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1. Introduction

The large cross section (50 mb at Ecm = 1 .8 TeV)
from inelastic hadron collisions at pp accelerators
makes it difficult to trigger on interesting processes
which contain low energy decay products . This is espe-
cially true of events requiring calorimetry for identifi-
cation, such as for b -3- evX decays . Good pattern
recognition is needed to improve the signal-to-back-
ground ratio. Such pattern recognition requires analyz-
ing and correlating critical subdetector signals, which is
time consuming to process electronically and therefore
typically implemented in secondary level triggers.
We will implement one particular type of pattern

recognition technique based on neural net IC technol-
ogy, new to triggering in high energy physics, in the
CDF detector level 2 trigger for the 1992 data run at
Ecm = 1 .8 TeV. Neural networks are one method to
correlate information in order to maximize the separa-
tion of signal from background .

Our neural network consists of a nonlinear function
containing free parameters which must be optimized
via a minimization procedure, known as training. There
are several reasons for investigating the utility of neu-
ral nets . The network can be trained to distinguish very
complex patterns . At the trigger level, one of the major
assets of neural net ICs is their flexibility . The analog
network chip may be reprogrammed to accommodate
changes in trigger requirements . In addition, neural
nets have fast parallel processing capabilities and are
rather insensitive to fluctuations, such as from elec-
tronic noise or channel-to-channel differences in detec-
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SectionA

A feed-forward neural net technique is applied to trigger on b - evX decays in the high background environment of pp
collisions at E,m =1.8 TeV. For the 1992 data run, we will install electronics into the CDF detector trigger using calorimeter
signals as input to a neural net IC chip . We describe our algorithm and network optimization (training) issues, including those
unique to 'pp physics and to an electronic implementation . We assess the advantages and problems of using trained neural nets. In
addition to the trained mode of operation, the architecture of the analog chip also allows employing it as a massively parallel
arithmetic processor for conventional trigger applications . The device may be reprogrammed to accommodate changes in trigger
requirements and to provide considerable flexibility in trigger design .

for response . A final reason for pursuing neural nets is
that powerful conventional cuts are sometimes difficult
to implement electronically. The hope is to realize a
similar signal-to-background ratio via a neural net cut
for which the electronic capability exists.

Electronics manufacturers have produced IC chips,
the 80170NX, which mimic the nonlinear function used
in neural nets [3]. One downloads such a device with
some set of optimized weights prior to trigger installa-
tion for data taking .

We provide an offline study of using a neural net to
trigger on b -4 evX jets with calorimeter signals, a
network application proposed by Campbell . We use
the feed-forward multilayer (signals are fed forward
through layers of processing nodes) network to sepa-
rate the b -+ evX signal from gluonjets background.
An overview of the trigger, the input signals from the
CDF calorimeter, and a brief explanation of our neural
net are given in section 2. The expected efficiencies,
the event kinematics, and some network issues relevant
to triggering are considered here as well . A major
aspect of employing neural nets is to first train it to
recognize signal from background . Therefore, we de-
scribe our algorithm in detail as well as discuss the
advantages and problems of using trained neural nets
in the appendix.

There is a second application for neural net chip
technology : the circuit architecture provides a unique
flexibility that is valuable for analog trigger develop-
ment, as suggested by Kuhlmann and Wu. For trigger
design purposes, it is often known in advance which
subdetector (e.g., calorimeter) signals would be useful
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Fig. 1 . A feed-forward neural net containing one layer of
input signals, a hidden and an output layer. The processing
nodes in the last two layers, represented by rectangles, consist
of the sigmoid function described in the text. The lines
connecting the inputs x; and the hidden nodes multiply the x;
values by a factor «v;, and similarly for the lines between the
hidden and output nodes . For the conventional trigger appli
cation, the nodes may be thought of as many parallel arith-

metic processors.

in forming electronic decisions . However, what the best
trigger algorithm for utilizing such signals prior to data
taking at new energy or luminosity regions is less clear.
It is possible to design general circuits using the
80170NX without having a fixed trigger algorithm in
advance . The interconnections in the chip are such
that the device may be used as an analog arithmetic
processor to improve the performance of conventional
trigger tasks, allowing reprogramming of threshold val-
ues and even revision of the type of arithmetic opera-
tions needed . For example, conventional electron and
photon triggers involve threshold requirements and
sums of calorimeter module energies . We try out this
second way of using the 80170NX to form a conven-
tional isolated photon trigger, which requires no train-
ing and is discussed in section 3 .

Our neural set structure is shown in fig . 1 and
described in section 2.1 . Signals are input and pro-
cessed (in the rectangular symbols) in parallel .

2. b - evX application of neural nets at pp

Although our main goal is to test the utility of
neural net technology for trigering, our physics interest
lies in studying b's at pp where we hope to log more of
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the large 10-40 p,b bb production cross section [2].
Measurements of rare B decays and BB mixing, for
example, require as large a sample of b's as possible .
We select b -> evX jets as our signature for testing the
new trigger and use a trained net to try to improve the
signal-to-background ratio over that obtained with the
conventional electron trigger . The cross section for b
physics is about 10 3 times smaller than, for the typical
inelastic hadron collision ("minimum bias" event) and
it decreases sharply as a function of the momentum of
the b transverse to the beam axis (p,) . In order to
trigger on more b jets, it is necessary to lower the
energy thresholds . However, it becomes difficult to
distinguish the B decay particles from the gluonjet
backgrounds at lower energies.

There are practical reasons for choosing to trigger
on b --> evX jets . For the CDF detector, calorimeter
signals are available more quickly than track momen-
tum information and therefore are better for forming a
fast trigger . Such a calorimeter-based pattern moti-
vates selecting a physics process involving electrons,
such as b - evX decays. Furthermore, CDF has al-
ready collected b - evX data where the Et of the
electron is > 7 GeV, providing a useful data sample
for trigger development . CDF will also implement a
conventional electron trigger, allowing cross checks of
the neural net b -> evX results .
We now describe the CDF calorimeter [3] signals

which are fed to the neural net . Cylindrically symmet-
ric about the beam axis, the central calorimeters con-
sist of towers which point back to the interaction
region . Each tower has an electromagnetic shower
counter (lead scintillator) in front of a corresponding
hadron calorimeter (steel scintillator). The energy reso-
lution for the central electromagnetic calorimeter is
8E/E = 0.14/FE (E in GeV), and for the hadronic
calorimeter is 8E/E=0.7/FE.Calorimeter signals
representing information in bins of 15° in azimuth 0 by
0.2 in pseudorapidity (q = - ln(tan 0/2), where is 0 is
the polar angle) reach the trigger electronics [14]. The
neural net b - evX trigger obtains signals from a
14,1 x 240 grid area with two layers in depth (electro-
magnetic and hadronic) .
A b - evX jet where the b has > 15 GeV pt would

typically deposit all of its energy in 5 x 5 bins, subtend-
ing 37.5° by 0.5 ,q from the center to the outer edge.
The electron energy is normally deposited in a single
1 x 1 electromagnetic trigger tower which is 18 radia-
tion lengths thick. The particles from the hadronized b
quark jet deposit hadronic and electromagnetic energy
in a few towers and the underlying minimum bias event
normally deposits much less than 0.5 GeV per tower .

Our procedure for triggering on the b -> evX decay
is to look for central electromagnetic (CEM) calorime-
ter trigger towers that pass a certain Et threshold (seed
towers) [5] . The signals from the seed tower and from
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nearby towers (a 5 x 5 calorimeter grid region centered
on the seed tower with coordinates (77 s , 0,)) are fed to
to the neural net electronics . There are altogether 50
trigger towers signals, half electromagnetic, half had-
ronic . The network then decides if the calorimeter
pattern indicates the presence of a b - e V- X jet . After
the neural net electronics finish processing, we require
a charged track with p, above some threshold to extra-
polate to the seed tower in the 0 direction, further
indicating the presence of an electron .

2.1 . A feedforward multilayer network

The feed-forward 2 layer neural net we use to
separate signal from background patterns is shown in
fig. 1 . The network consists of a nonlinear function, S,
involving the product of the input values x; (the 50
calorimeter signals) and of weight parameters w;, and
thresholds (biases) bj :

S=gk ( y, j,fj(Ytù ijxi+bj)+b,~. ,

where i is an index over the inputs, j the hidden nodes
and k the output nodes (only one is shown). The two
layers of functions fj and gk are of the same mathe-
matical form, a sigmoid function (represented by the
rectangles in fig . 1) :

We obtain optimal weight and bias values for S via a
minimization procedure which tries to separate signal
from background patterns . We use patterns known to
be either signal or background (e.g ., from a Monte
Carlo sample) and assign a desired response value "0"
or "1" to the pattern during the minimization . The
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Fig . 2 . A neural net requirement (left) tends to achieve beter
signal-to-background separation than conventional, fixed-value
cuts (right) . Shown is a hypothetical case involving the distri
bution of signal (circles) and background (squares) events for

two arbitrary kinematic variables .
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process is essentially fitting the function S to a surface
proportional to the relative amount of the two sets of
patterns used during training such that the surface best
separates signal from background . The appendix pro-
vides an explanation of the algorithm we use, which is
adapted from Rumelhart and McClelland [6]. The pro-
cedure is changed slightly to account for the fact that
there are many more possible patterns from the back-
ground class . We afterwards check the separation effi-
ciency of the trained neural net by running it on an
independent test sample .

Signal and backgrounds tend to show better separa-
tion using a neural net technique than with one-dimen-
sional cuts . For any set of variables used to character-
ize events, the actual boundary of best separation
between the signal and the background does not nor-
mally consist of flat surfaces corresponding to fixed
values on each variable, the boundary has some curva-
ture . Using conventional single-valued threshold cuts,
which do not account for correlations between vari-
ables, leads to needless loss in signal or retention of
background. The neural net training procedure finds
the parameters of S such that contours of constant S
approximate the actual curvature of the boundary, as
shown in fig. 2 for a hypothetical case involving two
variables . Appendix E gives a simple numerical exam-
ple .

In order to understand the neural net solution after
training, we need to examine physical quantities which
may be formed from the 50 tower energies fed as
inputs to the network. For example, fig. 3 provides the
distribution of neighboring vs seed trigger tower elec-
tromagnetic energy for test patterns passing and failing
the neural net . It is worth neting that neural net
training can provide insights into the kinematic fea-
tures of the physics process, useful for optimizing
threshold algorithms for conventional triggers and
analyses . For both signal and background, fig. 3 also
demonstrates that a final neural net output threshold
cut (cut on a particular value of S) does not necessarily
correspond to a flat cut on the values of the input
variables.

The very advantage of a neural net algorithm also
leads to a possible problem of estimating trigger biases
and efficiencies . One must understand the detector
response over a large range of values for the input
variables because the final network cut corresponds to
a cut over a large range ("multi-valued" cut) of those
input signal values, as shown in figs. 2 and 3 . However,
for most conventional, single-valued cuts on a particu-
lar variable, one needs to estimate the efficiency of the
requirement only near the cut value . If Monte Carlo
calculations are used either to train the network or to
estimate efficiencies and errors, they must be correct
over a broad range of values and correlations among
the many input variables . Otherwise, it may be difficult
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2.2. Description of the training and the trigger rates
atic errors for a neural cut are reliable . This problem is
reduced by running redundant and less stringent trig-

	

The results from an offline simulation of the neural
gers along with the neural net trigger.

	

net trigger are considered in this section. We train on
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Fig. 3. The distribution of neighboring vs seed trigger tower electromagnetic energy for Monte Carlo signal and background test
patterns accepted and rejected by the trained neural net. It is necessary to plot physical variables in order to understand the nature

of the neural net cut.
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Fig. 4. The distribution of the network output values S (last node in fig. 1) for signal and background patterns, where the curves are
normalized to unity. The exact signal-to-background ratio depends on our choice for the trigger threshold ; we typically use a value
in the range 0.7-0.8 . When normalized to the estimated cross sections, this trigger is expected to yield a b -> evX purity of about

15%.



1000-2000 events from a Monte Carlo sample contain-
ing b --o evX jets and on 4000-5000 Monte Carlo two
jet (gluon-gluon) background event sample, where the
jet p, is > 15 GeV, and the pattern contains a seed
tower with E, > 4 GeV. The primary level calorimeter
trigger thresholds implemented at CDF precludes re-
ducing the seed threshold below 4-5 GeV for the
neural net trigger, which is a secondary level trigger.
Jets with p, below 15 GeV do not produce enough
energetic electron candidates, making the event gener-
ation inefficient. The events, produced in pp collision
where the beam energy is 0.9 TeV, are generated using
Isajet with CDF default fragmentation parameters [7]
and passed through detector simulation and event re-
construction . New patterns not in the training sample
are then used to estimate trigger efficiency after the
net being optimized . Both the testing and training
patterns must pass the following requirements in addi-
tion to CEM seed trigger tower I q I < 1 .0: a) seed
tower 4 < Et < 15 GeV, where the upper limit is to
have the network improve its efficiency for identifying
lower energy b's; b) a charged track with p, > 3.5 GeV
matching the seed tower in 0 and 77 ; and c) for Monte
Carlo signal events, the seed tower shower must be
from an electron from b decay. Fig. 4 shows the distri-
bution of the output values of the trained neural net
(the value of last node in fig . 1) for new test signal and
background data. The trigger efficiency will depend on
the exact threshold value we select in fig . 4 to separate
signal from background. We choose a value of about
0.8 to reject more than 98% of the background . For
Monte Carlo training samples, the network accepts
40.8 ± 1 .4% of the b --* evX and 1.4 ±0.2% of the
gluon patterns . For Monte Carlo testing samples, the
values are 39.4 ± 1 .6% and 1 .3 ± 0.2%, indicating that
the separation performance generalized to new pat-
terns. Appendix B provides further efficiency values
when we train with varying amounts of patterns .

To check inaccuracies in the simulation, we use the
data collected by CDF with loose trigger requirements
to compare with our Monte Carlo expected efficien-
cies. We apply the same set of requirements, consisting
mainly of stringent electron cuts, to both data and
Monte Carlo to obtain a fairly pure sample of b - evX
jets and then pass the pattern through the trained net.
For our choice of network output threshold, for 5 GeV
electron E,, the efficiency for both real and simulated
data is about 56%, and about 65% for 7 GeV elec-
trons. The agreement between Monte Carlo and data
for the signal is generally good and the neural net is
not very sensitive to the deficiencies in the simulation.
We use minimum bias events for a consistency check of
our Monte Carlo estimate of background rejection . For
events with seed E, > 4.0 GeV and passing the same
criteria as the neural net training sample, the network
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acceptance is 2.8 --- 0.8% as compared to the 1 .3 ± 0.2%G
from the Isajet gluon two jet events estimate .

Once the candidate electron p, is greater than - 7
GeV the b purity of the sample is naturally high for an
inclusive electron trigger. Then even simple, conven-
tional electron triggers begin to do as well as a trained
neural net trigger in signal-to-background . We find
using minimal electron requirement data (the thresh-
olds are looser than for the standard electron trigger)
the network still does better at 7 GeV, providing a
factor of two improvement in b - evX purity over that
of the conventional CDF electron trigger for the par-
ticular neural net output threshold chosen.

Although we have not trained the neural net on a
particular type of b - evX jets, the sample which
passes the neural net requirements turn out to favor
cases where the electrons are more isolated and the
surrounding jet energy is lower than that of the typical
b -> evX jet. For example, the sum of the Et in the
eight electromagnetic calorimeter trigger towers adja-
cent to the seed tower for accepted patterns averages
1.7 GeV, but 4.1 GeV for rejected ones . The isolation
is reduced if the required network output threshold
loosened .

The relative values of the weights connecting the
input layer and the first hidden layer provides some
indication of the significance of a particular input
variable . For our patterns, the maximum value amongst
all of the weights after training is four times larger
than the others and it belongs to the electromagnetic-
hadronic seed tower, where the electron candidate is
located . Therefore much of what the trained neural net
recognizes is the electron . This is not too surprising
because the typical pattern is an array of small energy
depositions symmetric about a more obvious, larger
deposition. This trigger is quite efficient on finding
electrons from sources other than from b jets. Asmaller
3 x 3 grid pattern would be more suitable for a neural
net general electron trigger.
We make a preliminary comparison based on Isajet

Monte Carlo b meson events (trigger seed Et > 5 GeV)
between the sample tagged with a neural net and the
sample obtained via the conventional CDF electron
trigger and analysis cuts [8] . For example, the average
p, of the electron candidate is 8.7 ± 0.1 GeV from
neural nets, higher than 7.2 ± 0.1 GeV from conven-
tional cuts . The average p, of the parent b is however
higher for the conventional b - evX events, 17.0 ±0.2
vs 16.4 ± 0.2 GeV, but the peak p, value is - 14.0
GeV for both samples. The angle between the electron
and the b averages about 9.2° for both sets. The con-
ventional CDF cuts to obtain a high purity b - evX
sample include variables causing the electrons to be
somewhat isolated, similar to the events accepted by
the neural nets . The relative ratios of parent b type
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(i.e . b. : ba : b,) and sibling D type or D* type species
are the same for both samples. The average number of
particles and the particle content of the decay products
and of the underlying event also agree well . In sum-
mary, the kinematic distributions from neural net
tagged b - evX are similar to conventionally tagged
ones.

3. Trigger issues of neural nets

For trigger applications, the efficiency of the neural
net must be fairly insensitive to the effects of electronic
noise, do offsets, and device variations . When we adjust
the optimized weights by 1q, (manufacturer specifica-
tions) and then reevaluate the trigger efficiency on the
test data, the rates change by - 5%. Similarly, the
trigger performance is affected by less than 5% if there
is 40 MeV equivalent voltage offset in the circuit (e.g .
in the stages involving operational amplifiers) . To check
the situation due to electronic noise, we add energy
distributed Gaussianly about a mean of 100 MeV to
each calorimeter trigger tower in the test patterns . As
expected, this noise affects patterns containing low
energy electron candidate more than those with higher
energy. For seed tower Et above 4 GeV, the rates for
either noisy signal or background patterns change by
about 20%; whereas, for Eg above 7 GeV, the differ-
ence is about 10%. This accounts only for the effect of
positive voltage value noise . Unfortunately, if both
negative and positive noise are included, our simula-
tion of the trigger performance suffers a - 50% change
in rates. We are training with patterns allowing for
both positive and negative noise to try to reduce the
sensitivity to this effect . Initially since positive voltages
are used to represent calorimeter energy measure-
ments at CDF and the neural net circuit is operated in
the positive voltage region, we train the net with only
positive input values.

The 80170NX unfortunately has a limited input
signal voltage range of 0-3.5 V . We check the effect of
resealing our inputs to optimize running in this voltage
region . Using the network weights actually optimized
with the full scale data (1 GeV = 1 V), we run new
patterns where the inputs are scaled down by a factor
of 2 (2 GeV = 1 V) . We find that the trigger efficiency
remains about the same as before . We note however,
that if we have to scale the inputs down further by
factors of 5 or 20 and run these scaled-down patterns
through the full scale trained net, then the result is
very poor separation . If instead, we now reoptimize the
net by starting with training data that is already scaled
down, by 5, 10 or 20, we can achieve a separation
efficiency comparable to before by selecting an output
threshold requirement different from ihe previous 0.8
value . However, the distributions of the network out-
put for new patterns are somewhat different than shown
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in fig. 4, with the peak for background data shifted
closer to zero and signal data forming a broader peak.
The result is that the new cut ends up on the peak or
on the higher end tail of the distribution for signal
patterns. It turns out this network output distribution
resembles that of a 1 x 1 training pattern case where
we fed the network only the seed hadronic and electro-
magnetic Et values . The scaling down causes the 5 x 5
pattern to look like only a single electron candidate
tower (seed) with energy, and the rest of the tower
energies be comparable to values due to noise . Such a
scaled-down 5 x 5 pattern kinematically resembles that
of the 1 x 1 . For both the 1 x 1 and the scaled-down
5 x 5 case, the minimization results in events contain-
ing higher seed En's to have a higher probability of
being identified as signal .

3 . Second application of neural net technology

We now describe an altogether different way of
using analog neural net chips - to carry out conven-
tional, nontrained trigger algorithms . The basic archi-
tecture of the 80170NX chip permits using it to do
arithmetic sums, multiplication, fixed ratio checks, and
logical ANDs and ORs. For the neural net b - evX
trigger we use a 5 x 5 calorimeter grid centered about
a seed electromagnetic (e.m.) tower with a large energy
deposition (electron candidate) . When there are no
tracks associated with the seed e.m . tower, then the
energy deposition is very likely a photon candidate ;
isolated photons are of particular interest because they
probe QCD and are signatures for new physics . We
may chose one of the following procedure to imple-
ment isolation criteria . The first is an example of using
the ci . .p to perform sums and threshold requirements,
and the second to check whether ratios pass a certain
value (e.g., Alb < 10) .

1) Require the sum of the energy deposited in the
41 calorimeter towers, adjacent to and behind the seed
tower (two layers, 5 x 5 minus the corners), to be small
and less than some value a. This is done by setting the
weights for the 41 towers in the summation in the
sigmoid function to -1 .0, and 0 for all other towers .
The offset parameter b is set to a :

neural net output =
1 + e - ( E-x , +«)

When the value of the output is less than 0.5, then the
isolation requirement is satisfied, otherwise not .

2) Alternatively, the energy deposited in the 41
towers may be required to be only some fraction of
that deposited in the seed tower, for example, ,'-� . Now,
the weights for the 41 towers should be set to -10,



and 1 for the seed tower, and zero for the bias parame-
ter b:

1
neural net output =

	

41

1 + e-(- F,'()X, - 1 x,«d1
,=1

Again the output threshold is set to be 0.5 .
The neural net chip has several good features which

compensate for this awkward way of performing arith-
metic . First, our particular chip is very compact (45 x 45
mm-' ), but it allows 64 parallel inputs and contains 64
hidden nodes, permitting 64 individual operations to
be carried out simultaneously. Although it is possible
to use conventional ICs like operational amplifiers to
do the same arithmetic, the number of circuit compo-
nents required would be very much larger. Second,
since we are designing circuit boards for the b - evX
trigger, we find it convenient and economical that the
exact same design can also handle conventional trigger
functions. The third and main reason is the ability to
reprogram the chip's weights and threshold values via
EEPROM technology to accomodate trigger changes.
We can design physics trigger circuits around this de-
vice with almost no algorithm in mind a priori, and
then afterwards select a particular algorithm . Input
voltage ranges may be rescaled, and offsets may be
removed by changing the weights and biases . It is
important to note for this analog device that one can
revise even the type of arithmetic operation desired for
the algorithm, such as from addition to a ratio-check as
shown in the above example for photons .

Depending on application, the 80170NX need to be
improved in speed ( - 3 Ws) and in the voltage range of
the input and output signals (between 0-3.5 V) for
both the trained and untrained use of the chip . For
untrained network applications, it is possible to use
simpler functions instead of a sigmoid for the nodes, so
long as the E;w;x ; +b structure is retained . This can
speed signal processing time, reducing from 3 to 0.8
[,s, values based on the characteristics of our chip . The
complexity of the 80170NX should be reduced as well
which should lead to improved performance and flexi-
bility . The chip was designed to allow a two layer
network by clocking results of the previous layer
through the chip again . Chips containing only a single
layer network are easier to use and multiple chips may
be cascaded for multilayer network applications .

4 . Conclusion
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We have considered the multilayer feed-forward
type of neural net to recognize b --> evX jets at a ~p
collider . These nets must first be optimized with a
large data sample, requiring considerable computing
resources . Afterwards we load the weights into the
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80170NX to operate it in the CDF trigger. We have
provided a primer on training the network in the
appendix and have described some shortcomings of
utilizing trained neural nets. We will also use the
analog chip to perform conventional trigger tasks in
parallel with the trained neural net . Both the 1) - e-v"X
and conventional applications will have trigger cross-
checks to ensure a full understanding of these new
techniques. The technology has great potential because
it can distinguish complex patterns and it allows
changes to trigger algorithms in a way never permitted
before . We will determine if neural nets can expand
our choice of techniques for fast triggering which thus
far is limited because sometimes conventional cuts may
be powerful but are difficult to implement electroni-
cally . We look forward to the 1992 data run .
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Appendix A

Neural net training algorithm

The type of neural net we use is known as the
feed-forward, multilayer perception configuration
which accepts patterns with either continuous valued
(e.g., particle energies) or binary inputs . The theory of
neural nets is discussed extensively in refs. [6,9]. We
consider here instead the practical aspects of the train-
ing procedure . The configuration is widely applicable
and basic to some other networks .
We use the algorithm of ref. [6] for obtaining the

optimal values for the parameters, weights w and bi-
ases b, contained in our neural net function S:

S1 = gt

	

WiJ fi(~ Wüxi +bi + b, j ,	(A .1)

where i indexes the 50 inputs, j the 10 hidden nodes, k
the pattern, and I the 1 or 2 output nodes. S defines
the neural net configuration (fig. 1), which for us
consists of a layer of 50 inputs x ; (the zeroth layer), a
hidden layer fi with 10 nodes (the first layer), and an
output layer g, usually with one node (the second
layer). The summation is over the number of nodes
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feeding into each network layer. All fj and gt have the
same functional form, called a sigmoid function (repre-
sented by the rectangles in fig . 1) :

1
fi = 1 +C-t 1: &r,p_t,+bl)

The goal is to separate the training sample into two
classes via an appropriate S, e.g. to obtain a desired
response value (S(target) for the kth pattern) of S to be

0.9 for input signal events and - 0.1 for input back-
ground events . The optimum set of weights and biases
is found by a least squares minimization of the differ-
ences E between the actual responses Slkactua,) and the
target responses . The weight values for the minimum

int are reached through successive approximations ;
in each iteration, the weights are changed by an amount
proportional to the partial derivatives of the function
E with respect to the w value, and similarly for the
biases. One possible choice for the function E is :

n

w; j (t + 1) = w;,(t) + rl Aw; j(t)

(A.3)

where k indexes a summation over the number of
training patterns, and I over the number of output

es (for cross-check purposes, we sometimes use two
output nodes). In short, the training procedure samples
the function E in weight space until yielding an opti-
mized function S in input-variable space to separate
signal from background . In practice, the procedure
consists of the following:

1) The net is started in an arbitrary state by generat-
ing different small random values for the w;j and bj .
For a reasonable set of starting weights, the final result
does not depend on the initial choice . During the first
pass of the inputs through the neural net, we check
that the response value of S for at least most of the
patterns is within the 0.1-0.9 region : otherwise we
rescale the weights (see appendix D on the scale of
training parameters). We use initial weight and bias
values between -1 and 1, but for the weights there is a
multiplicative factor of (ii/N, where x; is the average
value of the inputs to a particular layer and N is the
total number of inputs to that same layer).

2) The value of fj for each node j is calculated
using the current values of the w; j and bj . This is
referred to as presenting the input data to the net .
Each input pattern should have a fixed desired re-
sponse, S(target), associated with it . During training, we
have set the target output value to 0.9 for patterns
from signal events, and 0.1 for background .

3) The weights are adjusted at iteration (t + 1)
based on the previous state of the neural net at itera-
tion t

+a(w;j(t) - w;j(t - 1)),

	

(A.4)
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where i indexes the nodes (or inputs) in a previous
layer and j, the nodes in the next layer . The parame-
ters 17 and a, scale factors input by hand, are described
in appendix D. For weights connecting each of the
hidden nodes i and the output node j
Aw; j = - 1:8;fil,

	

(A.5)
k

where k indexes a summation over the total number of
patterns and

sj - (f ~~f1
k
r S(target))( 1 - .fjk )

	

A.6

(note : for the jth output node, fj~ is the same as the
actual final response of the net, Sj, from eq . (A.1)) .
For the weights connecting the inputs x ; and the jth
node in the hidden layer, the term Ow;j is:

Awlj= -

	

((f )( 1- fj
k
) ~St wi)xk,

	

(A.7)
k

	

t
where l is over all nodes in the next higher layer
(output) and ô; is the S~ given above . The biases bj
are updated in the same way as the weights .

Steps 2) and 3) are repeated until E stops fluctuat-
ing and an arbitrarily small value for E is reached . The
procedure is slow but fairly stable and is intended for a
priori training and then later use in a system with
predetermined :>>eights . For an electronic implementa-
tion, the fact that the weight changes (derivative of the
sigmoid function) depend only on the fj values and
facilitates placing the actual IC chip in the training
loop .

Typically as suggested in ref. [6], the neural net
weights are updated after pairs of signal and back-
ground patterns are presented to the net . Instead, we
present all of the patterns to the net prior to each
weight update (the summation over k ). By doing so, we
have averaged over the effect of all of the input events
every time . Averaging requires scaling -q down. For
example, we use rl values ranging approximately from
10 -s to 10 -4 when a few thousand patterns are pre-
sented prior to each weight update ; whereas, when
only pairs of patterns are presented, q values from 0.1
to 0.5 are more appropriate . This averaging method
allows more flexibility in that the order of the input
pattern does not matter, and we can input more pat-
terns from one class than from the other . For a b -~
evX trigger at a pp collider, we expect many more
background than signal events and thus to more closely
span the larger variety of background patterns, we use
about 3-4 times more background than signal events .

Appendix B

Training sample

This appendix and the next two address how we
select our net configuration, the significance of some of



the training parameters and their values . Generally,
the most important consideration is the training data
themselves . A neural net cannot separate patterns
which are intrinsically inseparable .

The intrinsic overlap between signal and back-
ground patterns places an upper limit on the network's
ability to separate the two. If one knows something
about the variables characterizing the events before-
hand, or has other means of enhancing the signal-to-
background (e.g . stiff track in addition to a neural net
cut), one should limit the diversity of the patterns and
the range of the input variable values of the patterns to
train on only a subset of the data to improve the
separation efficiency . As a simple example, we know
that b - eiPX jets are more similar to gluon jets when
the Et of the electron is lower and thus expect a
network to do poorer on lower energy patterns . With
our signal b - evX patterns and our background gluon
jets, we started with training patterns where the seed
electromagnetic (CEM) tower energy ranged from a) 3
to 15 GeV, then narrowed it to b) 15 GeV, and finally
restricted the sample further by c) requiring a stiff
track to be associated with the candidate electron
shower . Because of the large background cross section,
we must set the neural net trigger thresholds to accept
at most about 1% background . For approximately the
same amount of training data, network topology, and 77
and a parameters, and after the network performance
efficiency has generalized, we find for - 1 % back-
ground, the neural net efficiency on new signal pat-
terns, passing the same requirements as the training
data, improved from a) - 8%, to b) - 14%, and finally
to c) - 30% .

Even after we narrow the kinematic characteristics
of the training sample, there may still be variations,
and the optimized neural net will generally be efficient
in distinguishing only a subset of the patterns . Some-
times, the trained-net's response distribution for, say,
the signal data, will have several peaks, reflecting the
existence of subsets with different kinematic properties
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within the sample . The distribution may be used to
guide the pruning of the training patterns, to try to
steer the neural net to recognize a particular data
subset .

The number of patterns and the relative amount
from each class (signal and background) affect the final
separation . Table 1 shows different cases for patterns
from a 15 GeV jet pt with a 4 GeV Et electron
candidate generated from the Isajet Monte Carlo. To
compare the cases we check the neural net acceptance
efficiency at an output threshold value that allows the
network to accept at most - 1% background (last
column of table 1). The 1% value is a level permitted
at CDF based on luminosity, cross sections and dead
time considerations . The relative low efficiency of 20%
(first row of table 1) made it apparent that more than

1500 background patterns are needed for training.
With too few patterns, the efficiency is not only lower
but is also more likely to fluctuate (by a much as 40%)
at successive efficiency evaluation intervals; whereas,
the fluctuation is typically only 5% by using > 3000
background training patterns. In addition, the net does
not generalize so well : the discrepancy between the
acceptance of background training and new test pat-
terns widens by a factor > 3, as the number of weight
updating iterations is increased . To investigate whether
further increasing the total number of patterns or the
ratio of background patterns compared to signal is
advantageous, we loosen the output threshold cut to
improve the statistics of the background accepted (sig-
nal detection efficiency of 50%, fourth column of table
1). There is no significant improvement in doing either.
Because it requires much CPU to generate more train-
ing data, by assuming that 4224 events adequately span
the set of background patterns, we have checked that a
yet larger ratio of background-to-signal patterns shows
no improvement by multiplying the effective weight
change by ten for background events. Aside from gen-
eration time, the CPU needed for training also in-
creases with the number of patterns : for a total of 7000

Table 1
The effect of varying the number of training patterns and the relative amounts of signal-to-background : the fourth column shows
the acceptance of new background patterns when the trained net passes new signal patterns with 50% efficiency; and the last
column gives the signal efficiency when the background acceptance is required to be no more than - 1%

Number of training
Background

patterns
Signal

Background-to-
signal ratio

Background acceptance
(50% signal)

Signal acceptance
(1% background)

1452 1213 1 .2 3.0±0.2% -20%
3109 1213 2.6 2.9±0.2% -30%
4224 1213 3.5 2.2+0.2% -30%
42240 1213 34.8 2.6+0.4% -25%
5122 1777 2.9 2.8+0.2% -30%
3109 2182 1 .4 2.8±0.4% -30%
4224 2182 1 .9 2.7+0.4% -30%
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patterns, 50 inputs per pattern, and one layer of 10
hidden units, it takes about 8 hours on a 7-10 MIP
machine: whereas, 2500 patterns take about 3 h . Based
on these considerations we typically now use 4000-5000
gluon background and about 1200 b - evX signal pat-
terns for training .

Ap

Nenvork configuration

The topology of the net is important because it
helps determine the region of space containing the
minima points . Larger nets, with more hidden units
and associated weights, can parameterize more charac-
teristics of the training patterns . However, more free
parameters also require much more data and process-
ing time to optimize . As with any parameter fitting
procedure t little data force the parameters to take
on a ver<, specific value and "memorize" the input
training set, in which case the network performance
does not generalize to new test patterns. For the multi-
latier perceptron type of network, the number of in-
puts, the number of layers, the number of nodes within
each layer, and the number of weight connections
between nodes define the topology.

e numbers of layers determines what shape the
final surface separating the two classes of events may
take [9] . Three layers, in addition to the input layer,
where the nodes are continuous functions, can provide
the most general shape . Single layer networks involve
only linear combinations of the input variables and are
adequate only when the signal and background occupy
different sides of a plane in the input variable space .
Two layers allow a region of space to be approximated
by either an open or closed convex surface. We expect
the energy variables for signal and background jets
each to occupy a continuous region of space where the
surface that best divides them is not necessarily a
plane ; so, we use only two layers: one hidden layer and
one output . Furthermore, extra layers result in an
electronically slower trigger .
We now examine the number of nodes used in each

of layers . which also then determine the number of
weights (interconnections) . For the input layer, we
have 50 units (5 x 5 grid), a choice determined by the
size of the jets. A 6 x 6 grid yields about the same
separation efficiency but requires more electronics
channels to implement and processing time to train,
and a smaller grid is insufficient to contain the typical
jet. We use 10 nodes in the hidden layer and one in the
output . This results in a total of 510 weights plus 11
biases, 521 parameters to be optimized! Clearly, the
amount of training data must be large . However, not
all of the weights matter ; the larger weight values are
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usually of order 1 .0 and among the 500 weights be-
tween the input and hidden layer, about half of them
are smaller than 0.05 . We also try starting with fewer
nodes in the hidden layer prior to training, resulting in
fewer small-valued weights after training. For instance,
for one hidden layer with two nodes, only 12 of the 100
weights connecting the input and the next layer, are
less than 0.05 . The range in the values of the weights,
the achievable separation efficiency and purity by an
appropriate choice of neural net output threshold are
similar to the 10 node case . However, the response
distribution for signal patterns with two hidden units
contains two prominent peaks, one centered around
0.14 and the other at 0.8, unlike the ten hidden unit
case shown in fig. 4 which has one prominent peak .
The signal events in the two peaks differ most notice-
ably ii-i the degree of isolation of the electron . The ten
hidden unit case favors patterns with isolated electrons
in a much more gradual way, producing only one peak .
The background distribution for both cases has only
one peak, around 0.13. As the number of hidden nodes
is increased from 2 to 10, the signal events in the first
peak (at 0.14) diminish and migrate to the second
peak. The first peak does not continue to shrink as we
go to 15 hidden units for our fixed training sample size .

Appendix D

Trailing parameters

After defining the network topology and thus the
space containing the minima and the total number of
variables to optimize, the scale parameters a and -q in
eq. (A.4) then determine which of the points of the
function E the network can possibly reach ("step to")
during training. The variable -q is a "step size" to move
the neural net from one point to the next along the
direction of the slope of E towards a minimum . The
value of 71 should be chosen to be small enough so that
the minimization samples the points in a fairly smooth
fashion . The a term is an optional variable ; it further
smooths the weight changes since it brings in a term
involving the previous weight update . If the scale of
these parameters takes S to an " extreme end of the
sigmoid function, 0.0 or 1 .0, the training tends to
collapse (the value of E drops to and remains zero
suddenly) or to be slow . The weight changes are pro-
portional to the derivative of the sigmoid function, but
at the extreme ends, the derivative is very small or
zero . To sample as many points as possible, -q may be
set to smaller values and the training repeated with
different initial weights . We prefer smaller values for -q
also because the network output distribution seems to
be smoother . We notice that for different choices of 71,
the resulting shape of the network output distribution
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might vary . Perhaps, this indicates that the conver-
gence is not final or that there are different minima .
(However, the separation efficiency is similar for the
different cases with varying distributions.) The training
sets with higher 77 values appear to classify our data
(several peaks in the distribution) rather than perform
a single separation (two peaks, signal vs background).
Small changes to the other variable, a, affect the
training much less than changes to q [6]. We try values
ranging from 0.0 to 0.8, but usually used 0.3 or 0.5 for
a.

For each training pattern, we associate a desired
scalar response Strget in eq . (A.1). We use 0.1 for
background and 0.9 for signal . Choosing values like
0.05 and 0.95 would presumably create a greater dis-
tance of separation ; but, for our particular setup, using
target values closer to 0.0 and 1 .0 does not improve the
final results.

One more consideration in training is the number
of weight updating iterations, a value which we deter-
mine empirically from two main factors: the value and
stability of E (eq. (A.3)), and a comparison of the
separation efficiency for the new test vs the training
data . We require the acceptance efficiency to general-
ize to the test data . (This however does depend on how
many training patterns we use. Without enough data to

+ Seed 'Et > 5
x Seed Et > 6
o Seed Et > 7
o Seed Et > 8
X Seed Et > 9
o Neural Net
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Fraction of Signal Accepted

span the diversity of the entire pattern space, the
network acceptance on training and new test data
begin to diverge after a certain number of weight
updates - though this is not true with larger samples of
events .) The performance efficiency improves from it-
eration to iteration, but slowly so that it is adequate to
check the performance after every 200 updates. We
run about 3000 iterations for each training set, but for
our patterns, 1000 iterations are usually sufficient to
reach the best separation . Further weight updates do
not improve the efficiency . In practice, we sometimes
use two sigmoid units in the output layer connecting to
each one of the hidden units, although only one is
shown in fig. 1. Training signal patterns are required to
be 0.9 from output unit one and 0.1 from the other,
and exactly the opposite for background patterns. Once
the weight updating has reached optimum, the two sets
of weights connecting the hidden and each of the two
output nodes become antisymmetric (the value of one
set is the negative of the other, a likely result of the
fact that the sigmoid function equals one minus the
sigmoid with the exponent term negated). Reaching
this antisymmetry helps confirm when to stop training.
We find that values of the weights between the input
and hidden layers grown but do not typically display
any obvious symmetry even after many iterations, de-
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Fig. 5. A comparison of neural net and threshold cut acceptance for signal and background patterns with only two inputs . The
conventional selection curves correspond to different had/e.m . ratios after requiring the electromagnetic seed E, to be above some
threshold . The neural net curve gives the acceptance for different network output values. Though shown for only two cases, all of
the had/e .m . curves only asymptotically approach the network curve, but never cross. A neural net performs as well as or better
than conventional selection requirements, the relative improvement increasing with increasing variables and correlations among

variables.



spite the symmetry of the 5 x 5 pattern itself; they do
not give much of a clue to the number of necessary
iterations.

p ndiix E

Assessment of our neural net

athematical considerations of neural net algo-
rithms are still under study (6,9] . There are possible
problems at each stage of the algorithm we use . For
fairly complicated networks and jet patterns like ours,
it is not possible to check in advance whether a solu-
tion (convergence of the minimization) exists or
whether there are many local minima . It takes experi-
mentation to determine the best region for the training
parameters q and a . Afterwards, we make many train-
ing runs using different parameters in that region to
sample as much of the space containing the minima as
possible. However, the minimization can collapse which
occurred 5-10% of the time for us even after we set
the order of magnitude of the training parameters in a
reasonable region .

There are other drawbacks in using the algorithm .
The optimal techniques for our particular set of pat-
terns may not apply to another application . Also, the
best separation is not necessarily the most beneficial ; it
may not yield accepted patterns with the most desir-
able kinematic characteristics. It is difficult to control
the exact nature of the final sample of accepted events .
The saving feature of the algorithm and the network is
that in many cases studied, a desirable minimum is
reached and signal and background patterns are in-
deed separated, as for the b - evX.

Our primary goal has been to achieve the best
separation rather than to obtain a sample of patterns
with a particular set of characteristics . All of our good
training runs result in approximately the same final
separation efficiency, which suggests we have reached
a limit. Testing the efficiency and plotting the pattern
characteristics every couple hundred of iterations is
one way of determining whether desirable separation
has been reached . The lack of fluctuations in E and in
the network acceptance efficiency after about 500
weight updates make it unlikely for us to accidentally
skip over the "best" minimization point even though
we do not check the efficiency after each update .

Because there is an upper limit for separating two
sets of patterns, it is interesting to verify on a simple
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example that neural net triggers are better able to
reach this limit than conventional one-dimensional
threshold requirements . We train on a 1 x 1 pattern
consisting of two inputs, one electromagnetic and one
hadronic tower E, . With only two inputs, there is not
much choice in the way of cuts, other than to demand
each E, or the ratio of the two E, (had/e.m.) exceed
some value . In this example, there are few enough
variables that we can optimize the signal-to-back-
ground ratio by inspection, and we find that require-
ments on electromagnetic E, and had/e.m. to be best.
Shown in fig. 5, is the acceptance curve for different
values of had/e.m. for E, above some fixed threshold ;
also shown in the neural net's acceptance for different
choices of the output value . The neural net does in-
deed to better than conventional cuts, but with so few
variables, the improvement is only slight . For multi-
dimensional variables, however, a neural net becomes
more effective and practical for achieving the best
separation, particularly when the signal is hard to
distinguish from background . Knowing this, we can
also use neural nets in another way . They can help
determine the best range of values to set one-dimen-
sional cuts for the different variables used in a conven-
tional trigger or analysis, or to show whether a particu-
lar set of variables has any hope of extracting a signal .
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