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This paper focuses on the stability of axially moving beam-like materials (e.g., belts, 
bands, paper and webs) which translate at speeds near to and above the so-called “critical 
speed stability limit.” In the companion paper, a theoretical model for an axially moving 
beam was presented which accounted for geometrically non-linear beam deflections and 
the initial beam curvature generated by supporting wheels and pulleys. In that paper, 
analysis of steady response revealed that the beam possesses multiple, non-trivial equili- 
brium states when translating at supercritical speeds. The equations of motion are presently 
linearized about these equilibria and their stability is predicted from the eigenvalue problem 
for free response. Asymptotic and numerical solutions to the eigenvalue problem are pre- 
sented for the respective cases of small and arbitrary equilibrium curvature. The solutions 
illustrate that the translating beam has nxdtiple stable equilibrium states in the supercritical 
speed regime. The solutions confirm that the critical speed behavior for axially moving 
materials is extremely sensitive to system imperfections. such as initial curvature. 

I. INTRODUCTION 

Axially moving material problems [ 1, 21 consider the dynamic response of long, slender 
elements that are in a state of translation (e.g., translating bands, belts, cables, chains, 
fibers, paper, threads, webs, etc.). Traditional models of axially moving materials represent 
the translating element as either a taut string [3- 51 or an Euler-Bernoulli beam [6-81 that 
is drawn perfectly straight under large tension. The analysis of such geometrically perfect 
systems leads to the prediction that the stability of axially moving materials is limited to 
translation speeds below a theoretical critical speed. At the critical speed, the translating 
element experiences a divergence-type instability. 

Recent studies have demonstrated that critical speed behavior for flexible axially moving 
materials (e.g., cables, chains, fibers and threads) represents an idealized phenomenon that 
does not occur when imperfections are correctly accounted for in the model. For such 
systems, the initial sag of the element due to gravity creates a speed-tensioning effect that 
permits the sagged equilibrium to remain stable at very high translation speeds [9, lo]. In 
addition, the initial sag creates the possibility of a second arch-like equilibrium which 
becomes stabilized at high translation speeds due to gyroscopic action [ 11, 121. The studies 
focus on flexible elements and do not consider the flexural rigidity important in the model- 
ing of translating beam-like elements (e.g., bands, belts, paper and webs). For these 
elements, imperfections in initial geometry naturally arise from the bending of the beam 
about its supporting pulleys or wheels. As demonstrated in Part I [ 131, the steady response 
of a translating beam depends strongly on the initial curvature induced by terminal 
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bending. Bending leads to a single non-trivial beam equilibrium at subcritical speeds. At 
supercritical speeds, multiple non-trivial beam equilibria exist. 

The purpose of this second part of the paper is to investigate the stability of small 
oscillations about these equilibria. The equations of motion are linearized about the beam 
equilibria, and local stability is predicted from the eigenvalue problem governing the free 
response. For the case of small equilibrium curvature, an asymptotic form of the eigenvalue 
problem is derived that is suitable for closed form analysis. The asymptotic solution 
accurately describes the stability of a translating beam equilibrium with small curvature, 
but fails to predict stability when the equilibrium has moderate to large curvature. A 
numerical stability analysis is presented for arbitrary equilibrium curvature and is based 
on a Galerkin discretization of the equations of motion. 

2. LINEARIZED EQUATIONS OF MOTION 

In Part I [13], a theoretical model was derived which describes the planar response of 
the translating beam shown in Figure 1. All quantities illustrated in this figure are non- 
dimensionalized according to the variables defined in section 2 of Part I. The translating 
beam is subjected to steady tension n and bending moments m generated by supporting 
wheels or pulleys (not shown). In this model, the right support is stationary and the left 
support may move horizontally with partial restraint offered by finite support stiffness k. In 
response to the steady loading, the translating beam may undergo large static deformation 
leading to the equilibrium configuration xi shown in Figure 1. The beam particle transla- 
tion velocity relative to xi is denoted by c. 

u(s.t)=u,e{ +u,e; 

Figure 1. Definition diagram for a curved, axially moving beam. The beam centerline is shown in three states: 
(1) unbuckled configuration (dotted line); (2) buckled equilibrium configuration x’; and (3) final configuration 
x ‘. All variables are non-dimensionalized according to definitions given in section 2 of Part I [ 131. 

In Part I, a detailed analysis of the non-linear deformation leading to xi was presented, 
and equilibrium solutions were derived for both subcritical and supercritical translation 
speeds. Here, attention is focused on small oscillations about equilibrium. The oscillations 
are described by the planar motion u(s, t) shown in Figure 1, where s denotes the arc 
length co-ordinate measured along xi and t denotes time. This motion u(s, I) = 
u,e{ +uze$ is resolved into components aligned with the local tangential, ei, and normal, 
e:, directions defined by the curve xi. The non-linear equations of planar motion, Part 1, 
equations (15) and (16), were derived from Hamilton’s principle, based on the assumptions 
that: (1) the beam is a homogeneous, one-dimensional elastic continuum obeying a linear 
stress-strain relationship; (2) extensions of the beam are described by the Lagrangian 
strain of the centerline; (3) the motion of the beam is restricted to the X-Y plane; (4) the 
beam may undergo large static deflections, and additional deflections from the curved 
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equilibrium are described using a non-linear rod theory [ 141; (5) rotary inertia due ko 
bending and strain energy due to shear may be neglected assuming that the beam cross- 
sectional dimensions are small compared to its length ; (6) gravitational and dissipative 
forces may be neglected; and (7) the beam mass flux is constant. 

To investigate the local stability of the equilibria, the non-linear equations of motion 
are linearized about an arbitrary equilibrium that is described by its curvature K-(S) and 
tension p(s). The linearized (non-dimensional) equations governing free, planar response 
are : 

tangential component, uI, 

[(Y +p-c*N4,- KU*)I,s+ [K(CZ -p)l[~r.5 + WI + K[U?,, + WI.,\ 

= h.rr+ 24W.s- K4l.r. iI1 

normal component, u2, 

[Kh’+P-C*)1hx- WI + [(P - C*)(u2..~+ W)l.s- [uz.s+ W],,,, 

= U2.u + 2c[u*.s + Kw1.r~ (2) 
It should be noted that the linear equation of transverse motion for a perfectly straight 
translating beam [6--81 is obtained from equation (2) when the equilibrium is trivial; that 
is, when K(S) =0 and p(s) =n. The linearized boundary conditions are extracted from 
the boundary conditions, Part 1, equations (22)-(26), after incorporating the boundary 
conditions for equilibrium, Part I, equations (29) and (30). Assuming that the left support 
remains stationary after the beam attains its equilibrium, the linearized boundary condi- 
tions become : 

241 =U2=0, U2,sJ+ KU,,s=O, at .s=O, 1. 13) 

Motion about a specific equilibrium is examined by prescribing the equilibrium curvature 
K(S) and tensionp(s) which appear as (non-constant) coefficients in equations (1) and (2). 
Exact expressions for K(S), in terms of elliptic integrals, are derived in Part I for both 
subcritical and supercritical translation speeds; see Part I, equations (43). (48) and equa- 
tions (56)-(59). The equilibrium tension follows from the solution for K(S) by evaluating 
equation (38) of Part I. 

3. ASYMPTOTIC ANALYSIS FOR SMALL CURVATURE 

The linearized equations of motion (1) and (2) are coupled, and have non-constant 
coefficients expressed in terms of elliptic integrals. As written, the complexity of these 
equations precludes their solution by analytical methods. However, an asymptotic form 
of the equations is amenable to closed form analysis and is valid for beams having small, 
but non-zero, equilibrium curvature. The asymptotic model is essentially that of a shallow 
translating arch, described in section 3.1 of Part I by the equilibrium solution 

~(s)=&[(i+e-‘“)ei”“+(l-tei”)e-‘“”], O<s<l. p(s) = n. (4. -5) 

The small parameter 

111 
&= 

( 1 + e-‘“)( 1 + e’“) 
(6) 

is introduced to represent the order of magnitude of the equilibrium curvature and a = 
e is a measure of the beam translation speed. 
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For low order flexural modes, the beam stretches in a quasi-static manner and the inertia 
terms in equation (1) may be neglected. This follows from the fact that the parameter y 
is extremely large and, therefore, the speed of propagation of longitudinal waves is substan- 
tially greater than those of low order flexural waves.7 Using this spectral separation 
assumption in equation (1) and letting y be at least as large as 1 /F leads to 

[UK w1.s = 0, (7) 

where terms of first and higher order in F are neglected, Integration of equation (7) using 
~(0, t)=u,(l, t)=O, yields 

F 
Ul(S, t) = 

s 
~4 5, t) d5 -J 

0 s 

I 
KU2( 5, f) d5, (8) 

0 

which shows that the longitudinal motion is of order E. Substituting equation (8) into 
equation (2) and neglecting terms of second and higher order in E provides the approximate 
equation for transverse motion : 

-u2.ssss - a 
2 

~2,~~ - Kbh’ 
S’ 

K( 5 h2( 6, t) d5 = ~2,rr + 2~~2,sr. (9) 
0 

The integral term in equation (9) accounts for the quasi-static stretching of the beam 
centerline and vanishes with vanishing initial curvature. To first order, the boundary 
conditions (3) are 

u2 = u2.ss = 0 at s=O, 1. (10) 

Using u2(s, t) = u(s) eiw’ in equations (9) and (10) results in the following eigenvalue 
problem governing the free, transverse response : 

u”~ + a2u”+ i2cwu’- w2u = K(s)~, o<s< I, (11) 

u(O)=u(l)=O, U”(0) = U”( 1) = 0, (12) 

where 

c=-y ’ s K-(<)u(<) d& (13) 
0 

Exact analysis of equations (1 1)-( 13) provides the eigenvalues w which govern the 
stability of small transverse oscillations. For the case c #O,j the general solution to equa- 
tion (11) is 

!$?z! = C, ells + C, eazs + C, e*” + CA e.bs + F eiov + G e-‘as, 

provided that the complex exponents d,, AZ, 13 and ;14 satisfy 

d4+a2A2+i2cwA-w2=0. 

(14) 

(15) 

t From section 2 of Part 1. y = AL*/I, where A, L and I are the beam cross-sectional area, overall length and 
area moment of inertia about ‘the out-of-plane axis, respectively. 

$ For the case <=O, the eigenvalue problem of equations (I I)-( 13) reduces to that for a straight beam and 
the solution follows references [6-81. 
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In equation ( 14), 

-m 
F= 

(1 +ei”)(2caw+w2)’ 
G=-_, “I 

(1 fe ‘“)(2caw - w’)’ 
(16) 

and C,, Cz, C1, Cd and LJ are (undetermined) constants. Substituting the solution (14) 
into the boundary conditions (12) leads to the following set of linear equations for solution 
of C,. Cz, C? and C4: 

[ 

1 
;1: n,’ 
eA1 :; ;: ; ][:J=[ jj~;/;;J. (‘7) 

k? eal nf eL2 d_: e”’ di eL4 Cd 

Final evaluation of equation (13) leads to the characteristic equation for the solution of 
the eigenvalues o,, j= 1,2, . . , 

(e “‘~i’“-1)+G+&(e2’U-l) 
I 

+ 1+Mell; i, ;$ (e+ “- I)+ F+:sa (e_2ia-- ~I]]=o. (18) 

The (generally complex) eigenvalues are determined numerically by finding the roots 
of equation (18) using the standard Newton-Raphson iteration. For this purpose, the 
characteristic equation is evaluated as follows. For a given value of w, the complex 
exponents L,& are determined numerically as the roots of equation (15). The constants 
C, C4 are then found from the linear equation ( 17) and are used to evaluate the characteris- 
tic equation (1X). 

An example demonstrates that these eigenvalues are extremely sensitive to equilibrium 
curvature when the beam is translating near the fundamental critical speed of a simply 
supported straight beam which is given by c=Jz [6, 71. In Figure 2(a), the first two 
natural frequencies (real w, and w2) are plotted versus beam translation speed for the case 
of a slight bending moment m =0.25 and a large tension n = 100. For comparison, the first 
two frequencies of vibration about the trivial equilibrium are shown by the dotted curves 
[6, 71. For the small value of m considered here, the frequencies of the “straight beam” 
and the “shallow arch” are nearly identical for translation speeds below and away from 
the fundamental critical speed. Near the fundamental critical speed, however, the solutions 
diverge in a significant manner. While the natural frequencies of the straight beam continue 
to decrease, those of the shallow arch suddenly increase in the neighborhood of the funda- 
mental critical speed. This sudden stiffening derives from the rapid increase in equilibrium 
curvature near the fundamental critical speed. This effect is illustrated in Figure 2(b), 
where IF] is also plotted as a function of translation speed. 

It was shown in Part I that multiple beam equilibrium states exist above the fundamental 
critical speed for the straight beam : see Figure 3, which shows how the angle of inclination 
of the equilibrium curve at the left support depends on translation speed. In the super- 
critical speed region of Figure 3, the linear equilibrium solution (4) remains a good 
approximation only to that equilibrium which is nearest the trivial solution. The nearness 
of the linear solution to the near-trivial equilibrium is reflected in Figure 2(a) where, above 
the fundamental critical speed for the straight beam, the freqencies of the shallow arch 
decrease in a manner similar to those of the straight beam. However, note that thejiinda- 
merztal frequency for the shallow arch vanishes at a translation speed near the second 
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Tronslatlon speed, c 

Figure 2. The first two natural frequencies for a translating beam with small curvature (-) and no curvature 
(. .) are shown in (a). In this example, M =0.25 and n= 100. The magnitude of curvature I&I is shown in (b). 

-15 -I 0 -05 00 05 IO 15 

Angle of lntllnatlon at left support, 6’o(rad) 

Figure 3. Linear (. .) and non-linear ( -) equilibrium solutions shown in the subcritical and supercritical 
speed regions for the case ~=‘0,25, n = 100 and k = 0. For the non-linear solution, J denotes the solution order. 
Refer to Part I for a discussion of the folded and unfolded bifurcations. 
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critical speed for the straight beam. Thus, the range of stable operating speeds for the 
shallow arch substantially exceeds that of the straight beam. The second frequency for the 
shallow arch follows closely that of the straight beam after the fundamental critical speed 
for the straight beam. In particular, the second critical speed, c= &%)%, is identical 
for the two systems and the first two eigenvalues become complex (flutter instability occurs) 
beyond the point marked by the asterisk in the figure. 

The sensitivity of the first two natural frequencies of the shallow arch to changes in the 
bending moment is illustrated in Figure 4. Increasing the bending moment from m=O to 

(a) 

(b) 

I t I I 

0 3 6 9 I2 I5 

Tronslohon speed, c 

Figure 4. Sensitivity of the first two natural frequencies to changes in bending moment. In all cases, n = 100 
was used. -, Shallow arch; . . ., straight beam. 

m = O-5 leads to a substantial increase in the fundamental frequency, as shown in Figure 
4(a). The increase becomes very pronounced near the fundamental critical speed for the 
straight beam and produces a noticeable increase in the fundamental critical speed for the 
shallow arch. Similar increases in the second natural frequency are observed in Figure 
4(b) near the fundamental critical speed for the straight beam. For the second natural 
frequency, however, no increases are observed at low subcritical speeds or in a neighbor- 
hood of the second critical speed. Since the second mode of vibration is antisymmetric, 
the (symmetrically) applied bending moments have no influence on buckling in this mode; 
also refer to Figure 3 and to the discussion in Part I regarding the folded and unfolded 
bifurcations of the equilibrium solutions. 

Overall, it is illustrated in Figures 2 and 4 that the translating beam frequency spectrum 
is extremely sensitive to equilibrium curvature, particularly when the beam is translating 
at near-critical speeds. The asymptotic solution predicts that equilibrium curvature has a 
stabilizing effect which leads to large increases in the naturalfrequencies near thefundamental 
critical speedfor the traditional, straight beam model. While the asymptotic solution qualita- 
tively captures this important trend, it cannot be expected to remain accurate when the 
equilibrium curvature becomes large. In Figure 2(b) it is shown that 1~1 becomes 
unbounded at the fundamental critical speed and the asymptotic solution is certainly 
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suspect. Furthermore, since the asymptotic model describes small oscillations about a 
single and near-trivial equilibrium, it cannot predict the stability of the multiple, non- 
trivial equilibria known to exist above the fundamental critical speed; refer to the left- and 
right-branch equilibria labeled in Figure 3. 

4. NUMERICAL ANALYSIS FOR ARBITRARY CURVATURE 

A numerical method is adopted to determine the stability of a translating beam with 
arbitrary equilibrium curvature. Galerkin’s method is used to discretize the linear equations 
of motion and stability is determined from the eigensolutions of the discrete model. 

Consider the R-term admissible series representations for uI and u2 of the form: 

&(S, 0 = i #ij(r)@(s), i= 1,2, (19) 
j=l 

where @j(s) = ,/? sin (j~cs). Substitution of equation (19) into equations (1) and (2), and 
application of the Galerkin method, provides a set of 2R coupled, ordinary differential 
equations for solving for the generalized co-ordinates &(t): 

1 
Mti+Gcji+K$=& (20) 

The elements of the matrices M, G and K, which are given in the Appendix, are evaluated 
by numerical quadrature. These matrices depend on the equilibrium state under considera- 
tion and are evaluated using the elliptic integral solutions for k(s) and p(s) given in Part 
I. Using d(t) = Q ewr in equation (20) leads to the discrete eigenvalue problem governing 
free response : 

[o*M+oG+K]tj=& (21) 

The natural frequencies and mode shapes for the translating beam are obtained numeri- 
cally from equation (21). In this discrete formulation, the natural frequencies of the trans- 
lating beam are given by the imaginary parts of the eigenvalues, Im [w,], I= 1,2, . . . ,2R, 
and the mode shapes are obtained from the eigenvectors Q,, I= 1,2,. . ,2R, through 
equation (19). A divergence instability for mode I is identified when Im (0,) -+ 0. In calcula- 
tions, the series size R= 10 was and the eigensolutions described below have fully 
converged. 

As a primary example, consider the stability of a translating beam subjected to the slight 
bending moment m =0.25, as illustrated by the equilibrium solutions of Figure 3. In Figure 
5 are shown the fundamental natural frequencies of vibration as functions of translation 
speed in both the subcritical and supercritical speed regions. In the supercritical speed 
region, three curves are shown which depict separately the fundamental frequencies of 
vibration about the right-branch, middle-branch and left-branch equilibria shown in Figure 
3 for the (fundamental) equilibrium solution J= 1. The fundamental frequency of vibration 
about the trivial equilibrium is also shown to facilitate a comparison with the traditional 
model of a perfectly straight beam [6,7]. The solid curve in Figure 5, which depicts the 
fundamental frequency of vibration about the right-branch equilibrium, clearly shows that 
this equilibrium never loses stability over the indicated speed range. While the fundamental 
frequency decreases in the subcritical speed region, it rapidly increases in the neighborhood 
of the fundamental critical speed for the trivial equilibrium. Again, this effect derives from 
the stiffening of the beam as its curvature markedly increases near this fundamental critical 
speed; see region of rapid growth of & for the right-branch equilibrium (J= 1) of Figure 
3. Likewise, the left-branch equilibrium remains stable after it has formed in the super- 
critical speed region, as seen by the dashed curved of Figure 5. The middle-branch equili- 
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Figure 5. Stability of a curved, axially moving beam. The fundamental frequencies of vibration are plotted 
versus translation speed for vibration about the right- (---), middle- (- .-) and left-branch (- - -) equilibria 
(J= I) of Figure 3. In this example, m=0,25, n = 100 and k =O. The dotted curve (, ,) represents the 
fundamental frequency of vibration about trivial equilibrium. 

brium, however, does experience a divergence instability, but at a translation speed above 
the fundamental critical speed for the trivial equilibrium, as shown by the dash-dot curve 
of Figure 5. 

In Figure 5, the fundamental frequencies for the two stable equilibria (right and left- 
branch) are nearly identical for large supercritical speeds. This results from the fact that 
their respective equilibrium shapes become nearly mirror images at large translation 
speeds; observe the magnitude of I!& for the right- and left-branch equilibria in Figure 3. 
In Figure 5, it can be noted that the fundamental frequency associated with the trivial 
equilibrium appears to provide a lower bound to that associated with the right-branch 
equilibrium for subcritical speeds. This behavior can again be anticipated from Figure 3, 
which shows that the trivial equilibrium itself is a reasonable approximation to the right- 
branch equilibrium in the subcritical speed region. Upon comparing Figures 2(a) and 5, 
the fundamental frequency predicted earlier by the asymptotic analysis follows that for 
the right-branch equilibrium below and just above the fundamental critical speed for the 
trivial equilibrium, and then follows that for the middle-branch equilibrium for higher 
translation speeds. Thus, as expected, the asymptotic solution describes the linear response 
about the equilibrium state which is nearest to the trivial equilibrium. Finally, it should 
be noted that the fundamental eigenvalues computed for the higher-order equilibrium 
solutions depicted in Figure 3 for J= 2, 3, . . . indicate that they are all unstable. For a 
similar class of stationary beams, Love [14] demonstrates that the stable fundamental 
equilibrium minimizes the strain energy and has the fewest number of inflection points. 

The natural frequencies of the second and higher order vibration modes follow trends 
similar to that of the fundamental mode as illustrated by the results in Figure 6. The first 
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Figure 6. Higher order natural Irequencies. The plot shows the first four natural frequencies of vibration 
about the right- (-), middle- (- .-) and left-branch (- - -) equilibria for J= 1 and a portion of right-branch 
equilibrium (- =-) for J= 3 of Figure 3. In this example, m = 0.25, n = 100 and k = 0. Dotted curves (’ .) 
represent natural frequencies for vibration about trivial equilibrium. 

four natural frequencies for vibration about the right-, middle-, and left-branch equilibria 
are plotted versus translation speed together with those associated with the trivial equili- 
brium [6, 71. An important point to note from this plot is that the fundamental frequency 
associated with the middle-branch equilibrium vanishes precisely at the second critical 
speed associated with the trivial equilibrium. Thus, it is the second critical speed for the 
trivial equilibrium which ultimately governs the stability of the middle-branch equilibrium. 
It was seen from Figure 3 that the bifurcation of the non-linear equilibrium solution 
occurring at the second critical speed is unaffected by the (symmetrically applied) bending 
moments and remains folded. Indeed, at the second critical speed, the middle-branch 
equilibrium is the trivial equilibrium. At this speed, the middle-branch equilibrium solution 
bifurcates (see Figure 3) and the “near-trivial” equilibrium thereafter is described by the 
right branch for J=3. For speeds just above the second critical speed, this equilibrium 
remains nearly trivial, and the natural frequencies shown in Figure 6 reproduce those for 
the trivial equilibrium in this region which includes the flutter instability. For clarity, in 
Figure 6, the present eigensolution calculation for this unstable equilibrium was terminated 
for higher translation speeds. 

The stable fundamental modes for vibration about the right-, middle- and left-branch 
equilibria are illustrated in Figure 7 for the case in which the translation speed is 10% 
greater than the fundamental critical speed for the trivial equilibrium. The dotted curves 
depict the supercritical equilibrium shapes and the solid curves depict the beam at various 
times as it oscillates’at its natural frequency over one period. As with all axially moving 
material (gyroscopic) systems, the free response has non-uniform phase and is described 
by complex eigenfunctions [l]. Also note that, at this somewhat modest supercritical 
translation speed, the right- and left-branch equilibria are already nearly mirror images. 

The influence of the support stiffness on the natural frequency spectrum is illustrated in 
Figure 8, which shows the first four natural frequencies for the case of a large support 
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Figure 7. Fundamental mode shapes at supercritical speed c/m= 1’ IO. Results are shown for vibration 
about (a) right-, (b) middle- and (c) left-branch equilibria (.I= I) in Figure 3. Solid curves depict the beam 
profile at times r=O, 0.257, 0.757 and 7, where T is the fundamental period of oscillation. Dashed curves depict 
the equilibrium beam profiles. In all cases m = 0.25, n = 100 and k = 0. 

stiffness k = 20 000 with no = 0.25 and n = 100. Again, frequencies of vibration about the 
trivial, right-, middle- and left-branch equilibria are shown. By comparison with Figure 6 
(k=O), it is observed that large support stiffness leads to more gradual increases in the 
frequencies near the fundamental critical speed for the trivial equilibrium. This behavior 
is anticipated from Figure 5 of Part I, which shows that the increases in tIO for the right-, 
middle- and left-branch equilibria are much less abrupt for large k. As also noted there, 
large support stiffness retards the formation of the left- and middle-branch equilibria (there 
is a 8% increase of speed where the middle- and left-branch frequency loci met in Figure 8) 
and leads to a slight increase in the second bifurcation speed for the non-linear equilibrium 
solution (2% increase of the critical speed for the middle-branch equilibrium in Figure 8). 

5. SUMMARY AND CONCLUSIONS 

Linearized equations of motion for an axially moving beam are presented which account 
for the equilibrium beam curvature generated by supporting wheels and pulleys. The 
equations follow from the model derived in [ 131 which considers the geometrically non- 
linear beam deflections expected at critical and supercritical translation speeds. Analysis 
of the equations of equilibrium [ 131 reveals that the beam undergoes large static deflections 
near the fundamental critical speed predicted by the traditional model of a perfectly straight 
translating beam [6--81. Slightly above this speed, three fundamental equilibrium states 
exist, which are referred to herein as the right-branch, middle-branch and left-branch 
equilibria. These results confirm that critical speed behavior for axially moving materials 
is extremely sensitive to system imperfections, such as initial curvature. 
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Figure 8. The effect of support stiffness on the frequency spectrum for the case of m = 0.25, n = 100 and k = 
20 000. The plot shows first four natural frequencies of vibration about the right- (--), middle- (- .-) and 
left-branch (- - -) equilibria (J= 1). Dotted curves (. .) represent natural frequencies for vibration about 
trivial equilibrium. 

The equations of motion are linearized about the equilibria, and their stability is deter- 
mined from (1) an asymptotic analysis for small equilibrium curvature, and (2) a numerical 
analysis for arbitrary equilibrium curvature. For the idealized case of no initial curvature, 
the trivial equilibrium experiences a divergence instability at the fundamental critical speed 
[6,7]. The present study shows that the beam then buckles and may form either the right 
or left-branch equilibria which are both stable in the supercritical speed region. When the 
beam possesses any degree of initial curvature, however, no divergence instability exists at 
the traditional fundamental “critical” speed. In such cases, the equilibrium state in the 
subcritical speed region is a continuous extension of the right-branch equilibrium, and the 
beam neuer loses stability. The left-branch equilibrium also remains stable after it appears 
in the supercritical speed region. In such instances, the initial conditions ultimately deter- 
mine whether the beam oscillates about the left-branch equilibrium, the right-branch equili- 
brium or about both equilibria. Determination of the associated domains of attraction in 
the space of initial conditions could be achieved through analysis of the non-linear 
equations of motion. 
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APPENDIX 

The discretized equations of motion (20) are given by 

where the 2R x 2R coefficient matrices are 

Letting (a, b) = ji a(s)b(s) ds, the R x R submatrices MI I, , KZZ are 

M,,(i, j)=M&i, j)=(O,, Oi)= 6,, (Kronecker’s delta), 

G,,(i,j)=G&i, j)=2c(Oi, Oj), 

G,*(i, j)= -G,,(j, i)= -2c(O,, K@~), 

K,,(i,j)=((KOi)‘, (KOj)‘)+(Oi, K*(p-C*)O,)+(OI, (P+Y-C*)OI). 

K22(i,j)=(@:, Oy)+(Ol, (P-c~)@;)+(@~, K2(p+y-C2)@j), 

K12(i,j)=KZl(j, i)=((K@i)‘, @r)+(@:, K(P-CC2)@,)+(@~, -K(P+y-C’)@,), 

where i, j= 1, 2, . . . , R and O,=$ sin (jzs). The equilibrium curvature K(S) and tension 
p(s) are obtained from the solution of the equilibrium problem [13]. 


