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1. INTRODUCTION 

Characterization of the Regular Languages in Subclasses of NC ’ 

In this paper we consider the regular languages contained in various subclasses 
of the nonuniform circuit complexity class NC ‘, which consists of the languages 
recognized by O(log n)-depth bounded fan-in boolean circuit families. This study 
was motivated by a question raised in a paper of Chandra, Fortune, and Lip- 
ton [8]: Which regular languages can be recognized by constant-depth unbounded 
fan-in circuits of polynomial size ? In other words, what are the regular languages 
in the nonuniform circuit complexity class AC’? In Section 5, we provide a 
complete answer to this question. Indeed, we give several characterizations of this 
class of regular languages in terms of operations on languages, first-order logic, and 
computable semigroup-theoretic invariants of regular languages. As a by-product, 
we show that it is decidable whether a given regular language belongs to AC’. 

The same methods are used in Section 6 to characterize the regular languages 
that are AC’-reducible to addition modulo p, where p is prime (that is, the regular 
languages in the circuit complexity class ACCCp)). We also identify a class of 
regular languages (those whose syntactic monoids contain a nonsolvable group) 
that are complete for NC’ under constant-depth reductions. These constitute all the 
complete regular languages unless there is some integer q such that adding bits 
modulo q is complete. 

These theorems depend on a number of lower-bound results in circuit com- 
plexity: For the characterization of the regular languages in AC’, we require the 
theorem (due to Ajtai [l], and Furst, Saxe, and Sipser [ 111) on circuits that add 
bits modulo m, and for the characterizations in Section 6 we need Smolensky’s 
generalization of this result [21]. Our theorem on the regular languages complete 
for NC ’ uses a result of Barrington [2]. 

Nonuniform versus Uniform Circuit Complexity 

The characterization of the regular languages in these circuit complexity classes 
may appear to address a very narrow question. We believe, however, that it 
provides an important clue to the structure of NC ’ and may help us find new lower 
bounds results. We give the detailed reasons for this belief in Section 8-here is a 
brief summary: Immerman [ 131 has shown that AC0 consists of precisely those 
languages definable by first-order sentences of a certain kind. In these sentences, 
variables are interpreted as positions in a bit string. There is a unary predicate x, 
where rc(x) is interpreted to mean “the bit in position x is on,” and what we call 
numerical predicates of arbitrary arity-satisfaction of such a predicate depends 
only on the positions associated to the variables and on the length of the string 
in which the predicate is interpreted, not on what bits appear in these positions. 
Our results in Section 5 imply that the regular languages in AC0 are definable by 
sentences in which all the numerical predicates have the form 

x=0 (mod q), 
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and 

x<y. 

This can be viewed as a connection between nonuniform and uniform com- 
plexity, reminiscent of the results of Karp and Lipton 1141 on polynomial-size 
circuits: The nonuniform class AC0 contains uncountably many languages, and 
thus some nonrecursive ones. Nonetheless, this nonuniformity plays no role in the 
recognition of highly structured (in this case, regular) languages. Indeed, any 
regular language in AC0 can be recognized by a highly uniform AC0 circuit family. 

There is a natural “explanation” for this phenomenon: Numerical predicates used 
to define a regular language can always be replaced by numerical predicates that 
are recognized, in a sense that can be made precise, by a finite automaton. As 
simple as this principle sounds, we have no qualitative proof of it. We know that 
it is true in the context of first-order sentences, but the only proof we can provide 
uses the lower-bound results of [l] and [ 111. We also know that the principle 
holds when we permit the use of a new kind of quantifer-a “modular quantifer” 
of prime modulus. We are thus led to conjecture the principle in general, for both 
first-order sentences and those built with modular quantiliers, irrespective of the 
modulus. If this conjecture is true, we will obtain as a consequence a new lower- 
bound theorem, showing that MAJORITY is not in ACC, and new, algebraic 
proofs of the known lower bounds. 

It is interesting to note that the question of the expressive power of first-order 
sentences with arbitrary numerical predicates was first raised by McNaughton, in 
1960 (reported in McNaughton and Papert [ 161). Our results in Section 8 prove, 
in part, one of McNaughton’s conjectures. (More precisely, we have proved that 
every regular language defined by a first-order sentence with arbitrary numerical 
predicates is in the class that McNaughton calls FOL,. In fact, McNaughton con- 
siders an expanded class of first-order formulas and conjectures that the regular 
languages definable in this class belong to a family of languages he names FOL... 
Our methods do not appear to apply this larger class.) 

Organization of the Article 

In Section 2 we give our general terminology concerning circuit complexity 
classes, reductions, and first-order logic. 

Everything we do in this paper requires extensive use of the theory of the syntactic 
WZQnQid of a regular language. In Section 3, we have collected all the results of this 
theory that we use in the sequel. It should be noted that the results on AC0 can be 
read without the material on languages recognized by wreath products and triple 
products. 

In Section 4 we give a constant-depth reduction of multiplication in a finite 
monoid M to the problem of recognizing a regular language L having A4 as a 
quotient of a submonoid of its syntactic monoid. As the existence of this reduction 
requires a technical condition on the syntactic morphism of L, the precise statement 
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of our reduction lemma (Lemma 2) is somewhat complicated. Lemma 2 is used in 
the proofs of the principal results of Sections 5,6, and 7. 

Theorem 3 of Section 5 gives the promised characterizations of the regular 
languages in AC’, and Theorem 5 of Section 6 does the same for ACC(p) with p 
prime. In Section 7 we use Lemma 2 and Barrington’s results [2] on branching 
programs of bounded width to show that any regular language whose syntactic 
monoid contains a nonsolvable group is complete for NC’ with respect to constant- 
depth reductions. Our conjectures of Section 8 would imply that these are the only 
complete regular languages. 

In Section 8 we discuss, as mentioned above, the connections between 
nonuniform and uniform logical descriptions of the regular languages in these 
complexity classes. We state the conjecture suggested by this discussion and, using 
the algebraic machinery of Section 3, derive the consequences of these conjectures. 
Section 9 lists some open questions suggested by our results. 

2. NOTATION AND TERMINOLOGY 

Circuit Complexity 

For more on the circuit complexity classes and reductions defined here, see 
Cll, 9,21. 

AC0 denotes the family of subsets L of (0, 1 }* for which there exists a sequence 
(C,} of unbounded fan-in boolean circuits such that C, has n inputs and accepts 
the set L n (0, l}“, the depth of C, is constant (that is, independent of n), and the 
number of gates of C, is bounded by a polynomial in n. 

Let q 3 1. ACC(q) denotes the family of subsets of (0, 1 >* accepted by such 
circuits where we permit, along with the boolean gates, MOD(q) gates, which emit 
1 if the number of inputs that are on is divisible by q, and 0 otherwise. Observe that 
ACC( 1) = AC’. ACC denotes the union of the ACC(q) over all q. 

NC’ denotes the family of subsets accepted by bounded fan-in families of 
boolean circuits with depth O(log n). It is easy to see that for any q > 1, 
AC0 E ACC(q) c ACCc NC’. As indicated in the introduction, it is known that 
the first of these inclusions is strict, and that the second is strict if q is prime. 
We believe that all three inclusions are strict for all values of q; evidence for this 
conjecture is discussed in Sections 8 and 9. 

These circuit complexity classes as defined here are nonuniform; we impose no 
condition on our circuit families, other than that they satisfy the required size and 
depth bounds. As it turns out, this makes no difference to our conclusions. Indeed, 
our results can be interpreted as saying that any regular language recognized by a 
nonuniform circuit family of one of these types is also recognized by a similar 
family satisfying a very strong uniformity condition. (See [3].) 

Reductions 

Let A and B be finite alphabets, and let Kc A* and L E B*. As we wish to dis- 
cuss recognition of these languages by boolean circuits, we assume that each letter 
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of A is coded by a fixed-length string of bits, and similarly for B. We can build 
circuits that contain, in addition to the usual boolean gates, oracle gates for the 
language L. An n-input L-gate has Y. n boolean inputs, where r is the number of 
bits used to encode an element of B; the gate emits a 1 if the encoded element of 
B” is in L, and 0 otherwise. The size of circuit containing such gates is defined to 
be the sum, over all boolean and L-gates, of the number of input wires to each gate. 
K is said to be AC’-reducible to L if K is recognized by a constant-depth polyno- 
mial-size family of such circuits. K is said to be constant-depth reducible to L if there 
is such a family in which no circuit contains a path from the output of one L-gate 
to the input of another. 

Special Languages 

We emply a special notation for certain languages in (0, 1 >*. If A is any finite 
alphabet, w E A* and a E A, then we denote by IwI the length of w and by (WI, the 
number of a’s in w. We then define: 

LENGTH(q)= (WE {O, I>* I I4 =O (modq)) 
suM(q)= {WE (0, I>* I lwl, =O (modq)) 

MAJORITY= (we (0, 1}* 1 Iw/I> iwio}. 

First-Order Logic and Extensions 

See [24] for a discussion of definability of regular languages in extensions of 
first-order logic. 

We employ a logical apparatus for defining subsets of A*, where A is a finite 
alphabet. Our basic language is the first-order language with a binary relation < 
and, for each a E A, a unary predicate Qn. We interpret variables as positions in 
words over A, so that x < y means that position x is to the left of position y, and 
Q,x means that the letter in position x is a. A first-order sentence then defines the 
set of words in A* that satisfy the sentence. We denote by FO the family of all such 
subsets of A*. 

Let us adjoin to our language the unary predicates CL, where Cix is interpreted 
to mean x z r (mod d). FOCC] denotes the family of subsets of A* definable in this 
extended first-order language. 

More generally, we can admit as atomic formulas relation symbols R of arbitrary 
arity. We interpret these so that the truth of R(x,, . . . . xk) depends only on the posi- 
tions xi and the length of the word w, and not on the letters in those positions. Such 
an R will be called a numerical predicate. We denote by FO[R] the class of 
languages definable by such formulas. Obviously FO G FO[C] s FO[R]. 

We shall also consider generalized quantifiers 3; where 3; x+(x) means that the 
number of positions satisfying $ is congruent to r modulo q. (FO +MOD(q)) 
denotes the family of languages defined using both ordinary quantifiers and 
such modular quantifiers, with modulus q (but without the predicates Ci), 
(FO + MOD(q)) [C J denotes the family of languages defined by further admitting 
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the predicates C& and (FO + MOD(q)) [R] the family of languages defined by 
admitting arbitrary numerical predicates. (FO + MOD), (FO + MOD) [C], and 
(FO + MOD) [R] represent the unions of these families over all moduli q. 

3. ALGEBRAIC PRELIMINARIES 

For more information on the matters discussed in this section, see the books by 
Eilenberg [lo], Lallement [ 151, and Pin [ 171. 

Syntatic Monoid and Syntactic Morphism 

A monoid is a semigroup with an identity element. The set A* of all words over 
an alphabet A is then the free monoid generated by A, with the empty word (which 
we denote by 1) as the identity. 

Let A be a finite alphabet and let L be a subset of A*. Let M be a monoid. We 
say that M recognizes L if there is a morphism 4 : A* -+ M such that L = X# -’ for 
some Xc M. We also say in such an instance that the morphism 4 recognizes L. 
It is not difficult to see that recognition by a finite monoid is equivalent to 
recognition by a finite automaton, so the regular languages in A* are exactly those 
recognized by finite monoids. 

Two words w, and w2 are said to be congruent mod L, written w, 21,. u12, if for 
all u, u E A*, 

UWlVE L if and only if UU’Z v E L. 

The equivalence relation z L is a congruence on A*. The quotient monoid A*/- L 
is denoted M(L) and is called the syntactic monoid of L. The projection morphism 
qL: A* --$ M(L) is called the syntactic morphism of L. A morphism 4: A* + M 
recognizes L if and only if there is a morphism 8 such that Diagram 1 is 
commutative. In particular, L is regular if and only if M(L) is finite. 

It is possible to give an equivalent definition of the syntactic monoid and syntac- 
tic morphism in terms of automata. In a complete deterministic automaton every 

A* 

DIAGRAM 1 
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word w induces the mappingf, : q H q . w on the set of states. These mappings form 
a monoid A4 under composition, and the function 4 taking w to f, is a morphism 
from A* to M, provided that we compose mappings in left-to-right order. If we do 
this with the minimal automaton of L, then A4 is the syntactic monoid of L and 6 
the syntactic morphism. 

Wreath Product 

Let A4 and N be monoids. The wreath product MwrN consists 
where f e MN and n E N. A multiplication in MwrN is defined by 

of all pairs (f, n) 

where for n E N, g(n) =fi(n)fi(nnl). This product is associative, and the pair (I, l), 
where I(n) = 1 for all n E N, is the identity. Thus MwrN is a monoid, and the projec- 
tion rc: MwrN --f N onto the right-hand coordinate is a morphism. 

Relational Morphisms and the Derived Semigroup 

We consider Diagram 2, where M and N are monoids and q3 and q are morphisms, 
with q5 onto. The relation @-‘v] : A4 + N, that is, the set 

&‘~={(m,n)EMxNJw~=m, wq=n for some WEA*}, 

is called a relational morphism. The derived semigroup D of the relational morphism 
consists of a zero, together with the triples (n, m, n’), where n, n’ E N, m E M, and for 
some u, wEA*, vq = n, w# = m, and (vw)~ = n’. Multiplication is given by 

(n,, ml, 6). h, m2, 4) = 
(n,, mIm2, ni), ifn; =n,; 

0, otherwise. 

It is easy to check that this multiplication is well-defined and associative, and thus 
D is a semigroup, which is finite in case A4 and N are both finite. In certain instan- 
ces it may be preferable to have D be a monoid, which can be accomplished by 
adjoining an identity element to D. (Recent research indicates that the best alter- 
native is to use a modified version of D that is not a semigroup at all, but a 

DIAGRAM 2 
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Mv M’s DwrN-----------_)N 
7c 

DIAGRAM 3 

category. See Tilson [27] for this approach. The somewhat cruder formalism used 
here is sufficient for our purposes.) 

The principal property of the derived semigroup is the following: There is a 
commutative diagram (Diagram 3) defined by setting, for each a E A, a+ = (F,, a~). 
where for all n E N, F,(n) = (n, ad, n . a?). 

Languages Recognized by Wreath Products 

In Straubing [22 3 the following operation on languages is introduced. Let 
L c A*, a E A, 0 d r < d. Then (La, r, d) consists of all u’ E A* such that the num- 
ber of prefixes of w in La is congruent to r modulo d. This is used in conjunction 
with the study of languages recognized by wreath products of the form M,wrM,, 
where M, and M, are finite and M, contains no nonsolvable groups. While the 
results in [22] refer only to the monoids recognizing these languages, the same 
arguments can be used to obtain the following sharper results, which concern 
recognition by morphisms: 

PROPOSITION 1. Let M,, M2 be finite monoids. Let I,!I: A* + MlwrMz be a 
morphism, and II: M,wrM, + M2 the projection morphism. 

(a) I_f M, is aperiodic (i.e., contains no nontrivial groups), then every language 
recognized by $ is in the smallest family of subsets of A* containing the letters and 
the languages recognized by $UC and closed under boolean operations and concatenu- 
tion. 

(b) If M, contains no nonsolvable groups, then every language recognized by $ 
is in the smallest family of subsets of A* containing the letters and the languages 
recognized by @t and closed under boolean operations, concatenation, and the opera- 
tions L -+ (La, r, d ), where d is a divisor of the order of a group in M, . 

Concatenation and Triple Products 

Eilenberg [lo] studied a bilateral semidirect product, or triple product 
(S,, T, S,), where S,, Sz, and T are finite monoids. It is shown there that there is 
a morphism 

rc: (S,, T, S,) --+ S, x S2 
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M(4 
y:*\ 

5) w @ > 
DIAGRAM 4 

with the following property: If G is a group in (S,, T, S,) then the kernel of the 
morphism n: G --) Grc is isomorphic to a group in T. In particular, if T contains no 
subgroup of order p, where p is prime, then rc is injective when restricted to groups 
of order p. 

It is also shown in Eilenberg’s book that for regular languages L, , L, s A *, there 
is a triple product A4 = (M(L, ), T, M(L*)), where T is the monoid of all subsets of 
M(L,) x M(L,) with union as the operation and a morphism 4: A * -+ A4 such that 
Diagram 4 is commutative, and 8 is surjective. (A4 is the Schiitzenberger product of 
L, and L2.) Similar remarks apply to the operation 

where L, *4 L2 consists of all w E A * such that the number of factorizations w = UD 
with u EL,, u E L2 is divisible by q. In this case the monoid Tin the triple product 
consists of the set of all maps f: M(L,) x M(L,) + Z, with pointwise multiplication 
as the operation-in particular T is a group of exponent q. Observe that in the first 
case, the morphism 7~ is injective when restricted to groups in the triple product, 
and in the second case it is injective when restricted to groups of prime order p not 
dividing q. 

Suppose we have a commutative diagram (Diagram 5), where 8,19’ are surjective, 
and /?, B’ are injective on groups of order p with p prime. Let 

NT- M' ___I) N' 
P %- M” p’ Ml 

DIAGRAM 5 
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The morphism K --) N’ taking (m’, m”) to m’0 is surjective, and it is not difficult 
to show that the morphism taking (m’, m”) to m”fl’ is injective on groups of order 
p contained in K. (See [23].) The property “injective on groups of order p” is thus 
closed under a kind of composition of diagrams. We use this fact in Section 8. 

4. A REDUCTION LEMMA 

We are concerned in this paper with characterizing the circuit complexity of 
regular languages in terms of the algebraic invariants of these languages. We wish 
to be able to say something like: If L, has a “simpler” syntactic monoid than L,, 
then L, is reducible to L, under some appropriate notion of reducibility that 
preserves membership in our complexity classes. Unfortunately this is false. (For 
example, let L, = LL’NGTH(4) and L, = SLJM(2). Then M(L,) is the cyclic group 
of order 4 and M(L,) is the cyclic group of order 2. However L, E AC0 and 
L, +! AC’.) We do get constant-depth reducibility if the syntactic morphism of L, 
factors through the syntactic morphism of L,. The following lemma is a stronger 
version of this fact. 

LEMMA 2. Let A and B be finite alphabets, and let L, c A*, Lz G B* be regular 
languages. Suppose that L, is recognized by a morphism 6: B* -+ N, where N is a 
quotient, via a morphism a, of a submonoid M’ of M(L,). Suppose further that there 
is a positive integer t such that for every bE B there exists w E A’ such that 
wnL,a = 66. Then L, is constant-depth reducible to L, . 

Proof. Let u, v E A*. We define, as in [lo], 

It follows from the finiteness of M(L,) that there are only finitely many different 
languages u-‘L,v-‘. Choose ui, vi, . . . . u,, v, so as to obtain the complete set of 
such languages. Two words w,, w2 have different images in M(L) if and only if 
there exists ic { 1, . . . . r} such that ui w, vie L and u, wZvi$ L, or vice versa. 

We now show how to construct a constant-depth, O(n)-size circuit with L,-gates 
that accepts the strings of length n in L2. 

Let b,, . . . . b, E B be the inputs. For each b E B there is a word wh E A* of length 
t such that wbq5qL = bS. The inputs b2, . . . . b, _ 1 are fed into fixed-size boolean cir- 
cuits that compute the encoding b H wb. The input b, is fed into r fixed-size circuits 
that produce the outputs u1 wb,, . . . . u,wb,, and b, is fed into r fixed-size circuits that 
produce wb,vi, . . . . wb,v,. The results are fed into r separate circuit elements for test- 
ing membership in L,-the ith element tests inputs of length tn + Jui vi) and is used 
to determine if ui wb, ... w,,,vi is in L1. The result in { 0, 11’ completely determines 
(Wb, . . . w,J q5 (and hence (b, . . . b,) 6). We can now feed this result into a fixed-size 
circuit with r inputs and one output, to determine if b, . . b, is in L,. 1 
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5. REGULAR LANGUAGES IN AC0 

The star-free languages in A* are those subsets obtained, beginning with the 
letters of A, by repeated application of boolean operations and concatenation. 
Evidently, these languages are all regular. There are two important characteriza- 
tions of the star-free languages in the literature. The first, due to Schtitzenberger 
[19], is in terms of the syntactic monoid 

LEA* is star-free if and only if M(L) is aperiodic; 

that is, M(L) contains no nontrivial groups. The second, due to McNaughton [16], 
is in terms of first-order definability: 

LEA* is star-free if and only if L E FO. 

It is easy to show that AC0 is closed under boolean operations and concatenation 
and therefore contains all the star-free subsets of (0, 1 )*. AC0 also contains some 
regular languages that are not star-free, for example all the languages LENGTH(q), 
where q > 1. (We know these are not star-free because the syntactic monoid of 
LENGTH(q) is Z,, a nontrivial group.) It is shown in [l, 11) that SUM(q) is not 
in AC’. Since SUM(q) and LENGTH(q) have isomorphic syntactic monoids, we 
will not be able to obtain a characterization of the regular languages in AC0 in 
terms of the syntactic monoid alone. We do, however, obtain a characterization in 
terms of the syntactic morphism, and another in terms of first-order definability. 

THEOREM 3. Let L s { 0, 1 } *. The following are equivalent: 

(a) L is regular and LE AC’, 

(b) L E FO[C]. 

(c) L belongs to the smallest family of subsets of (0, l}* that contains (O}, 
{ 1 > and the languages LENGTH(q) for q > 1, and that is closed under boolean 
operations and concatenation. 

(d) L is recognized by a morphism II/ : { 0, 1) * -+ MwrZ,, where M is a finite 
aperiodic monoid, and where the composition @c : { 0, 1 } * -+ Z, takes both 0 and 1 to 
the generator 1 of Z,. 

(e) M(L) is finite, and for each t 2 0, the image of (0, 1 }’ under the syntactic 
morphism I]~ contains no nontrivial group. 

ProoJ (a) + (e). Since L is regular, M(L) is finite. Suppose that for some t 2 0, 
the image of (0, 1 }’ under vr contains a nontrivial group G. Then G has an element 
m of order k > 0. Let M’ = {m, m2, . . . . mk} be the subgroup generated by m. We see 
that mk is the identity element of M’. Choose U, v E (0, 1)’ so that uqL = mk, 
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M(L) Z 
r 

DIAGRAM 6 

vqL = m. Define a morphism 6 : (0, 1) * + M’ by 06 = mkr 16 = m. Then uqL = 06 
and vy, = 16, so by Lemma 2, SUM(k) =06-l is reducible to L and is thus in AC’, 
a contradiction. 

(e) * (d). For each nontrivial group G contained in M = M(L) pick a non- 
empty word vc such that vcqL is the identity of G. Let r be a common multiple of 
the lengths of all these uG. Consider the relational morphism defined by Diagram 6, 
where 05 = l{ = 1 E Z,. We show that the derived semigroup D of this relational 
morphism is aperiodic. By the remarks in Section 3 concerning relational 
morphisms and the derived semigroup, L is recognized by a morphism 
1+5 : (0, 1 > * + DwrZ,. Suppose D contains a nontrivial group. This group cannot 
contain the zero of D, so by the definition of multiplication in D, there is an n E Z, 
such that all the elements in the group are of the form (n, m, n). Let (n, m, n) be one 
such element and suppose it has order k > 1. Then G = {m, m2, . . . . mk} is a non- 
trivial group in M. Choose v E (0, 1 } * such that vqL = m. It follows from the defini- 
tion of the derived semigroup that vi = 0, and thus Iu( is a multiple of 10~1. There 
is thus some power w of vG such that u and w have the same length. Let t = klvl. 
For 1 <j< k, the string ajwk-j has length t. But (v’wk-j)qL = mj, so the image of 
{ 0, 1)’ under qL contains G, a contradiction. 

(d) * (c). The languages recognized by the morphism {: (0, 1 }* -+ Z, that 
takes both 0 and 1 to 1 E Z, are unions of languages of the form 
{w 1 IwI s s (mod r)} = LENGTH(r). (0, l}“. The conclusion now follows at once 
from Proposition 1. 

(c) = (b). The language LENGTH(d) is defined by the sentence 
3x(Vy( y < x) A Cix), and is consequently in FO[C]. It is easy to show (see, for 
example, [24]) that FO[C] is closed under boolean operations and concatenation. 

(b) 3 (a). The predicates Ci can be expressed in terms of the modular quan- 
tifiers 3>, so every language in FO[C] is in (FO + MOD). It is shown in [24] that 
every language in (FO + MOD) is regular. To show that L E AC’ we take a first- 
order sentence that defines L and rewrite it as a circuit that accepts L n { 0, 1) “. 
Replace each occurrence of 3x 4(x) by V;= 1 d(i) and each occurrence of Vx 4(.x) by 
/$‘= 1 d(i). (We need to introduce a distinct index i for each quantifier that we 
replace.) We now replace the atomic formulas i <j by the boolean constant 1 if i < j 
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and by 0 otherwise. QOi is replaced by lxi and Qli by xi. C;x is replaced by 1 
if n s Y (mod d) and by 0 otherwise. The result is an unbounded fan-in boolean 
expression in variables x1, . . . . x,-that is, a circuit-that defines L n (0, 11”. The 
depth of the circuit is equal to the depth k of nesting of quantifiers in the original 
sentence (and is therefore independent of n). The size of the circuit is O(nk). Thus 
LEAC’. 1 

EXAMPLE. Consider the language LENGTH(2). It obviously satisfies condition 
(c) of the theorem. It satisfies condition (b), as it is defined by the sentence 

Vx((V~(y<x))+x=O (mod2)). 

While the syntactic monoid of this language is a nontrivial group, we never have 
two words of the same length mapped under the syntactic morphism to different 
elements of the syntactic monoid. Thus condition (e) is satisfied. In contrast, 
SUM(2), which has an isomorphic syntactic monoid, does not satisfy condition (e), 
since words containing an even number of 1s are mapped to the identity of the 
group and words containing an odd number of 1s are mapped to the generator of 
the group. 

Our characterization implies that any regular language in nonuniform AC0 is 
accepted by a very uniform constant-depth circuit family. Thus our characterization 
remains true even if a stringent uniformity condition (e.g., the DLOGTIME unifor- 
mity of [3]) is imposed. 

Theorem 3 enables us to determine in many instances from the multiplication 
table of M(L) whether a regular language L is in AC’. (For instance, one easy con- 
sequence of Theorem 3 is that every group in M(L) must be cyclic.) In fact, the 
general problem is decidable: Our proof of Theorem 3 shows that a regular 
language L is in AC0 if and only if the relational morphism qtl [, where 
[: (0, 1 > * --f Z, is as defined in the first part of the proof, has an aperiodic derived 
semigroup. We can compute yIL, the multiplication table of M(L), and an 
appropriate value for r from the minimal automaton of L. We will be able to write 
down the multiplication table for D, and hence determine whether or not it is 
aperiodic, provided we can calculate the relation q~’ 5. But this is just the image of 
the morphism (qL, [): (0, I}* -+ M(L) x Z,, and every element is the image of a 
word of length no more than r. (MJ. Thus the relation can be effectively computed. 
We have proved: 

THEOREM 4. It is decidable whether a given regular language belongs to AC’. 

The class FO[C] is considered, in another context, in the book by McNaughton 
and Papert [16]. They also show, using a different argument, that membership in 
this class is decidable. 
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6. REGULAR LANGUAGES ACCEPTED BY CIRCUITS WITH GATES 
THAT COUNT MODULO A PRIME 

Smolensky [21] studied the behavior of constant-depth families of circuits that 
contain both boolean gates and gates that compute the sum of the inputs modulo 
a fixed primep. He showed that such a family of circuits requires exponential size 
to recognize the language SUM(q), where q is relatively prime to p. (An earlier ver- 
sion of this result in the case p = 2 is due to Razborov [ 181.) We use this theorem, 
as we used the Furst-Saxe-Sipser result in the preceding section, to characterize the 
regular languages recognized by such circuits. (We state our results in terms of 
circuit complexity classes defined with polynomial size bounds. The restriction 
to polynomial size, rather than the more generous lower bound implied by 
Smolensky’s result, is relatively unimportant here; however, it is crucial to our 
arguments in Section 8.) 

THEOREM 5. Let p be prime, and let L E (0, 1) *. The following are equivalent. 

(a) L is regular and L E Ace(p). 

(b) L E (FO + MOD(p)) [Cl. 
(c) L belongs to the smallest family of subsets of (0, 1 } * that contains 

(0 j, { 1> and the languages LENGTH(q) for q > 1 and that is closed under boolean 
operations, concatenation, and the operation 

T-, <Ta, r,p), 

where 0 < r < p. 
(d) L is recognized by a morphism II/ : (0, 1 > * -+ MwrZ,, where A4 is a finite 

monoid in which every group is a p-group, and where the composition 
$7~: (0, 1 }* -+ Z, takes both 0 and 1 to the generator 1 of Z,. 

(e) M(L) is finite, and for every t 2 0, every group contained in the image of 
{ 0, I}’ under the syntactic morphism qL is a p-group. 

Proof: The proof is very close to that of Theorem 3. We indicate here the few 
points of difference. 

(a) * (e). We suppose that the image of (0, I)’ under qL contains a q-group, 
where q is a prime not equal to p. By the same argument as in Theorem 3, SUM(q) 
is in ACC(p), contradicting Smolensky’s result. 

(e) => (d). Let I and c be as in the proof of Theorem 3. It follows by the same 
argument that every group in the derived semigroup D is a p-group and that L is 
recognized by a morphism II/ : {O, 1) * + DwrZ,. 

(d)*(c). This is immediate from Proposition 1, as in the proof of 
Theorem 3. 
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(c)*(b). It follows from the techniques used in [24] that 
(FO + MOD(p)) CC] is closed under all the cited operations. 

(b)*(a). We use the same argument as in Theorem 3, but we must show 
how modular quantifiers are treated when we transform quantified formulas into 
circuits. Observe that if 0 <r <p then 31, d(x) is equivalent to 

3y (Q(x <y A d(X)) A 3 =I X(X > y A 4(x))), 

where 3 =r means that exactly r positions satisfy the condition in the scope of the 
quantifier. Since this can easily be defined in terms of ordinary existential quan- 
tifiers, it suffices to consider modular quantifiers of the form 3:. We rewrite 
3p” x+(x) as MOD(p):=, b(i) and as a result show that (FO +MOD(p)) CC] c 
ACC(P). I 

We can effectively determine from the multiplication, table of a finite monoid 
whether the only groups it contains are p-groups. Thus we can use the argument 
of Theorem 4 to prove another decidability result: 

THEOREM 6. Let p be prime. It is decidable whether a given regular language is 
in ACC(p). 

7. REGULAR LANGUAGES COMPLETE FOR NC' 

Let G be a finite group. Let A, = {a, [ g E G) be a finite alphabet in one-to-one 
correspondence with G. The map ag H g extends to a morphism 4: AZ. --) G. Then 
for any g E G, L, = gq5-’ is a regular language whose syntactic monoid is G. 

Let L E NC ‘. Barrington [2] showed that if G is a nonsolvable group and g E G, 
then L is constant-depth reducible to L,. Since NC’ contains L, (relative to 
any encoding of the alphabet A, by fixed-length bit strings), this shows that L, is 
complete for NC’ with respect to constant-depth reductions. Here we extend this 
result. 

THEOREM 7. Let A be a finite alphabet, and let L E A* be a regular language 
such that M(L) contains a nonsolvable finite group. Then L is complete for NC’ with 
respect to constant-depth reductions. 

Proof. M(L) contains a group G’ that maps onto a simple nonabelian group G 
via a morphism LX The morphism #G: A: 4 G recognizes L,. We show that there 
is an integer t and for each ag E A, a word wg E A* of length t, such that 
w,q,_a = a,q5o. Lemma 2 then implies that L, is constant-depth reducible to L, and 
the result follows from the completeness of L,. 

Let z E A* be a nonempty word such that zqr E G’. Let k = (zJ . ICI, and let 

H= {h E G ) there exists w E A* such that wq,cr=h and k I Iwl}. 
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Clearly H is closed under product, so H is a subgroup of G. If gE G, h E H, 
uqLcc=g, w~]~cx=h, then g-l hg=(&i hv)q,a, so H is a normal subgroup of G. 
Let g,,g, be two noncommuting elements of G, and let u,q,cr=g,, uzrLa=g2. 
Then 

(ul~*)kfl,~# Cu2U1(u1u2)k- ‘1 Y[.X, 

so H contains at least two distinct elements. Thus H= G, by the simplicity of G. We 
now choose for each g E G a word ug of length divisible by k such that uRqLa = g. 
Observe that zlGl is of length k and maps to the identity of G, so by concatenating 
each ug with enough copies of zIGJ we obtain words wK, all of the same length, such 
that wnqLa = g, as required. 1 

The circuit complexity class ACC is closed under boolean operations, concatena- 
tion, and the operation 

L + (La, r, d). 

It follows from the result of [22] that ACC contains the family of regular languages 
Y&,, consisting of all L c (0, 1) * for which M(L) contains no nonsolvable groups. 
ACC is also closed under constant-depth reductions. It is not yet known whether 
ACC = NC ‘. If the two classes are equal, then ACC contains all regular languages. 
If (as we suspect) the two classes are different, then Theorem 7 implies that the 
regular languages in ACC are precisely those in the family _f&,,. The same remarks 
apply to any complexity class lying between ACC and NC’. One such class that has 
been the subject of some study is X0, which consists of those languages in (0, 1 )* 
that are AC’-reducible to MAJORITY. (See [12].) We summarize this as follows: 

THEOREM 8. Let L 5 (0, 1 I* be regular. 

(a) IfACCZNC’ then LEACC ifand only ifL~5&,. 

(b) If TC'fNC' then LETC’ ifandonly $LE~,,,. 

8. DEFINABILITY OF REGULAR LANGUAGES IN EXTENSIONS OF FIRST-ORDER Low- 

Our results in the preceding sections show that one cannot exploit the nonunifor- 
mity of a circuit family to recognize unusual regular languages. We now examine 
this “forced uniformity” phenomenon in light of some recent work of Barrington 
and Thtrien [4], which characterizes the complexity classes AC0 and ACC(q) in 
terms of certain sorts of programs over finite automata. We are thus able to isolate 
the property that we believe is responsible for the forced uniformity. A direct 
proof of our conjectured property would answer many of the unsolved problems 
concerning the structure of constant-depth reducibilities within NC’. 
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Let A be a finite alphabet and let L c A *. A program over L is a sequence @ of 
triples 

(io, a,, bo), . . . . (ir--l, a,-,, h-l), 

where each ii is in (0, . . . . n - 11. Given a bit string 

u = ug “‘U,_i E (0, l}“, 

the program emits the word 

@(u)=c~...c,_~EA*, 

where ck = ak if ui, = 0, and ck = b, if uik = 1. The program accepts u if Q(u) EL. In 
this manner a family {@,,}n20 of programs over L recognizes a subset of {O, 1 }*. 
Barrington and Thtrien’s main result is: 

(i) TE AC0 if and only if T is recognized by a polynomial-size family of 
programs over a star-free regular language L. 

(ii) TE ACC(q) if and only if T is recognized by a polynomial-size family of 
programs over a regular language L such that M(L) contains no groups of order 
relatively prime to q. 

If L E A* is a regular language we define a new regular language L’ by introduc- 
ing a new letter t and setting L’ = Ly -‘, where y : (A u (t})* + A* is the morphism 
defined by ay = a for a E A and ty = 1. Now, given a polynomial-size family (@,} of 
programs over L we obtain a polynomial-size family {@L} of programs over L’ that 
recognizes the same subset of (0, 1 }* by adding polynomially many triples of the 
form (i, t, t) in an arbitrary fashion. In particular, we can add new triples in such 
a fashion that the program {@L> has length nk and makes nk-’ complete passes 
over the input-that is, the jth triple has the form (i, a, b), where i sj (mod n). It 
is easy to see that L’ is recognized by M(L). Thus the results of Barrington and 
Thtrien cited above remain true under the assumption, which we shall henceforth 
make, that the programs are in this normal form. 

Our next theorem characterizes the nonuniform complexity classes AC0 and 
ACC in terms of first-order logic and its extensions. Part (a) appears, in a some- 
what different form, in Immerman [13]. 

THEOREM 9. (a) AC’= FO[R]. 
(b) For ali q, ACC(q) = (FO + MOD(q)) [R]. 
(c) ACC= (FO + MOD) [R]. 

ProoJ Let TE AC’. Then T is recognized by a family of programs over a star- 
free language L s A*. By the theorem of McNaughton cited in Section 4, L is 
defined by a sentence tj E FO. We assume that the programs have the normal form 
described above, and that the length of the nth program is nk. We now rewrite the 
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sentence IJ to obtain an sentence in FO[R] defining the strings of length n in T. 
The value of the nth program on a bit string u E (0, 1)” is a string of length nk in 
A*. We are thus interpreting the variables x1, . . . . x, of \c/ in the universe 
{0, . . . . nk - 1). Each me (0, . . . . nk - 11 has a unique decomposition in the form 
m = c::,’ mi n’, where 0 6 mi < n. We thus rewrite $ replacing each of the variables 
X. by the k variables x!‘) , ) . . . . xy- I), where these are interpreted in (0, . . . . n - 1 }: 
Ekch existential quantifier 3x, is replaced by 

3x!O’ . ..jX!k_l) I 7 

and similarly, each universal quantifier is replaced by the corresponding block of k 
universal quantifiers. We rewrite xi < x, as 

+ ( (Xjk-r) <$k-rJ r-1 ) /, /j (x~k-‘+.O=X~-r+.d) 

> 

, 

F-=1 .v = 1 

which is equivalent if we interpret the xi” as the components of xi. A term of the 
form Qaxi will be true if either the XT bit of the input is off and the second compo- 
nent of the xi th instruction of the program is a or if the xp bit of the input is on 
and the third component of the xi th instruction of the program is a. We intro- 
duce 2(A( k-ary relation symbols R,, S,(a E A), where R,(mo, . . . . mk_ ,) is inter- 
preted as “the second component of the m th triple of the program is a,” where 
m = cf:d m, ni. We interpret the relation symbols S, similarly, in terms of the third 
components of the program triples. These relations depend only on the length n of 
the program and the values of the arguments, and are thus instances of the numeri- 
cal predicates defined in Section 2. We are thus able to translate Quxi in terms of 
&x)‘), Q I xy’, and the new relation symbols. 

We have shown that every TE AC0 is in FO[R]. Conversely, if a subset of 
to, 1>* is in FO[R], it is in AC’, for we can unravel a defining sentence into a 
circuit, as was done in the proof of Theorem 3. This completes the proof of part(a). 

We treat part (b) similarly, using the fact that TE ACC(q) if and only if 
it is recognized by a polynomial-size family of programs over a language 
L E (FO + MOD(q)). (This follows from the results of Barrington and Therien cited 
above and is proved in [24].) We only need to show how to rewrite the modular 
quantifiers in the sentence defining L in terms of modular quantification over posi- 
tions in the program output. The quantifier 3’,x4 means there are exactly Y (mod q) 
k-tuples (x0 , . . . . xk_ ,) such that 4(x,, . . . . xk_ ,). This is equivalent to 

9--l 
v /j 3,f”’ x0 3; x’qs, 
f ,=o 

where the inner quantification is over the (k - 1 )-tuples x’ = (x1, . . . . xk ~ ,), and 
where the disjunction runs through all functions f from Z, to itself such that 

Y--l 
C i .f( i) E r (mod q). 

1=0 
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We obtain the desired rewriting by induction. This shows that ACC(q) is contained 
in (FO + MOD(q)) [R]. The opposite inclusion follows from an argument identical 
to the one given in the last part of the proof of Theorem 5. Part (c) follows 
immediately from (b). i 

Theorem 9, coupled with our results on regular languages, enables us to answer 
a number of questions concerning definability of regular languages in extensions of 
first-order logic. For example it has been asked (originally by Btichi [7]) what 
regular languages can be defined by adjoining a binary predicate “y = 2.x” to our 
first-order formulas. We now know that although we can define some nonregular 
languages this way, and some regular languages (e.g., LENGTH(2k)) that are not 
in FO, we cannot escape from FO[C] in this way. More generally, no such device, 
adjoined to any of our logical languages, will suffice to define regular languages 
outside of A&. The general principle is the following corollary, which follows at 
once from Theorems 3, 5, and 9. 

COROLLARY 10. Let Reg denote the family of regular languages in (0, 1) *. Then 

(a) 

Reg n FO[R] = FO[C]. 

(b) Zf p is prime, then 

Reg n (FO + MOD(p)) [R] = (FO -I- MOD(p)) [Cl. 

There appears to be a general principle whereby regularity of the language defined 
can be used to replace arbitrary numerical predicates by periodic ones. Our guess 
is that this is related to an inherent periodicity of regular languages; in particular, 
we think it unlikely that part (b) of the corollary has anything to do with the 
primality of p. We thus conjecture: 

Conjecture. For all q, 

Reg n (FO + MOD(q)) CR] = (FO + MOD(q)) CC]. 

The conjecture implies the results of [ll, 211 (for polynomial-size circuits), and, if 
proved, would settle a number of open questions about the structure of NC ’ : 

THEOREM 11. Suppose the conjecture is true. Then 

(a) Zf q is relatively prime to r then SUM(q) 4 ACC(r).‘ 
(b) ACC(q) = ACC(r) ifand onIy ifq and r have the same set of prime factors. 

(c) MAJORITY 4 ACC. In particular ACC # NC ‘. 

Proof. (a) Since SUM(u) is AC’-reducible to SUM(v) whenever u I v, we may 
assume without loss of generality that q is prime. The techniques of [24] can 
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8 

DIAGRAM 7 

be used to show that every language in (FO 
the letters and the languages LENGTH(m) 
operations 

w I 

+MOD(r)) (C] is in the closure of 
under boolean operations and the 

and 

If L sACC(r) is regular, then by the conjecture, LE (FO + MOD(r)) [Cl. It 
follows from the remarks in Section 3 concerning triple products that there is a 
commutative diagram where 0 is surjective, WC depends only on the length of w, 
and $ is injective on groups of order q. (We are also using the easily proved fact 
that for each letter a E (0, l}, M( {u}) contains no nontrivial groups, and hence any 
projection morphism A4 x M( (~2) ) + A4 is injective when restricted to groups. 
, However, if L = SUM(q) then such a diagram is impossible. Indeed, we can argue 
as in the proofs of Theorems 3 and 5 that the derived semigroup D of &‘i cannot 
contain a group with an element of order q. On the other hand, the derived semi- 
group D’ of yl~‘c is a quotient of D via the morphism (n, m, n’) H (n, me, n’) and 
the element (0, (lo"- ‘)q,, 0) E D’ generates a group of order q. 

(b) Observe that XQt4(m) is AC’-reducible to SUM(n) if ml n. The result 
now follows easily from (a) (only if direction) and the fact that a gate that counts 
mod rk can be built from boolean gates and gates that count mod r. 

(c) If MAJORITYE ACC then MAJORZTYE ACC(q) for some q. Pick a 
prime p that does not divide q. Since SUM(p) is constant-depth reducible to 
MAJORITY, the result follows from (a). 1 

9. OPEN QUESTIONS 

We would like to find a direct proof of the conjecture of Section 8-that 
nonuniform quantified sentences defining regular languages can be rewritten as 
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equivalent sentences in (FO + MOD) CC]. Even a proof of this fact for ordinary 
quantifiers only, which would yield a new proof of the fundamental result of Furst, 
Saxe, and Sipser [ll], would be of considerable interest. It seems to be the case 
that natural number-theoretic properties of regular languages can be expressed 
in terms of the predicates x <y and x= r (mod d)-for example, the 
predicate R(x, y) z “there exists w E L with 0 in position x and 1 in position y” can 
be expressed in this fashion. Our conjecture can be viewed as an extension of this 
principle. 

Our transformation from first-order formulas defining star-free regular languages 
to nonuniform formulas defining languages in AC0 preserves quantifier depth-that 
is Ck formulas are transformed into Ck formulas. It is also known from the work 
of Barrington and Therien [4] and Thomas [26] that quantifier depth of the 
original first-order formula corresponds to circuit depth of the language defined by 
the nonuniform formula. We would like to prove, using techniques like those 
in Section 4 and the hierarchy results of Sipser [20] that the regular languages in 
depth-k AC0 are precisely those defined by boolean combinations of sentences in 
depth-k FO[C]. One obstacle to doing this is formulating the appropriate delini- 
tion of this latter class, We suspect that the correct formulation is the following: 
Admit as “atomic” formulas any formula in which predicates of the form Qcl do not 
appear in the scope of a quantifier, then take boolean combinations of X,-formulas 
over this basis. Of course we are most interested in a direct proof of this charac- 
terization of the regular languages in depth-k AC’. Such an extension to our con- 
jecture, coupled with techniques used to prove hierarchy theorems concerning 
regular languages (as, for example, in Brzozowski and Knast [6]) would yield a 
new proof of the main theorem of [20]. 

If we restrict our attention to nonuniform sentences constructed using only 
modular quantifiers we get a logical characterization of the languages recognized 
by polynomial-size families of programs over finite solvable groups. It has been 
conjectured [S] that such a program cannot compute the AND function. Can the 
Ramsey-theoretic techniques of [S], together with this new characterization, be 
used to prove this conjecture? A detailed treatment of this class of languages, along 
the lines of Section 9 above, is given in [25]. 

Finally, let us admit a new “majority quantifier” U, where Uxi . . . x,t,b is inter- 
preted as “more than half of the k-tuples of positions of w satisfy Ic/.” We can define 
language classes MAJ, MAJ[C], and MAJ[R]. Then MAJ =MAJ[C], and 
TC” = MAJ[R]. We would like to know if the analogue of our conjecture holds for 
this kind of quantifier. If so, it would, coupled with Theorem 8(b), show that 
TC” = NC ’ if and only if every regular language is in MAJ. 
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