIS 

condition of the second trailer to a point where a 
subcritical Hopf bif~ation becomes supercritical. 
This enables us to perform a global stability analysis. 
Such analysis includes the fifth order terms. The 
unfolding of the bifurcation equation for the non- 
generic case K, = 0 leads to the normal form of a 
generalized Hopf bifurcation 

The straightline stability of combination vehicles is 
examined using the methods of bifurcation theory, as 
it is described by Stribersky et al. [S]. These methods 
require that the equations of motion for the vehicle 
system be expressed as sums of linear terms and 
nonlinear terms in the form of eqn (2), e.g. for a 
tan-trailer truck, the vector y of state variables is 

defined as: ~r=(55~, dt2, &, v, w, 6, (6rr 6,). The 
parameter vector is defined as 1’ = (V, d, , d2). The 
straightline motion y0 as 0, which gives 0 = f(0, d), is 
an ~~lib~~ position of the system for all values 
of I. 

f = v,r + v2r3 + Kg5 + O(lrl’), (9) 

where 

Figure 6 shows the linear relation of the unfolding 
parameters (directions sl, Q) to the physical para- 
meters (A, = V - V,, A2 = d2 - d&. 

The stability of the equilibrium y0 is guaranteed by 
a theorem of Liapunov, if a11 eigenvalues of the 
matrix A(l) of eqn (2) have negative real parts. 
Starting with a stable straightline motion at a low 
driving speed, V, we increase the driving speed at 
fixed loading conditions quasi-statically and calculate 
the eigenvalues of the matrix A(R). The stability 

5. SYMBOLIC COMPUTATION MRTHODS 

A number of symbol manipulation torques are 
employed in AUTOSIM to produce equations of 
motion that are very efficient for computing deriva- 
tives of state variables. Four of these techniques are: 
(I) products of expressions are left in factored form, 
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Fig. 3. Stability boundary in the paramet:r space. 

(2) intermediate variables are introduced for ex- 
pressions that appear more than once in the 
equations, (3) constant expressions are identified and 
‘pre-computed’, and (4) knowledge that some vari- 
ables and constants are ‘small’ is used to drop 
higher-order terms and replace functions with trun- 
cated power series. The first two techniques are not 
used when coefficients in front of the various powers 
of the state variables are needed. To obtain these 
coefficients, products of expressions are always ex- 
panded, and intermediate variables are not intro- 
duced for expressions unless they are constant. 

The symbolic equations needed for the bifurcation 
analysis are rather complicated. For example, the 
three dynamical equations for the simple three DOF 
tractor-semitrailer model involve over 1000 combi- 
nations of constants when the power series are ex- 
panded to include third order terms. To given an idea 
of where the complexity arises, consider the ex- 
pression developed for the side force for one of the 
rear tires of the tractor-semitrailer vehicle 

se = - (P239 4: + PI73 94 + PI77 94 u2 + PlW 4 

+P299%u:+P298u:+P,78~2+P236~24: 

- P233 % u2 ul - PI89 uI - P297 ul d 

-P230”:-P232u2u:-Pp190u2uI 

- P235 + 4: + P234 94 u: + P294 u3 d 

-P229”3u:+P212u3+P177~4u3 

+ P2l3 d - P225 % ul u3 - P296 u1 d 

+ P224 u3 4: + P293 44 u2 u3 + P291 u2 d 

+P216”2u3-P19Qu1u3+P290u: 

-P292u2hu3+P29594&. (11) 

In eqn (ll), q4 is the articulation angle between 
tractor and semitrailer, u, , u2, and u3 are generalized 
speeds, and the various p symbols (PzS9, pi7), etc.) are 
symbols introduced to replace expressions involving 
only constants. 

When building these equations, it is necessary to 
keep track of many terms that do not appear in the 
final form. The ‘bookkeeping’ of intermediate terms 
places high demands on computer memory. Further, 
the many comparisons and sorting operations needed 
to manipulate and combine complex expressions re- 
quire significant computer time. The overhead associ- 

ated with intermediate terms has long been a practical 
problem associated with symbolic computation that 
is often called ‘equation swell’. To avoid equation 
swell, it is recommended that expressions be sim- 
plified as soon as possible, both by (1) dropping 
higher-order terms, and (2) combining remaining 
terms and replacing constant expressions with new 
symbols. Note that in eqn (1 1), all terms are of order 
three or less, and all coefficients not involving the 
state variables have been absorbed into coefficients 
that were introduced automatically. 

The design of AUTOSIM is such that all symbolic 
expressions have about a dozen associated attributes 
in addition to the purely algebraic representation. 
These attributes are used to support the various 
symbolic algebra and calculus operations. Two 
attributes that are of particular interest here are: 
(1) identification as to whether the expression 
is a constant or a variable, and (2) a ‘small-order’ 
value. The ‘constant or variable’ information is 
used to factor out coefficients that are constants, 
to produce expressions such as the right-hand side 
of eqn (11). 

Two ‘rules’ are programmed for dropping higher- 
order terms. In both cases, an expression is dropped 
when a comparison of its small-order value with some 
threshold indicates that it is negligible. The standard 
rule is that high-order terms are dropped when they 
are added to a term and the difference between the 
small-order values of the terms is greater than or 
equal to the threshold. A simpler rule, used for 
the analyses described in this paper, is that high- 
order terms are not even created if the small-order 
value would be greater than or equal to the threshold. 
(The threshold is set by the analyst. For example, if 
third order terms are to be kept, the threshold is 
four.) 

Given that the objective of the symbolic analysis is 
eqn (2) with the right-hand side expanded in a power 
series in terms of the local state variables, the general 
strategy is to perform power series expansions at the 
first opportunity. For trigonometric functions, the 
power series are applied to the argument if it has a 
small-order value greater than zero. (It turns out that 
for the vehicle systems of interest, the arguments to 
trigonometric functions are always expressions whose 
small-order value is at least one.) For the division 
operation, the expansion used is 

1 
-=1+x+x2+x3+..., 
l-x 

(12) 

bh#,rad 

--- 0.05 

--r 
-2 -1 
-A- 

/ 0 -i- -2’” 

Al, mls 
Fig. 4. Amplitude branch of an unstable limit cycle 

(A, = V - V,, d, = 1.104 m, - stable, -- unstable). 
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0 0 

-0.1 -0.1 
Time,s Cl 

a b 3o ’ c 3o 

Fig. 5. Simulation results of transient vehicle motions at the same constant forward speed (A, = -2 m/s), 

where 1x1~ I. In the general case of t/y, where y is 
a sum of terms, it is necessary to separate y into two 
parts: a part with the same small-order value as y, and 
a part with higher order (i.e. smaller) terms. For 
example, consider y = D + b, where Q represents the 
sum of terms having the same small-order value as y, 
and b represents the sum of terms whose small-order 
values are higher. The expression l/y is expanded as 

1 b b2 b3 
=---+---+.... 

a2 a3 a4 (13) 
a 

One way to take a sum to an integer power is to 
apply all multipli~tions and then drop terms whose 
small-order values are equal or above the threshold. 
This approach is not recommended, because it accen- 
tuates ‘equation swell’. For example, in an analysis 
with fifth order terms, a polynomial taken to the fifth 
power will have terms up to order 25. E&cause all 
terms from order 6 to 25 will eventually be thrown 
out, any effort spent manipulating them is wasted. 

A better method for raising a sum to an integer 
power is to drop terms as each multiplication is 
performed. An even more efficient method, which is 
the one used in AUTOSIM, is to use a solution that 
has already been worked out for each integer power. 
For example, consider an expression of the form: 
x = (a + b)2. Rather than going through the inter- 
mediate step ‘x = u2 + ab + ab + b*’ and then re- 
ducing it to ‘x = a* + 2ab + b2’, the expressions 
represented by a and b can be substituted directly into 
the solution. For powers higher than two, and a large 
number of terms in the sum, considerable savings in 
time and computer memory are achieved. However, 

--- Supercriticcll 
- Subcritical 

Fig. 6. Stability ,boundary in the parameter space 
(V+ = V/J@), df = d,/s, d, = 1.104 m). 

it is necessary to have worked out and programmed 
the form of the solution beforehand. In AUTOSIM, 
solutions have been programmed for powers up to 
five. (Higher powers are decomposed into powers of 
five and less.) 

The strategy of expanding expressions as they are 
encountered is not always best. Sometimes, signifi- 
cant simplifications can be made if nonlinear ex- 
pressions are kept in their original form. This is 
generally the case when deriving expressions for 
angles, because the derivation requires normalizing 
vectors. For example, the normalized velocity vector 
for the left-front wheel location (point Pl), is 

vpl tv +h fi2)aj + G4 + cou2)a2 
9 = Iv”l= J[(V +p, ?I*)* + fu* + co u*)2] ’ 04) 

where a, and a2 are unit-vectors fixed in body A (the 
tractor), and vpl is the velocity of the point P 1. This 
term is used to derive a slip angle by taking the ratio 
of the dot-product of 9 and a2 and 9 and a, 

dl, = tan-‘(9 * a,/9. a,) 

= tan-‘(co u2 + uI )I( V + pI u2). (15) 

-STABLE, --UNSTABLE 

Fig. 7. Global limit cycle branches at different loading 
conditions of the second trailer (A, = V - V,, A$ = 

d: id&,; - stable, - - unstable). 
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In the tire model of eqn (l), only the tangent of a 

appears. Thus, the expression in eqn (15) is simplified 
because it is defined in terms of the inverse tangent 
function. 

The point being made here is that when expressions 
are formed for the tangents of the slip angles, the 
power-series expansions are not used at each step of 
the way. The full, nonlinear expressions are derived 
to exploit potential symbolic simplifications. Once the 
tangent function is obtained, the expression is ex- 
panded into a power series. For example, eqn (15) 
leads to the expansion 

tan a, = c, u,/V - cop, ut/V2 + c,pi u:/V’ 

+p:u,u:/V’-p,u,u,/V2+1(,/V. (16) 

6. NUMERICAL RESULTS 

6.1. Tractor-semitrailer 

Fortran source code is generated automatically to 
compute all of the coefficients implied by eqn (2) up 
to the third order. The stability analysis is then 
performed numerically by a program that includes 
that Fortran code. Depending on the loading con- 
dition, the stability boundary for a tractor- 
semitrailer is shown in Fig. 3. At the critical speed, 
V,, we always found an unstable limit cycle bifurcat- 
ing from the steady-state straightline motion. For a 
certain loading condition the amplitude of the un- 
stable limit cycle calculated from eqn (7) with i = 0 
is shown in Fig. 4. The limit cycle bounds the domain 
of attraction of the stable straightline motion. 
Figure 5 shows results from computer simulations 
following the bifurcation analysis. For the simu- 
lations we have used the full, nonlinear simulation 
code generated by AUTOSIM. The results are in 
agreement with the results obtained from the bifur- 
cation analysis. Due to a subcritical Hopf bifurcation, 
a nonlinear unstable vehicle behavior can occur at 
speeds lower than the critical speed, caused by a 
disturbance. (See Fig. 5, case c.) 

6.2. Global stability investigation of a twin-trailer 

truck 

Using AUTOSIM, the coefficients implied by eqn 
(2) were derived for the twin-trailer vehicle shown in 
Fig. 1. To perform a global stability analysis, terms 
up to the fifth order were kept. The equations for this 
system cover over 150 pages when written out. Thus, 
computer algebra was essential in the global analysis 
of the straightline stability of this vehicle system. 

For the loading conditions considered, we found 
that the loading condition of the second trailer does 
not have a strong influence on that stability bound- 
ary, which also was found for the vehicle combi- 
nation without second trailer, (see Fig. 3). Figure 6 
shows the weak dependence of the critical speed on 
the distance from the mass center of the second 

semitrailer to its axle, d2 (see Fig. 1). However, 
smaller values of d2 can indeed lead to a completely 
different situation [l]. 

For the tractor-semitrailer, only a subcritical bifur- 
cation behavior has been found. However, for the 
twin-trailer vehicle, the bifurcation behavior can 
change continuously, from subcritical to supercriti- 
cal, as a function of d2. Accordingly, we can adjust 
this parameter to the nongeneric point, where the 
subcritical Hopfbifurcation becomes supercritical. In 
Fig. 6 the directions (6, , c2) in the parameter space for 
the unfolding of the nongenetic case are shown. From 
the unfolded eqn (9) with i = 0 we are now able to 
calculate the global amplitude branches of the limit 
cycles at different loading conditions of the second 
trailer. 

Figure 7 shows the calculated amplitudes of the 
articulation angle, &, between the center lines of the 
lead unit and the second semitrailer. We see that, at 
certain loading conditions, a stable limit cycle motion 
of the twin-trailer truck is possible beyond the critical 
speed, V,, up to a nonlinear speed, V,. The unstable 
limit cycle branch bounds the attraction domain of 
the stable steady-state straightline motion, or of the 
stable periodical motion, respectively. 
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APPENDIX 

I*.. Form equations of motion for tractor-semitrailer with the , f. r 

me** following AUTOSIM inputs. ,r,, The inputs follow the syntax of LISP. 

... reset AUTQSIM and set options for expanding terms, dropping I,, 

... terms of 4th order and higher, and disable the introduction ,,I 
;;: of intermediate variables 
(reset) (mks) 
(setf *expand* t *no-zees+ t *anton-simplify* t 

*expand-pcs* nil *small-order* 4) 
;;I define the two rigid bodies: A and B 
(add-body a rname 'tractor' :translate (1 2) 
:parent-rotation-axis 3 :small-angles t) 

(add-body b :name 'semi-trailer' :parent a :small-angle.9 t 
:jofnt-coordinates (-LO 0 0) :cm-coordinates (-cl 0 0) 
:parent-rotation-axis 3) 

-es define six points for wheel locations ,I, 
(add-point Pl :body a :coordinates (CO l -ss/2" 0)) 
(add-point P2 :body a :coordfnates (CO 'ss/2' 0)) 
(add-point P3 :body a :coordinates f-c2 '-ss/2' 0)) 
(add-noint P4 :bodv a :coordinates f-c2 'ss/2" 0)) 
(add-point P5 :body b :coordinates (-c3 '-ss/2' 0)) 
(add-point P6 :body b :coordinates (-c3 'ss/2" 0)) 

. .. define forward speed (dot((al1, vel(a0))) to be constant: V ,,, 
(add-constraint !"dot([all. vel(a0)) - V.1 

(small (u 1)) ; define lateral velocity as 'small" 

:;; add tires. The ADD-TIRE macro defines the slip angles. adds 
+** forces,outputs, I,? etc., using Schallamach h Turner model. 
. ..* P t,,, = symbol for point at which tire is located 
i::; mu = symbol for friction level 
.... q ,,#I = symbol for vertical load 
i::i k = symbol for cornering value, K 
(add-tire 1 Pl mu1 ql kl (all) (add-tire 2 P2 mu1 ql kl tall) 
(add-tire 3 P3 mu3 q3 k3 [all) (add-tire 4 P4 mu3 q3 k3 [all) 
(add-tire 5 P5 mu5 q5 k5 [bill (add-tire 6 P6 mu5 q5 k5 [bll) 

;;; derive equations of motion, using non-recursive solution 
(dynamics t) 


