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Abstract-The gradual transition seen in polymer crystallization is modeled. A constitutive equation 
is developed to follow the mechanical behavior of a crystallizing polymer before, during, and after the 
completion of crystallization. The post-crystallization response of the material is studied and shown to 
be “elastic”. The symmetries of the post-crystallization response are defined and calculated for 
crystallization under several deformation histories. 

1. INTRODUCTION 

Phase transitions, such as crystallization, are gradual and continuous in most polymers [1,2]. 
This paper is concerned with modeling these gradual transitions. In particular, we will develop 
a constitutive equation which can be used to follow the mechanical behavior during and after 

the completion of crystallization. 
It is important to note that time, in addition to temperature, strain and preconditioning, 

influences the speed of transformation and the mechanical properties after the completion of 
the transition [1,3]. For example, the rate of c~stallization is, in general, increased by 
increasing strain [l]. Also, the mechanical properties of the crystallized material, such as 
stiffness and strength of anisotropy, depend on the type of strain imposed in the crystallization 

process [4,5]. 
Since the conditions of crystallization (i.e. time, strain and temperature) strongly influence 

the mechanical response of the material at each stage of the transition, the constitutive 
equation should also reflect this dependence. In this paper we present an isothermal model 

with the following features: 
(1) The model can follow the mechanical response of a material through the three stages 

of its transition. These three stages are: 
(a) the response of the amorphous material before the crystallization process starts; 
(b) the response during the tr~sition from the amorphous to the amorphous- 

crystalline state; 
(c) the response after the crystallization stops, the post-crystallization response. 

(2) The model does not assume the form of the post-crystallization response. The 
characteristics of this response follow as a consequence of the specific conditions of 
crystallization (i.e. defo~ation history during crystall~ation), and the ma~ematical 
structure of the model. As a result, the model can be used to calculate process induced 
symmetries and the final mechanical properties. 

(3) The model is three dimensional and fully nonlinear, both materially and geometrically. 
Preliminary definitions and basic assumptions as to how the phase transition influences the 

mechanical response are presented in Section 2. Sections 3 and 4 are devoted to imposing the 
restrictions of frame-indifference and material symmetry. 

The constitutive equation for an initially isotropic material is developed in Section 5. 
Sections 6, 7 and 8 are devoted to studying the post-crystallization response of an initially 
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isotropic material. The post-crystallization response is defined in Section 6. Section 7 contains a 
study of the material symmetries of the post-crystallization response for crystallization under 
several deformation histories. These results are independent of the change in material 
parameters in the constitutive equation. Section 8 contains results for a specific choice of 
material parameters. 

2. CONSTITUTIVE ASSUMPTIONS 

In this section we formulate a constitutive equation which can represent the mechanical 
response of a material throughout the various stages of the crystallization process. These stages 
are (a) the response of the amorphous material before the crystallization process starts, (b) the 
response during the transition from the amorphous to the amorphous-crystalline state, and (c) 
the response after the crystallization stops. 

On a microscopic level, crystallization is the process which takes a material’s unorganized 
amorphous structure into a well organized crystal structure. In many materials, like metals, this 
transformation is very abrupt and the material “fully” transforms from one state of structure to 
the other. On the other hand, in polymers this transition is more gradual [l]. In many cases, 
the process of crystallization in a polymer is stopped long before all the polymer crystallizes [l]. 
This type of gradual crystallization is the focus of this paper, even though very rapid 
crystallization can also be modeled by this method. 

The constitutive model is developed based on the following assumptions: 

ASSUMPTION 1. The properties of a particle in a continuum model represent the 
average, in some sense, of the properties in some small neighborhood of the 
actual material point being modelled. During the crystallization process, such a 
neighborhood can contain both amorphous and crystalline matter. 

Thus, we assume that there can be particles of both amorphous and crystalline matter at each 
point of the continuum. This is indicated in Fig. 1. 

ASSUMFTION 2. We assume that a single continuum defines the material through 
all stages of its transformation. 

Let K~ denote the configuration of the material in its initial state and let K(S) denote its 
configuration at a later time s. Let the coordinates of the same typical material particle be 

n Crystafine matter 

orphous 
tter 

A material point 

Fig. 1. At each continuum point there can be both amorphous and crystallized matter simultaneously. 
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denoted by X in configuration icO and by x(s) in configuration K(S). The deformation gradient 

comparing K(S) to K~ will be denoted by F(s). 

ASSUMPTION 3. We assume that at time f the Cauchy stress, T(t), is the 
superposition of contributions from the crystalline portions formed up to time t 

and from the remaining portion of amorphous matter at time t. We assume that 
crystals can be generated continuously and that the response of all crystals 
generated at the same time can be represented by a single constitutive equation. 
We also assume that each type of matter contributes to the stress in proportion to 
its current mass rati0.t 

An expression for the Cauchy stress which is consistent with this assumption is given by 

T(t) = b(t)TA(t) + (’ a(S)TC(t, S) dr. 
ts 

In (l), b(t) denotes the mass ratio of the amorphous material which has not crystallized up to 
time t, b(t)TA(t) denotes the contribution of this portion of the material to the value of the 
stress at time t, ts is the time when crystallization starts, a(s) &is is the mass ratio of material 
crystallized in the interval from s to s + dr, and a(s)F(t, s) dc is the contribution of this 
crystallized material to the value of the stress at time t. As can be seen, equation (1) is a 
special averaging method for obtaining the macroscopic stress of a mixture of one type of 
amorphous material and many different types of crystals. In this equation time acts as a marker 
to d~tinguish between crystals generated at different times and under different conditions. 

Conservation of mass requires that the quantities b(t) and a(s) be related by 

b(t) = 1 - 
I 

I 
a(s) ds. (2) 

4 

Equation (2) should be accompanied by a relation of the form 

(3) 

which expresses the rate of crystallization in terms of the deformation history, the temperature 
history and possibly other influences. A specific relation will not be needed for the purpose of 
the present study4 

ASSUMIVON 4. It is assumed that the amorphous and crystalline phases of the 
material each respond elastically. 

That is, the stress in the amorphous part is related only to F(t), the gradient comparing K(t) to 
K~, This stress is given as 

p(t) = SF(‘)[F(t)], (4) 

where S@‘) is a function of F(t). The stress in the crystalline part formed during the interval 
from s to s + ds depends on F(t) and also on E‘,(t), the gradient comparing it(t) to K(S), the 
configuration at time s when it was formed. This stress is given as 

TC = S2’[F(t); F,(t); s], (5) 

TAn alternate model can be developed which would use the current value of the volume ratio. Such a model would 
require providing added conditions to allow the calculation of the current value of the volume ratio in terms of the 
past history. In view of the many other simplifications, it is not clear that adding this complexity is justified. An 
example of such a model is developed Appendix B. 

$Examples of such models can be found in [3,6,7]. 
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where S@) is a function of the stated arguments. Note that F,(t) can be written as 
F,(t) = F(t)F-l(s), and, therefore, the variable set F(t) and E”,(t) can always be replaced by the 
variable set F(t) and F(s) or the variable set F,(t) and F(s). The final form of the constitutive 
equation is obtained by combining (11, (4) and (5) to give 

T(t) = b(t)@“[F(t)] -+ il’ ~(s)@~~[F(t); F,*(t); S] dx (6) 

Equation (6) can represent the response of the material in each of the three phases discussed 
above. Before the onset of crystallization a = 0 in (2) and (6). This results in the usual form of 
constitutive equation for nonlinear elastic response. When a # 0, equations (2), (3) and (6) give 
the response during the transition from amorphous to the amorphous-crystalline state. Finally, 
when crystallization stops, a = 0. As will be shown in a later section, when crystallization stops 
the right hand side of (6) varies only with F(t). That is, (6) becomes a constitutive equation for 
an elastic material, but with new response characteristics. 

3. MATERIAL FRAME INDIFFERENCE 

Consider a motion of the material x = x(X, 1) whose deformation gradient is F(t). A second 
motion which differs from the first by a rigid body motion, can be written as x*(t) = 
Q(~)x(X, t) + c(t) where Q(t) represents a rigid body rotation (i.e. Q(~)Q~(~) = Q*(~)Q(~) = I) 
and c(c) represents a pure rigid body translation. The deformation gradient of this second 

motion is F*(t) = Q(t)F(t). 
The requirement of material frame indifference is that the response functional on the right 

hand side of (6) satisfy the condition 

Q(r){ b(t)@“[F(t)] + j+’ a(~)@~)[F(t); F,(t); S] dr)QT(f) 
c 

= W)~‘l’[Qt~)F(Ol + i; t 1 a s @2’[Q(OW); Q(OF,(OQT(s); 31 c-h (7) 

for all rotations Q(s), t, I s 5 t. t 
Let the polar decompositions of F(t) and F,Y(t) be written in the form 

F(r) = R(VJ(O, F,(t) = v&Mr), (8) 

where R(t) and R,(t) represent the orthogonal factors and U(t) and VS(t) are symmetric. Let 
Q(s) = RT(t)RS(t) and note that Q(t) = R*(t) since R,(t) = I. A standard argument then implies 
that the restriction of material frame indifference will be met if (6) is written in the form 

T(f) = b(t)R(t)@“‘[C(t)]R*(t) + I’ a(~)R(t)d~)[C(t); R(t)TB,(t)R(t); s]RT(f) d.r. (9) 
I, 

In (9), C(t) = F~(~)F(~) = U”(t), B,(t) = F,(t)FT(t) = V:(t), and ‘4”’ and 9” are new functions 
of the stated arguments. 

4. THE MATERIAL SYMMETRY RESTRICTION 

Let g, denote the symmetry group which is associated with the initial state of the material, 
and represented with respect to the reference configuration K~. Let H be a symmetry 
transformation of this group. The material symmetry restriction states that the stress 
determined by the deformation gradient history F(s) is the same as would be obtained if the 

~_ _____--_ 

tSee [ 101 for more details. 
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material were first subjected to the symmetry transformation H and then the deformation 
gradient history F(s), for every H E g,. That is, using either F(s) or F(s)H should result in the 

same value for the Cauchy Stress. Using this in (9) leads to a restriction which can be satisfied 
if ce”’ and %#‘) are such that 

and 

H@“‘[HTC(t)H]HT = @“‘[C(t)], (10) 

H@‘[H=C(t)H; HTRT(t)B,(t)R(f)H; s]HT = @“[C(t); RT(t)B,(t)R(t); s]. (11) 

5. INITIALLY ISOTROPIC MATERIALS 

In its initial state, the microstructure of the amorphous material consists of randomly 
oriented and coiled macromolecules. It is thus reasonable to assume that the material is 
initially isotropic, and that g, = 0s {full group of orthogonal transformations}. It follows from 
well-known results for an isotropic tensor function of a single tensor argument that for function 

+#I’ which satisfies (lo), 

R(O@“‘[WIRTW = pd + PIW + p2B2W (12) 

where B(t) = F(t)F’(t), and po, pl, p2 are scalar functions of the three isotropic invariants of 

B(t). 
Rivlin and Erickson [8] have provided a representation for an isotropic tensor function of 

two tensor arguments. It follows from their results that for the function @2’ which satisfies (ll), 

R(t)@“[C(t); R=(t)B,(t)R(t); SIR=(~) = w,I + w2B(f) + w3B2(t) + w,B&) + w5B:(t) 

+ MB(t)B&) + B&)B(t)l + w,[B2(t)B&) + B&)B*(t)] 

+ w,[B(t)B:(t) + B:(t)B(t)] + w,[B2(t)B:(t) + B:(t)B2(t)]. 

(13) 

Coefficients wl, w2, . . . , w, are scalar valued functions of the three isotropic invariants of B(t) 

4 = tr(B(Q), Z2 = i [I: - tr(B2(t))], Z, = det(B(t)), (14) 

the three isotropic invariants of B,(t) 

Z4 = tr B,(t), Z5 = k [Z4 - Wf(t))l, 16 = det(W)h 

and the four joint invariants of B(t) and B,(t) 

Z, = tr(B(t)B,(t)), Z8 = tr(B2(0B&)), 

Z, = tr(B(t)B?(t)), Zlo = tr(B*(t)Bz(t)), (16) 

where tr stands for the trace operation. On combining (12) and (13) with (9), the constitutive 
equation becomes 

T(t) = b(t)[p,,I +plB(t) +p2B2(t)] + 1’ a(s){wJ + w,B(t) + wdB2(t) + w,Bs(t) + w&(t) 

6 

+ w,[W)JW) + WPWI + w~[B2WW) + WW2Wl 
+ w,[B(t)B:(t) + B:(t)B(t)] + W@‘(f)B:(f) + B:(t)B*(t)]} ds. (17) 
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6. COMPLETION OF CRYSTALLIZATION-ELASTIC RESPONSE 

Suppose the material starts to crystallize at time t, and continues to crystallize until time tf, 
after which there is no further crystallization. The rate of crystallization function a(s) is then 
characterized by the conditions 

a(s) #O for some s l (t,, +I, 

a(s) = 0 for all s E (+, t]. (18) 

For times t > tr, the stress in the material is given by 

T(t) = W&d + NW) + pzB*Wl + 1’ +){wJ + 4W) + ~4%) + wJW) 
4 

+ w&(f) + w#W)B,(~) + WW(~)l + w,[B2(OW) + BsW2(~)l 
+ w,[B(t)B:(t) + B:(t)B(t)l + w[B2(W:(4 + B:(W2(W h, 

where the upper limit of the integral has become fixed at r,. 

(19) 

Since in (19) the integration over s stops at $, the only element of the history after tf which 
contributes to the stress at time t is F(t). This can be seen if one substitutes for B,(t) its 
equivalent expression B,(t) = F(t)C1(s)FT(t) into (19), where C(s) = F=(s)F(s). This allows 
the integral in (19) to be expressed in terms of F(f) and C(s), for s s tr. After the completion of 
crystallization, the history of events before time tf becomes part of the past history, and, as 
such, can no longer be considered variable (i.e. we can not change the past). Therefore, after cr 
the only true variable in the response equation is F(t). 

In other words, after the completion of crystallization one can rewrite (19) in the form 

TO) = @[WI, (20) 

where 9 is a new function. Since for times c > tf the stress depends only on the current value of 
the deformation gradient, the response can be regarded as being “elastic”. The right hand side 
of (20) will be referred to as the post-crystallization elastic response function. The remainder of 
this paper will be concerned with the properties of this response function. 

It must be noted that, even though the history preceding tf is not explicitly noted in (20), this 
history is included in the mathematical structure of the response function 9 and hence 
influences its properties. This history can be used to calculate the symmetries of the final 
elastic response and, also, can be used to evaluate the material constants. 

7. SYMMETRY PROPERTIES OF THE POST-CRYSTALLIZATION ELASTIC 

RESPONSE FUNCTION 

The material response in the post-crystallization regime is not, in general, isotropic. In order 
to see this, we will first define the material symmetry properties in this regime, and then 
discuss how these properties can be determined. 

The material symmetries of the post-crystallization response function are defined as those 
linear transformations H which satisfy the condition 

T(t) = .%[F(t)] = 9[F(t)H] (21) 

identically for any deformation gradient F(t).? It is straight forward to show that the 
transformations which satisfy (21) form a group. We will denote this group by g(q), and refer 
to it as the symmetry group at time tf. This group represents the symmetries of the material 

tThe reader will note that this symmetry is represented with respect to the original reference configuration me. The 
representation of this symmetry with respect to a more convenient configuration, say its configuration at time r,, 
simply follows by Nell’s rule (see [9]). For example, the representation of this symmetry transformation with 
respect the material’s configuration at time 4 is given by F(t,)HF-I($). 
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after 9, but is represented with respect to the original reference configuration K”. The explicit 
form of this group is a result of the material’s characteristics and the history of deformations 
the material has undergone during the crystallization process. 

This definition of symmetry is motivated by the following considerations. Suppose a sample 
of an initially amorphous material crystallizes while it is being deformed. Assume the 
crystallization has ceased. Now consider an observer attempting to evaluate the symmetries of 
this sample without being aware of the crystallization process. For this observer, the past 
history becomes an unknown fixed parameter in the post-crystallization response function of 
the material. As a result, the observer can only be concerned with the symmetry properties of 
the response function by considering deformation gradients which occur after the completion of 
crystallization. 

Let us proceed to identify some of the possible symmetries of the post-crystallization 
response. Let F(t) be replaced by F*(t) = F(t)H. Then B(t) and B,(t) become, respectively, 

B*(t) = F(t)HHrF=(t), B:(t) = F(t)HC-‘(s)HTFT(t). (22) 

Note that C(s) is left unaltered since s < tf and r > $. t 
The problem of determining the symmetries of the material is the problem of determining 

those transformations H which satisfy (21). This problem is very complicated and specific 
results can only be obtained under specific sets of assumptions. Two sets of results are 

presented here. 
The first set of results is independent of the form of the scalar coefficients 

PO, Pl, P2, Wl, * * - 7 w9. That is, these results are material independent. In this case, the group 
of symmetry transformations which satisfy (21) is characterized as follows: 

g(tf) 2 {H ( H E 6 and HTC(s)H = C(s) for every s E (t,, +I}. (23) 

The “1” in (23) refers to the fact that for particular forms of the scalar coefficients 

PO,Pl, P2, w9 . * * > w9, and the history of C(s) for s E (f,, tf], there might be other choices of H 
which also satisfy (21). The proof of (23) follows from equation (22) since B*(t) = B(t) and 
B:(t) = B,(t) for HTH d I and HTC(s)H = C(s). This will result in the automatic satisfaction of 
condition (21). Therefore, as a first step, the problem of finding those H which satisfy (21) is 
reduced to the problem of finding those linear orthogonal transformations for which 

H%(s)H = C(s) (24) 

for every s E (&, +I. We now consider several examples for which solutions can be obtained. 

7.1 Crystallization under equal-triaxial extension 

Let the deformation during crystallization be equal-triaxial extension. That is, 

qs) = rr + k2;S,) = )32(S)I, 

where the stretch ratio n(s) is an arbitrary function of s during the interval s E (t,, +I. 
When this C(s) is substituted into (24), the result is 

(25) 

H=IZ’(s)IH = A*(s)I. (26) 

This is satisfied by any transformation H which satisfies 

H’H = I, (27) 

and therefore 

tAkering the deformations after + will not result in any changes in the deformations prior to t,. 
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In other words, when crystallization occurs under an equal-triaxial extension history, the 
post-crystallization material response will always be an isotropic elastic one. 

7 2 Crystallization under uniaxial (equal-biaxial) extension 

Suppose that the material is subjected to uniaxial extension along a fixed axis during the 
process of crystallization. Let the third axis of the coordinate system be along the material 
direction of extension, then 

( 

n’“(s) 0 0 

C(s) = 0 n”(s) 0 ) (29) 
0 0 W ) 

in which the stretch ratios h’(s) and n(s) are arbitrary functions of s and A(s) # k’(s) for some 
subinterval of (t,, $1. 

As is shown in [9], the orthogonal transformations H which satisfy (24) form the group 
representing transverse isotropy with the preferred axis of transverse isotropy being along the 
third axis of the material. If this group is denoted as D,,,,, then 

g(+) 2 Q&X”. (30) 

Therefore, after crystallization under the history of deformations given by (29), the material 
response will be at least transversely isotropic, with the preferred axis of transverse isotropy 
along the axis of the distinct stretch ratio. 

7.3 Crystallization under unequal-triaxial extensions 

Consider a material subjected to unequal-triaxial extensions along a fixed set of material axes 
during the interval of crystallization. If the axes of extension coincide with the coordinate axes, 

then 

c(S)= r; +) *;;sJ. (31) 

As is shown in [9], the set of orthogonal transformations which satisfy (24) when C(s) is 
given by (31) form the group which represents orthotropy. If Darth represents this group of 

transformations, then 

&) 2 &II. (32) 

For more information and details about 

models see [lo]. 

8. MATERIAL 

deformation induced symmetries in first gradient 

SPECIFIC RESULTS 

Other results can be obtained for the symmetry of the post-crystallization elastic response 
when the constitutive equation has a particular form. In order to illustrate the nature of such 
results, consider a simplification of constitutive equation (17) in which w, = w, = w, = . . . = 
w, = 0, and w, and w4 depend only on the scalar invariants of B(s). In this case, the constitutive 
equation, given by (19), after the completion of crystallization becomes 

T(t) = b(t)[pJ + plB(t) + p2B2(t)] + cuI + F(t)AF’(t), (33) 

where a! and A are constants defined by 

I 

‘f 
(Y= a(s)wl d.r, (34) 

1, 
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and 

A = a(.s)w4C(s)-’ ds. 

The set of transformations H which satisfy (21) contains every orthogonal H which satisfies 

the condition 

HTAH = A. (35) 

Therefore, 

g($) =, {H 1 H E 0 and HTAH = A}. 

Since C(s) is symmetric, A is also symmetric and can be written in the form 

A = PAdPT 

in which P is orthogonal and 

(36) 

(37) 

(38) 

As shown in [9], the solution to (35) is given as follows: 
(1) g(q) r> I?? if ai = uz = u3: 
(2) g(+) =, PDtranPT if a, = ff2 # a3: 
(3) g($) _3 PZlorshPr if a, #a, # a3 f a,. 

The preferred directions of symmetry are given by the eigenvectors of A (i.e. by P)_ Thus, for 
this specific form of constitutive equation, we have shown that regardless 
history during the time interval of crystallization, the post-crystallization 
only one of the three symmetries listed above. 

of the deformation 
response will have 

9. CONCLUDING REMARKS 

We have developed a model which attempts to characterize some of the special characteris- 
tics of continuous phase transition as would be seen, for example, in polymer crystallization. 
The model is based, to some extent, on the microstructural changes and macroscopic 
responses seen in polymer crystaliization, particularly in Natural Rubber. The model assumes 
that the response before the start of crystallization is elastic. The response after the completion 
of crystallization will also be elastic. The model is fully nonlinear, as would be required for 
polymers, and represents the proper starting point for the development of linearized versions. 

The current model is developed for isothermal phase transitions. An extension to 
nonisothermal response will require a better unde~tanding of the interaction between 
temperature, strain, and crystallization. 

Finally, this model can be used in conjunction with the appropriate field equations in 
formulating initial value and boundary value problems. With it, one can follow the behavior of 
materials through the crystallization process for complex flow problems and, for example, 
calculate residual symmetry properties, residual stresses and permanent deformations, 
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APPENDIX A 

Two Alternate Form of the Model 
Since F,(t) = F(t)F-‘(s), the two variables F(t) and F,(r) in the expression for the stress in the crystal can be replaced 
by either the set F(t) and F(s) or the set F,(t) and F(s). 

Selecting the variable set F(t) and F(s) results in a constitutive equation for an initially isotropic material given by 

T(t) = b(t)[pd +p,B(t) +p*B’(t)] + F(t) 1’ a(s){wrI + w&(t) + w@(t) + w&(s) 

+ wsCZ(s) + w&(t)C(s) + C(s)c$+ w,[C2(t)C(s) + C(s)@(t)] 

+ wJC(t)C*(s) + C’(s)C(t)] + w&*(t)C’(s) + C2(s)C2(t)]} dsF=(t), (39) 

where pot p,, and p2 are functions of the three isotropic invarients of B(f), and wi, . . . , w, are functions of the ten 
isotropic inv~ents of C(t) and C(s). 

Selecting the variable set F,(t) and F(s) resuh in a complicated form which we wilf not present. 

APPENDIX B 

A Model Based on Volume Ratios 
A similar model for the stress can be developed based on assuming each portion of the material cont~butes to the 
value of the Cauchy Stress in proportion to its current value of volume ratio. In this case, one must provide a 
constitutive equation which allows the caiculation of the current value of volume for each of the different phases. What 
follows is one such example. 

Let b(t) be the current value of mass ratio of amorphous material, and let a(s) be the rate of transformation of the 
mass from one phase to the other (same as previously defined). Assume the value of crystal density at the time of 
formation of the crystal to be a known constant pcO_ The volume of the crystal created in the interval ds is given by 

dv,=2=z,(s)ds, (40) 

where dV& is the volume of the crystal at the time of its creation, dm, is the mass of material transformed in the time 
interval dr, and ma is the total mass of material. 

Next we need to make an assumption on how much the individual constituents change in volume ratio, given the 
total change in volume ratio. If we assume that each constituent has a volume ratio change identical to the total 
material, we will have 

W) JW(s) 
dV, = JO dV,, = mcl J(s)p,, do (41) 

where dV, is the current value of the volume of the crystal created in the interval 6, J(t) and J(s) are the total volume 
ratio of the material at time t and s, respectively. This results in the expression for the current value of the volume ratio 
of the crystal created in the interval ds as 

dl/, = W(S) ds 
V(r) J(S)&, ’ 

(42) 

where V(t) is the total volume of the material of mass m0 at the current time and pa is the initial density of the 
untransformed material. 

The constitutive equation for such a material would be given by 

where 
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Since in a polymer like natural rubber the total change in volume ratio and density are in the order of several percent 
compared to several magnitudes of change in the value of the modulus, it seems justified to ignore these small effects. 
As a result, it seems justified to use a mass ratio based theory, like presented in the main text, as opposed to a voiume 
ratio based theory, like presented in this section. 

Other equations can be developed based on how the volume change is distributed between the different phases of the 
material. 
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