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Abstract 

Hauser, K., The indescribability of the order of the indescribable cardinals, Annals of Pure and 
Applied Logic 57 (1992) 45-91. 

We prove the following consistency results about indescribable cardinals which answer a 
question of A. Kanamori and M. Magidor (cf. [3]). 

Theorem 1.1 (m 22, n 22). CON(ZFC+ 3~, K’ (K is Ii: indescribable, K’ is XF 

indescribable, and K < K’)) j CON(ZFC + fl> n: + GCH). 

‘Theorem 5.1 (ZFC). Assuming the existence of ZT indescribable cardinals for all m < o and 
n < w and given a function 9: {(m, n): m 5 2, n 2 l} + {0, l}, there is a poset P* E L[.Fj such 
that GCH holds in (L[%j)pF and 

,tLIsI 

( 

c < jc? if Wn, n) = 0, 
Q fl>Ic,” if s(m, n) = 1. 

Theorem 1.1 extends the work begun in [2], and its proof uses an iterated forcing construction 
together with master condition arguments. By combining these techniques with some 
observations about small forcing and indescribability, one obtains the Easton-style result 5.1. 

Introduction and statements of results 

This paper presents a continuation of the work begun in [2]. Recall that an 

ordinal (Y is 52 indescribable if a partial reflection principle for formulas in 52 

holds at the n-th level of the von-Neumann-hierarchy; i.e., for any sentence 4 

in Q which may contain a unary predicate symbol and any subset A c V, 

(L e,A)k# + W-(Vg, cAnV,)k$. 

We will only be concerned with certain standardized classes of formulas. As usual 

2:: (II; resp.) denotes the collection of all formulas in the language of set theory 
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with higher type variables and a unary predicate symbol whose prenex normal 
form has n alternating blocks of (m + 1)th order quantifiers starting with 3 (V 
resp.) and all other quantifiers are of order Sm. 

It has been known since the early sixties (cf. [l]) that this approach leads to 
large cardinals, i.e., the existence of x (or 27) indescribable cardinals is 
unprovable in ZFC (m 3 1). Moreover, larger classes of formulas yield genuinely 
stronger notions of indescribability: If < (3dT resp.) denotes the least 2::: (fl: 
resp.) indescribable cardinal (provided it exists) then in ZFC 

1 1 
Jrc, = on+1 < Jr:+1 = o!l+z 

for m 2 2 and n 2 0 (cf. [4]). It is also shown there that 

for m > 2 and n 3 1. However, this is as far as we can go in ZFC: If V = L then 
fl< nz (m > 1, n 3 1, cf. [5]). On the other hand it is consistent with ZFC to 
have e > $” for m > 2 (cf. [2]). In this paper we complete the picture by 
showing 

Theorem 1.1 (m 3 2, n 3 2). 

CON(ZFC + 3~, K' (K is x indescribable, K’ is 2: 

indescribable, and K < K')) + CON(ZFC + < > 3tc + GCH). 0 

If one combines the techniques from the proof of Theorem 1.1 with some 
observations about small forcing and indescribability, one obtains the following 
Easton-style result which shows that we have the ultimate freedom in simul- 
taneously arranging the relative sizes of the indescribable cardinals. 

Theorem 5.1 (ZFC). Assuming the existence of 2:: indescribable cardinals for all 
m and n and given a function 9: {(m, n): m > 2, n 2 l} - (0, 1) there is a p&et 
P9 E L[PJ such that GCH holds in (L[.!F])PS and 

Il+y 
I 

oyn:: if ZF(m, n) = 0, 

c$y>n:: if S(m,n)=l. 0 

These results provide an answer to a question of Kanamori and Magidor (cf. 
[3]). In order to prove Theorem 1.1 one defines a forcing iteration which kills off 
all JSF indescribable cardinals below a given nf indescribable K. This forcing will 
preserve any JST indescribable cardinal K' above K because it is small relative to 
K'. The hard part of the proof is showing that this poset also preserves the n: 
indescribability of K. For this we need a characterization of 17:: indescribability in 
terms of elementary embeddings (cf. Theorem 1.3 in [2]). A series of master 



Indescribable cardinals 47 

condition arguments is then employed to lift these embeddings from the ground 
model to suitable generic extensions. 

Thus the general strategy appears to resemble the one for the proof of 
Theorem 3.3.1 in [2]. However, there are new problems here: Recall that, 
working in V[G] we have to lift some elementary embedding i : M L, N (where M, 

N are some transitive models) to obtain an embedding i : M[G”“] + N[GN]. In the 
proof of Theorem 3.3.1 in [2] it was sufficient to make N[GN] agree with V[GN] 

for sets of rank less than K + m - 1. Now we have to guarantee that in addition, 
N[GN] is J?T-l correct for K inside V[GN], i.e. N[GN] correctly computes the 
L’y_:_, facts in parameters from (N[GN]),+, that hold in V,. Worse is to come: 
The iteration that N wants to do is of length j(~); at the K-th stage we want to 
force a II: statement about certain objects. On the other hand, the iteration in V 

forces the negation of this statement. Therefore great care has to be taken in the 
definition of the forcing iteration in order to make the n: forcing and the 2: 
forcing resemble each other to a degree that allows us to carry out the above 
correctness argument. 

Regarding our notation, the reader is referred to [2] where he will find the 
definitions of all nonstandard symbols that appear without explanations in this 
paper. 

These results are the published incarnation of parts of my Caltech Ph.D. thesis. 
It has been both a privilege and a pleasure to work under the supervision of Prof. 
W. Hugh Woodin. Furthermore I would like to thank Prof. G.H. Mtiller 
(Heidelberg) for suggesting the central problem, and for his continued interest in 
my personal and mathematical well-being over the years. 

1. The coarse structure of the iteration 

Our goal is to show 

Theorem 1.1 (m 22, n ~2). 

CON(ZFC + 3K, K’ (K is fly indescribable, K’ is Zr 

indescribable, and K < K’)) + CON(ZFC + c > n7d:: + GCH). 0 

In order to prove this we can work in ZF + V = L (since II: and 2; 
indescribability relativize down to L) and assume K is a fl: indescribable cardinal 
and K’ 3 K is a _X’F indescribable cardinal. Then we define a K + 1 stage iteration 
(Pa: Cl! 6 K + 1) such that 

IF p,+, “there are no 2: indescribables <K, K is Ur 
indescribable, K’ is Er indescribable”. 

Hence we obtain 
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The idea behind the definition of the iteration is that we want no 2:: 
indescribable cardinals 6~. Thus at stage A s K of the iteration we have to force a 
EC:: description of A. In addition to this we also want our iteration to preserve the 
27 indescribability of K’ (which is no problem) and the II: indescribability of K. 

Because of the latter (cf. [2] for a discussion of this issue) it is necessary to do 
more than simply to force one 2:: description A. 

Here is the official definition of (Pa: a c K + 1): Let PO be the trivial poset. For 
a limit ordinal CY < K let P, be the direct or inverse limit of (5: 5 < LY) depending 
on whether a! is inaccessible or not (respectively). If PA has been defined for some 
Mahlo cardinal A < K, pick a term Q, E V” with the following properties: Qn is 
itself a m f 2 step iteration. In the first step we add a sequence (F,: y < A’) of 
Lipschitz functions on (2A+(m-“)“-1, i.e., each Fy is really a function with domain 

(2 <*+(m-l)),-l and range contained in 2<*+(“-‘), and we define 

F,4(&, . . . , X-1)) = &‘_,, F,(Wl n 5, . . . , K-1 n 5‘)) 

for Xi, . . . , X,_, E h+(m-l) provided that for r~ < 5 < A+(“-l), F,((X, fl 5, . . . , 
X,_, rl I;)) extends F,((X, fl 9, . . . , X,_, rl q)). (Note: we frequently identify 
sets with their characteristic functions.) In the second step we force a 27 fact 
about Fy where y < A+ is even and its negation (a fl: fact) about Fy where y < A+ 
is odd. The next m - 1 steps code down each F,, to $, c_ A (y < A+). Finally we 
add a sequence of club sets C,, z A such that for each y < A+, C, avoids the set of 
all inaccessibles ~1 below A for which the above .Zy fact about Fy (or rather its 
code s,,) reflects down to VW. If A < K is not Mahlo, we let QA be a term for the 
trivial poset. In either case define P A+1 = PA * Qn. This completes the definition of 
the iteration. 

Since for any inaccessible p we have Ve! < y lP=I < p and since we take direct 
limits at inaccessibles, PA is h C.C. for any Mahlo cardinal A < K. Thus such A 
remain regular in VP”. In fact their inaccessibility is preserved, since one can 
show by standard factoring arguments that for each LY < K 

Il- pm+1 “pa+l,K+1 has for each Y < ~1 a < Y closed dense suborder” 

where Pn+l.w+l denotes the tail of the iteration in VP*+’ and p is the least 
inaccessible cardinal >or. This means in particular that from the viewpoint of 
VP,+1 the tail is highly Baire. Thus once a candidate for Zz indescribability is 
killed off it is never resurrected later on during the iteration and we obtain 

Il- pK+, “there are no 2: indescribables below K”. 

More factoring arguments together with the chain condition and closure 
properties of the posets in the forcing QA allow us to prove by induction on (Y 

It, GCH. 

It follows from lPK+ll <K’ that P r+l preserves the 2::: indescribability of K. In 
order to finish the proof of 1.1 we only have to show that PK+I also preserves the 
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m indescribability of K. This is being done in Section 3 where we work out the 
argument for the case m = 2. In Section 4 we briefly indicate how all this can be 
generalized to m 2 3. Finally, in Section 5 we prove an Easton style result that 
shows that we can simultaneously arrange the relative sizes of the indescribables 
as we please. 

2. The fine structure of the Z~/lI~ iteration 

Suppose A c K is a Mahlo cardinal, GA is generic for PA, and in V[Gh] A is 
inaccessible and A+‘= (A+‘)L for 13 1 and GCH holds from A on. (Once the 
whole iteration has been defined it is easily verified that these requirements are 
satisfied.) The first step Qf, of the four step iteration Qi is a A+ product with <A+ 
support of copies of the forcing QF which adds a Lipschitz function F : (22+)n-1 + 
2h Conditions in QF are approximations of F, i.e., conditions are functions f with 

dam(f) a subtree of (2<‘+)n-1 of size il such that 

V(s,, . . . , s,-~) E dam(f) [lh(s,) = - * . = lh(s,_J A 3a < A+ 
[f((~~, . . . , s,_l)) E 2n+’ A LY 2 lh(s,) A~((sI, . . , s,_~))((Y) = 0 
A vl; 6 (Y [f((SI, . . . , G-d)(C) = 1 +ccf(C) = 41 and 

V(s,, . . . , s,-1), (t,, . . . , r,_J E dam(f) [(t,, . . . , t,-,) extends 

61, . . . , s,-J + f((h, . . . , Ed) extendsf((s,, . . . , s,-d)]]. 

For two conditions f, g E QF we let f cg iff f ~g. Clearly Ql, is <A+ closed and 
has size A+. Therefore, if (4: y < A’) is Q: generic over V[G,,] then in V[G,, 61 
/I is still inaccessible, A+‘= (A+‘)” for each 1 2 1 and GCH holds from A on. 
Moreover, for each (X,, . . . , X,-i) E (2af)n-1 we can define 

F,((X,, . . * > XA))~~ 5LJ+ F,((X, n 5‘1 . . . , X-, n 5;)). 

In the second step Q”, of Q, we will force a .Zz statement about Fy for y < A+ 
even and a nz statement about Fy for y < A’ odd. The 2: statement says 

zlX,cA+vx,GA+ * * * Q-K-, c A+ dF,((X,, . . . , X,-l))) 

where Q is V or 3 (resp.) and 47 is “F,((X,, . . . , X,)) is a nonstationary 
(stationary resp.) subset of A+” depending on whether n is odd or even (resp.). 
The nr statement is just the negation of the 2: statement. 

Naturally, Qz will itself be an iteration of length A++, but we prefer to think of 
it as a suborder of Add(A++, A+). On the outset fix a partition of A++ into cofinal 
pieces A0 and A“*’ where 1 s k c n - 1 and y < A’ with A+ E A’. For each 
kE{l,. . . , n - l} and y < A+ pick a complete sequence ((T:~, . . . , $3”): f < 

A++) of k-tupels of nice Add(A++, A’) names for subsets of Iz+, i.e., for each 
k-tupel (t’, . . . , t”) of nice Add(J.++, A’) names for subsets of A+ there are 
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confinally many 5 < A++ with (t’, . . . , 8) = (tt”, . . . , ~2’). We need some 
notation: For S s A++ and 4 E Add(rl++, A’) let 

Add”++@, A+) ef {f E Add@++, A+): supp(f) c S} 

and define q/‘S E Add”++(S, 3L+) by 41” S(C) = q(1;) for 5; E S and 41’S(c) = 0 for 
{CA++- S. Now we define by induction on (Y s A++ a sequence (Qor: (Y s A++) 
where each Q, is a suborder of Add”‘+(cy, J.‘) and Ql++ = Q’,. Q0 is the trivial 
order on {lAddcl++,l+j}. If a G A++ is a limit ordinal we let 

Qn = {q E Add’++@, A’): Vl; < aql’ 5 E Q,}. 

If (~=/3+1 for some p<A++ there are two cases: For /l E A++ - UyCA+ An-lpy 
we simply add a subset of il+ at coordinate /3, i.e., 

Q,+r = {q E Add”++(/3 + 1, I.+): q I0 #3 E Qs}. 

On the other hand suppose y < A+ and @ E An-‘,“. In this case we want to add a 
club subset of A+ which is disjoint from F,((tfiY, . . . , t~-‘~‘)) if certain ‘killing 
conditions’ are satisfied in (V[G*, FYI) . Qa If these killing conditions are not 
satisfied we save F,((ti”, . . . , t”p-‘sY)), i.e., we force with the trivial poset at 
coordinate /3. (Why this is called ‘saving’ will become clear in 2.5.) The killing 
conditions are essentially determined by certain agreements and disagreements in 
the first k + 1 components (0 =Z k =S n - 2) of the tupel (ttjY, . . . , tz-‘.Y) at 
coordinate /3 E Az-l*Y with tupels of the form (ttr, . . . , T$“, l-3 where 

LY 
(tt 9 *. . , ~2”) appears at coordinate 5 EAkpy rl j3 (1 C k s n - 2) and r’ is a 
canonical Qs name for the subset of A+ that we add at coordinate 5;. There is a 
minor technical point here: In general we cannot expect any of terms appearing in 
tupels at coordinates up to /3 to be terms in the forcing language for Q,. 
Therefore we have to define an operation on terms that associates with each nice 
Add@++, A+) name tiY a term fit’ in the forcing language for Q, as follows: 

@’ = {(rl, f): f E Q, * 3g ((77, g) E ~2’ A f =s ET)> 

where s denotes the s of Add(A++, A’). Note that strictly speaking this 
operation depends on c, i.e., if riy = ri;:,’ with < # 5;’ we might end up with 
$+Y f @Y’_ Also note that if riy is already a es-term then for any filter G on 

Add@++, A+) we have (?iy)G = (~2’)“. 
We are now ready to define the killing conditions formally. Towards this end 

we build by induction on n 2 2 finite trees T,; and T,:. 
For n = 2 these trees look very simple 

save 

II: (kill) 
Y 

2; -0 
\ 

kill. 
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For n = 3 we have 

save 
172 y 

3 ‘;: kill 

kill 

=2y 

3 Ylzy Save 

3y kill. 
For n > 3 we use Tn;_, and TX;_, to define Tn; and TX;_, and Tn; to define T=;: 

/ 
=* l/ 6-2 < 

. . . 

> 

Tn;-, where we add 2 to all positive labels and 
subtract 2 from all negative labels, 

n \;t, xz y “’ Tzz-, where we add 2 to all positive labels 

n-2 -2 

\ 

including 0 and subtract 2 from all negative 

. . . labels including -0. 

T,;_, with all labels changed as above, 

In order to get a better understanding of this definition we write out the 
resulting trees up to n = 7: 

$ (kill) 
z 9 save 

’ T kill 
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save 

‘kill T 2Ysave 
” T kill 

~ 4,kill 

Some explanations are in order: The integer numbers that occur as labels of the 
segments of branches in the tree correspond to various agreements or disagree- 
ments of tupels of the kind mentioned above. Suppose p E An-lsy and we want to 
decide whether to kill or to save at coordinate fi. If y < ht is odd we consider Tn; 

otherwise TX;. If a segment of a branch in the tree is labeled k (1 G k s n - 2), 
this corresponds to the existence of some 5‘ E Ak~y n /I with (?ty, . . . , Zty, F) = 

<2p,. . . , z A~“8y). The label -k indicates that this fails for all c cAKsY n /3. By 
the label 0 (-0 resp.) we express that et;“= P’(f~Y#P’ resp.). In order to 
decide whether to kill or to save at coordinate /3 we now simply pick the unique 
branch through the appropriate tree that corresponds to the various agreements 
and disagreements of (%i’, . . . , ?z-lr”) with tupels of the form above associated 
with coordinates c/3. If this branch ends in ‘kill’ we kill otherwise we save. 
Formally we define for p E An-lFy 

Q,+I = {q E Addhi+@ + 1, A’): 41’ p E Q, A 

q(j3) is a condition for if e,;(P, (?jy, . . . , ?i-‘*‘), 

41’ ‘IQ, 

r 

killing Fy(?fjy, . . . , ?$-‘sy) ((fky, . . . , ?ty, rc): 5‘ EA“,~ 

n&k~{l,...,n-2))) 
and (Zfiy, . . . , 2”,-‘*‘) E dom(F,) 

4(P) = 0 otherwise} 

in case y is odd (here 0 nz denotes the disjunction of the killing conditions as 
given by the branches of Tn:, ending in ‘kill’). In the case y is even we replace 8,; 
by gzi which is given by the branches of TX; ending in ‘kill’. This completes the 
definition of (Q,: (Y s A++). 
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Since compatibility in Qf agrees with compatibility in Add(il++, A’) Q: is A++ 
C.C. Moreover, it has size A++, and it is 4 closed (because of the cofinality 
requirement that we included in the definition of QF). On the other hand Q’, is 
not <2+ closed as it makes many of the sets F,((X,, . . . , X,_,)) that are all 
stationary in V[G,, sY] nonstationary. However we will show in 2.3 below that Qt 
is <A+ Baire. The proof strategy is to define a larger model V[G,, fi,,, I?,,] 1 

V[G,, iY] and to show that in this larger model Qi is <il+ Baire. 
It is easy to modify the definition of the forcing Qi so that rather than adding 

Lipschitz functions FY : (2A+)n-1 + 2’+(y < A+) we add a sequence ((F,, H,,): y < 
h+) of pairs of Lipschitz functions with F,,, H,,: (2A+)n-1*2y+ such that for all 

x1, . . . , x-1 E A-+, f&((Xl, . . * 7 L,)) is a club subset of A+ which is disjoint 

from F,((X,, . . . , X,-r)). We denote this modified poset by Q:. It is a A+ 
product with <A+ support of copies of a poset QF,*. Conditions in QF,H are pairs 

(f, h) where 

f E QF A h is a function A dam(h) = dam(f) 

A V(s,, . . . , s,-~) E dam(f) [3&, /? < A+ [dom(sr) c (Y, p 

Af(s,, . . . , S,-1) E 2=+’ A h((S,, . . . , S,-l)) E 2’+l 

A h((S,, . . . > L,))(6) = 11 A (5;: h((s,> . . . , %-I))(~) = 1 

=f((s1, . . . , s,-1))(c)} =k!i A {I;: h((s,, . . . , s,_~))(C) = 1 is closed] 

A V(s,, . . . , s,-I), (tl, , . . , fn_l) E dam(h) [(sr, . . . , s,-J extends 

(t*, * . . 9 fn-1) * h((s,, . . . , s,_~)) extends h((t,, . . . , tn-l))]. 

For two conditions (f, h) and (f’, h’) in QF,H we let (f, h) s (f’, h’) iff f If’ 
and h 2 h ‘. Clearly (f, h) E QF,H implies f E QF; conversely for any f E QF we can 
find h such that (f, h) E QF,w It follows that if D is dense in QF then 
{(f, h) E QF,H: f E D} is dense in QF,w Thus, if ((F,, H,): y < A+) is Qi generic 
over F[GJ then (F,: y< A’) is Q: generic over V[G,] and V[Gk, pY] E 

V[GA, (gY, &,)I. Inside V[G,, (FY, I?,,)] we can define the following posets for 
(yc #l++: 

Q~~f{q~Q~:vy<n+vg~A”-l,Y[q(B)#O 3 

q)@ /3 It;p’~*“” sup q(D) E zf,((@Y, . . . ) t;-‘J))]}. 

Lemma 2.1. For each LY s A++, Qz is <A+ closed. 

Proof. Fix 1yCIz++ and a decreasing sequence of conditions in QZ, say 
(qv: 17 < A). By induction on c < cy we will build q 1 5 such that (q ( f)^l E Q ;, 

supp(q 1 0 = U,<A suPP(4s I C-1 and Vrl< il q 1 5 c qv 1 5. The only nontrivial 
case in the induction step is obtaining q ( (5 + 1) from q ( I; if c happens to be an 
element of An-*vy for some y < il+ and if qn(f) = 0 for some r) < A. In this case 
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we define 

4(5;) = u* 4d5‘). u .$lJq sup 47?(f)). 

This works since for any X1, . . . , X,-i E A+ if H,((X,, . . . , X,_,)) is defined 
then it is closed and disjoint from F,,((X,, . . . , X,-r)). 0 

Lemma 2.2. For each (Y c A++, Q;T- is dense in QIy. 

Proof. We use induction on (Y G A’+. Note that Q,= {O} = Q,*. Suppose 
cr = /I + 1 and q E Q,. The only interesting case is /3 E An-l,y for some (Y < A+ and 
q(p) #O. Recall that for any X,, . . . , X,-i E h+ if H,((X,, . . . , X,-i)) is 
defined then it must be unbounded in A+. Hence we can find some ordinal 6 < il+ 
with sup q(p) < 6 and a condition q* E Qg below 41’ /3 (this uses the induction 
hypothesis for B) such that 

Clearly (4* - {(h NH U {(P, q(8) U W)) is a condition in Qz below q. If (Y 
happens to be a limit ordinal there are two cases: if cf(cr) > 3L+ then supp(q) is 
bounded below (Y for q E Qm. Thus we can apply the induction hypothesis to find 
q* E Qz below q. Otherwise we pick a normal sequence (A,: n G /3) where il, = 1y 
and /3 = cf(a) G A. Using induction on r,i G /3 we can define a decreasing sequence 

(4”: rl =Z B) with q,, E Q; and q,, s q I0 A, for all n < /3. This works at limits 17 G /3 
since Q; is <A+ closed by 2.1. Clearly qs E Qz and extends q. q 

Lemma 2.3. For any (Y c )L++, Qn is <A+ Baire. 

Proof. Suppose this failed for some Q < AC+. Pick a name p E V[G,]“: for the set 
of parameters that we need to define Q, and a condition f E Q: such that 

(*) f 11,: v’GA1 “Q, defined from fi is not <A+ Baire”. 

Pick some h such that (f, h) E et. Let ((F,, H,): y< A+) be Q: generic over 
V[Gn] extending (f, h). In V[GA, (I?,, I&)] Q, has a <A+ closed dense suborder 
Qz. So in particular Q, is 4.+ Baire in V[GA, sY] contradicting (*). Cl 

As a corollary we get that for each /3 < A++ 

It~~G~~~lVy < A+ dom(F,) = (2*f)n-1. 

Hence in the definition of Q,+i where /I E A”- ‘sy we can omit the clause 
^l,Y ((r@ , . . . , Z;-‘sy)) E dom(F,). 
Our next task is to verify that Q’, forces the 2: (rr’, resp.) statement about Fy 

when y is even (odd resp.) mentioned in Section 1. We must first prove a 
technical fact that will be used later on. 
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Lemma 2.4. For any condition q E Qf and any ordinal 6 < A+ there is a stronger 

condition q ’ E Q f with 

Vy < A+ Va E An--l*” (q(a) f 0* sup q’(a) > 6). 

Proof. The usual argument: suppose for some condition f E Q: and some q E Q’, 

and 6 <A+ we have 

f IF,: v’GA1 “the claim fails for q and 6”. 

Pick some h such that (f, h) E Q -: and let (($,, H,): y < A’) be a Qj, generic over 

V[G,] that extends (f, h). In V[Gh, (FY, H,)] pick an increasing enumeration 

(cx~: q < ;I) of supp(q) with 1x1 c A and define by induction on n a decreasing 

sequence (qn: q <A) such that for all rl< 2: qtl E Qzq, q9 s q(’ a; and Vy < 

A+ Va E An-lsy rl a, [q(a) # 0 + sup qs( a) > 61. From this we obtain a condi- 

tion q’ as in the claim. This contradicts our assumption above. 0 

The next lemma says that after forcing with Q”, any F,((X,, . . . , X,-J) is 

stationary unless we killed it explicitly. To be more exact: 

Lemma 2.5. Let G be Q; generic over V[G,, &I. In V[G,, FL, G], let 

x1,. . . )X,_ 1 c A+ and yO c A’ and assume 

V/3 ~A”-‘.~kfq E G [q(p)+0 + ((?jy”)G,. . . , (?;-‘sYo)G)f(X~, . . . , xn-1)]. 

Then F,,((X,, . . . , X,-l)) is stationary. 

Proof. Pick names A ‘27 (O<k~n-- 1, y<A+), ?jy (y<A+, /3eAkSy, lSi<k) 

in V[G#: for the parameters in the definition of Q’,. Let o, (T’, . . . , a”-’ E 

V[GJe:*@ and @, 4) E fiY * G with 

(j, q) IF;\:& “tlq E I- V/3 E An-l*y” [q(p) # 0 + 

((ifiyo, . . . , ~--lyO) # (a’, . . . , a”-‘)] A o E A+ is club”. 

The lemma is proved if we can find a condition (f, q) c (f, (I) and S’j . . . , snpl E 

2 <‘+ and an ordinal a < A+ such that 

(s’, . . . , d-l) E dom(f “n), 

fYO((.s’, . . . ) sn-‘))(a) = 1, 

(f, q) II-;~& “(a’, . . . , a”-‘) extends (s’, . . . , s”-l) A IX E a” 

where f y denotes the y-th component of the condition f E Q:. In order to come 

up with (f, q), (sl, . . . , sap1 ) and CX, we have to construct a decreasing sequence 
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KG, 4rJ: 17 < A) o conditions below @, q) and auxiliary sequences f 

@vu,: rl <A), 

(6,: rl <A), 

(T,: n <A), 

(bl;: y E T,): 7j -=C A), 

((((&J7 . . . ) s”BJy): p E bl;): y E T,): ?j <A), 

<<$ * * . , s ;-‘): q <A) 

where CIC,,, 6, <A+ and Tq E A+ and bc c A++ and s&, sk c_ A+ and at stage n of 
the construction we have: 

a;, 4, > sup{dom(fZ&, . . . , Lo)): rl’ < rl, Y E supp(f,O, 

(Sl, . * . , s,_r) E dom(fb,)} U sup (a,, U a,,); 
‘1’<‘1 

Tq = y<A+&- 

f, lp' 
Vy E Tq b; =/in--l,” fl u supp(q& 

q,<ll 

{ 

+‘.6,=s~,; (i=l,.. . ,n-1, y~T~,/l~bl;), 

(f,,ql)It;!$; u?-l6,=s’, (i=l,...,n-1) 

Lytl E a; 

V/3 E bl;” (s$,$ . . . , s”s;;‘~“) # (s;, . . . , s;-l); 

VY E K, VP E b; sup qo(B) ’ 4,. 

Note the construction of these sequences can be carried out in V[G,] since 
Qf, * Q”, is <A+ Baire. 

Once the sequences have been defined we let 

(~~~~;~~a;, and sidsfIJs& (i=l,...,n-1). 
O<A 

i, y def 
86 - U s& (i = 1, . . . , n - 1). 

11’1 

Now we pick a condition f G fq (9 < A) such that (sr, . . . , s”-‘) E dom(f “) and 
(SfjY, . . . ) sfj n-l,y) E dom(f ‘) (for y E UtlCA TV and B E LJ,r<A,yET, bl;). We also 
want 

fYO((d, . . . , s”-‘))(a) = 1 and f y((sfjy, . . . , sB 
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Note there is no conflict for y = yO. Finally we define q E Add(A++, A’) by 

supp(q) !Ef u* supp(q?J 

57 

and 

Then (f, q) is a condition in Q: * Qi, i.e., flk;p’ q E Q:, and clearly (f, q) and 

(.si, . . . ) d-l ) and a have the properties that we want. Cl 

Lemma 2.6. For each odd (even resp.) y < A’, Q”, forces the II: (2: resp.) 

statement about FY that we want. 

Proof. For the sake of the argument suppose that n is odd, i.e., n = 21+ 1. If 

y<A+ is odd we want the following flz statement about FY to hold in 

(V[G,, W” 

VX, E A+ 3X, c A+. . . 3X,_, E Iz+ F,(X,, . . . , Xn_l) is stationary. 

Let G be Q”, generic over V[Gn, e] and suppose in V[Gn, i$, G] we are given 

some X, E A+. Pick some 5, E A’*” with (Zi;‘)” = Xi and let X2 = G” (i.e., the 

subset of A+ that G adds at coordinate 5,). Now suppose X3 E A+. Pick some 

& E A3py with (Xi, X2, X,) = ((Q,&Y)G, . . . , (f22y)G). Then let X4 = Gcz. Continue 

in this fashion until 1;i, . . . , Cl and a tupel (X,, . . . , Xn_,) have been defined. 

Now suppose that c CA”-‘*“. Since for each p E A+’ - UycA+ An-l*y, Q,+, is 

isomorphic to Q, @ “Adding a Cohen subset of A+“, we obtain by the product 

lemma that c1<I;2<...1;1. The same argument shows that 

((@Y)“, . . . ) (2y-*J)G) = (X,) . . . ) X,_,) (with 5‘ EA”-‘~~) implies [, < f. 

Recall that the top branch in the tree Tn; is labeled 1, 3, . . . , n - 2 and ends in 

‘save’. Hence we obtain 

Vq E G V< EA”-‘.~ [((.zt.Y)G, . . . , (Z;-‘.y)G) = (X,, . . . , Xn_,) j q(f )=0]. 

It follows from 2.5 that F,(X,, . . . , X,-l) is stationary. 

If y < A+ is even, we want the following 2: statement to hold about 

V[Ght Fy, Gl 
FY in 

3x1 s A+ VX2 c A+* * . VXn-r s il+ Fy(XIr . . . , X,-J is not stationary. 

Let X1 = Go. If X2 E A+ is given, pick q1 E A2*y with ((.2$,‘)“, (2’,;‘)“) = (Go, X,). 

Then define X3 = G”‘. For a given X4 c A+ choose n2 eA4fy such that 

((?:;y>“, . . . 1 (~“,;Y)“) = WI, . . . 9 X4). Then define X5 = G”*. Continue in this 



58 K. Hauser 

fashion until nr, . . . , qr and a tupel (X,, . . . , X,_,) have been defined. Now fix 
some rl EA~-‘*~ with ((2;“)“, . . . , (2”,-‘9’)G) = (X,, . . . , X,_,). By the same 
argument as above we have rll < - - - < nl < q. Recall that the top branch in Tz; is 
labeled 0, 2, . . . , n - 3 and ends in ‘kill’. Thus at coordinate n we add a club set 
that is disjoint from &(X1, . . . , X,_,). The argument for even n is similar. Cl 

This completes our discussion of Q’, for now. Let G be Q’, generic over 
V[Gn, &I. In the next step we want to define a forcing Q’, in V[G*, &‘;, G] that 
codes each Fy by a subset of 3c. Clearly we can think of each Fy as a subset of 3c+: 

After all 2<*+ E V[G*I, but V[G*l = L[G*I since we started in V = L. Now 

‘GA s LA thus 2<*+ 
code 2<*+ 

= L,+[G,], and we can use the canonical well-ordering <_LIGA1 to 
(which has order type A+ under this well-ordering) by il+. Let Fy E A+ 

denote the code for Fy in this coding. Now let 

where for y < A+, Q, codes & G A+ by a subset s,, of 3L using the cL least almost 
disjoint family of constructible subsets of 3c of size A+ (cf. [2], note that we still 
have A+’ = (A+‘)= for 1 2 1). QF is 3, centered and 4 closed. Hence by a A system 
argument Q”, has the property A+ and is <A closed. Therefore in particular 
Qz x Qz is J,+ C.C. Hence Qz does not add any new subsets of )c+ all of whose 
initial segments are in V[G*, @*, G], i.e., L,+[GJ. If (S,,: y< A+) is Q”, generic 
over V[G,, FA, G] and $,, denotes the code for & (see [2] on how $ is defined 
from S,,) then we obtain in V[G,, &, G, &,I: 

3 good X, G A+ V good X2 s A+. . - Q good X,_, E 3L+ Q-l& 

[A transitive, &k ZF-, IJGll = IVi+ll, .dll”lb’ E .d, X1, . . . , X,_, E & 

. ; ..M k “If F: (2*+)“-l+ 2*+ is the Lipschitz function coded by 3, 

then (p(F((X,, . . . , -Ll)>Yl 

for even y < Iz+ where q says “F((XI, . . . , X,)) is not stationary (stationary 
resp.)” for odd n (even 12 resp.). 

In this formula “X is good” (where X c A’) means Va < il’ X n a E L,+[GJ. 

So this is 2:(X, G*, A) over V, since it is absolute for any transitive model of 
enough of ZF that correctly computes A+. Hence the whole formula is 
_Yi(,$, G*, A) over V,. It will be abbreviated by G’?($,;,, G*, A) from now on. 
Similarly, for odd y < A+ we have a flz formula $“;(&, G,, a) holding at V, in 
V[Gh, $A, G, ,!?,,I which is just the negation of @. 

Finally in the last step Q”, of Q* we add a sequence of club sets C, E Iz (y < A’) 
such that 

C,, n {p < A: p is inaccessible A VP k @““(E?, fl VP, GA n V,, p)} = 0. 

Q”, is a A+ product with <A support of posets each of which is of size A and has 
for each Y < k a < Y closed dense suborder. Thus by a A system argument Q”, has 
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property A+ and for each Y < 3, a dense <Y closed suborder. In particular 
Qi x Q: is A+c.c. and hence for any Qi generic (C,: y < A’) we still have 
V, k $1”“(5;,, Gh, A) for even y < A+ and V, k @““(s,, G,, A) for odd y < A+ in 
V[G,, i$, G, $, c,]. Therefore we obtain 

We conclude this paragraph by proving two technical results about the iteration 
Q: which will be used to show that our iteration PK+l preserves the nz 
indescribability of K. As a minor technical point the reader may have wondered 
how we choose the parameters necessary to define Q’,, i.e., we need to choose 
them in a uniform way in order to define Qi by induction on A. This can be done 
by simply choosing the <LlcA,~7~ least family of parameters. However, as we shall 
see in a moment the exact way in which we choose the parameters for Qf is 
actually irrelevant since the outcome is always the same as long as the sequences 
of terms are complete. For the rest of this paragraph we work in a model, say 
where GCH holds from A on and (FY: y < A’) denotes a sequence of Lipschitz 
functions FY : (21+)n-1 * 2A+. 

Definition 2.7. We call P a set of parameters if it consists of a partition of A++ 
into cofinal pieces and of complete enumerations of tupels of terms along the 
coordinates in the sets in the partitions. So P will be of the form 

{A’, (A’,“: y < 3L+, 1 s i s n - l), ((+, . . . , +‘): y < il+, 5 E A’,“, 1 <i <n - 1)). 

If P is a set of parameters we denote by (Q,(P): (Y s /I++) the Q-iteration defined 
from P, i.e., Q,++(P) (for which we will simply write Q(P)) is the poset defined 
from P for forcing a certain nz statement about FY for y < Iz+ odd and a certain 
2: statement about F, for y < d+ even. Cl 

Definition 2.8. Let S 5 A++ and P be a set of parameters. We say S is a complete 
setofcoordinatesforPifforeachy<~+,k~{l,...,n-l}andi~{l,...,k} 

VP e Aksy n S V(rl, f) E +’ (supp(f) c I;- supp(f) E S) 

and if A+cS. 0 

Definition 2.9. Let P be a set of parameters and S E ;l++. For C s A++ 

Qggf {q E Q&‘): supp(q) c 9 

and Qs gf Q;++. For y<il+and ~EA~Y(l~k~i<n-l) 

“f~~‘={(rl,f):f~Q~~,,((,,,),.~,‘,f ~8)). 

If it is clear from the context which S we are referring to we drop the superscript 
S and simply write @‘. Cl 
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The following lemma shows that for complete sets of coordinates we can thin 
out a given condition in Q(P) and stay within Q(P). 

Lemma 2.10. Suppose S G A++ is a complete set of coordinates for a set of 

parameters P. Then for each 1; G A++ 

Vq E Q&7 41’s E Q; 

Proof. We proceed by induction on f; c A++. Note that the first claim clearly 
implies the second. The only nontrivial case in the induction step is when 
t;= a+ 1 with cuEA”-‘3YflS for some y <A+. W.1.o.g. let A be odd and assume 
towards a contradiction that q I’S $ Q”,,,. Hence there is a condition q’ E Q”, with 
q’<ql’Sncuand 

q’ IF,l0;,((l? q E S rI cu), ((fiY, . . . , fz”): rj EA~,~. (a + 1) n S, 

kE (1,. . . ) n - 111, Fyy a, q(4) 

where 0;; roughly says “If the killing conditions are satisfied then we kill at 
coordinate cx otherwise we save”. The key point is that the completeness of S 
implies that for any Q,(P) generic H, (3%‘)” = (Si;lY)nnQS for all n E Akey n 
(a+l)flS. Moreover, if for qEAk,yflcx and kE{O,...,n-2}, 

(@‘)“, . . . ) (e”,+‘J)“) = ((Zy)“, . . . , (2:yH, W), then we must have n E S 
(by the induction hypothesis together with the product lemma). Now define a 
condition q” E Q,(P) by 

qu I(s n (u) = 4’1 (s n a), 

4” I(a- S)=q((cu-S). 

Then with the above remarks 

q”kQmcpjlo;s((rq: q < CY),((?‘;~, . . . , ?:q: ?j EAkpyn ((Y-t I), 

ke{l,..., n - I)), Fy, a, q(a)) 

which contradicts q E Q,,,. 0 

Now let P = {A’, (Ak~y: y < A+, 1 s k s n - l), ((rky, . . . , rtSy): y < )L+, 1 s 
k srt - 1, tg eAksy)} and p = (A’, (AkSy: y < A+, 1 =S k Sn - l), ((3:‘, . . . , f’$~: 

y < A+, 1 s k <n - 1, 5 E Ak*y)} be two sets of parameters and Q = Q(P) and 
Q = Q(P) the corresponding Q-iterations. 

Lemma 2.11. Q and e are isomorphic. 
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Proof. We construct an isomorphism by a back-and-forth argument. Towards this 
end we define a sequence (es: [ =S A++) of functions such that 

dom(e& rng(ec) c A++, 

c G dom(et), 5‘ G rng(e& 

eg is 1: 1, 

legI <A++, 

rl<c -+ e, ceg, 

eA+ = id 1 A’, 

Vy<k+VkE{l,..., n - l} Vq E dom(es) (q E Akay (A0 resp.) 

a et(q) E Aksy (A0 resp.)). 

We begin with eA+ = id 1 A+. For a limit ordinal c E (A’, A++] we let eg. = lJ,,<t; e,. 
Now suppose we have arrived at a successor ordinal 5; + 1 < A++. If I; $ dom(et), 
we have to distinguish the following cases: 

For 5‘ E A0 define 

es+,(f;) = min(AO - sup+ rng(ec)). 

For I; EAT,” (where 1 G k s n - 1 and y < il+) pick the minimal q E Aksy - 
sup+ rng(e5) such that (ti”, . . . , f$‘J = ((i?;y)“C, . . . , (@Y)‘C) (where (fiy)ecdsf 
{(q, qQ): (q, q) E Ziy} and where qec E Add(A++, A’) with supp(q’f) = 

e&upp(q)l and VE E supp(q) P(ec(5)) = q(E)) and let es-+,(f) = rl. If 5‘ 4 
rng(et) U {q} again there are two cases: For y E A0 let 5 = min A0 - 
sup+(dom(ec) U { <}) and define e,+,(E) = 5‘. If c E AkSy for some y < A+ and 
ke{l,..., n - l} pick the minimal 5 E Aksy - sup+(dom(ell) U { 5;)) such that 

1.Y 
(Q 9 . *. , @) = ((y)'C', . . ., (f2sy)ec') (again (?iy)ec’ denotes the result of 
applying the shifting map induced by et’ to sit? and let e,+,(E) = f‘. 

This completes the definition of e 5+1. (If P happens to be already in the domain 
of ec or in the range of et or the intermediate function we skip the corresponding 
clause in the definition.) Note that all this is possible because the sequences of 
tupels of terms are complete. In order to finish the proof of the lemma we have to 
prove the following claims: 

Claim 1. For each 5; E [A+, A++), dom(ep) (rng(eG) resp.) is a complete set of 
coordinates for P (P resp.). 

This is immediate from the way we defined the sequence (ec: 5 < A++). 

Claim 2. For all c < A++, qec E @“g(ec) for all q E Qdom@) and qef’ E Qdom@ for 
all q E Q’“gCet). 

In order to prove the first half of Claim 2 suppose that q E Qdom(ec+l) for some 
successor 5‘ + 1 < A++. We can assume c 2 3L+. The worst case that can happen is 
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that we have to add first 5; to the domain of el; and then g to the range of the 
intermediate function in order to get eg+i from ec: 

Clearly dom(eg) U (5) is complete for P. Hence by 2.10 

q 1’ (dom(ec) U {c}) E Qdom(ec)u{E). 

One now argues that 

(41’ (dom(ec) U { i$}))ec+l E @‘g(e@{5). 

Then one shows qec+l E e T”g(e~+l) The second half of Claim 2 is proved similar. . 
It follows from Claim 2 that each eg induces an isomorphism of Qdom@c) with 

Qrng% Thus u 5<1++ eg induces an isomorphism of Q and Q. 0 

We need one more technical fact about the iteration of the form Q(P) which 
says roughly that Q(P) factors in a nice way, i.e., if we pause at some 
intermediate stage 5 < A++ of Q(P) then from the viewpoint of VQc the rest of 
the iteration looks pretty much like the original iteration in V. Before we can 
make this precise we need to set up some notation. Suppose P is a set of 
parameters and (Qs: I; <A++) is the iteration defined from P. If S < A++ and & 
is Q, generic then, in V[&], let for I; E [6, A++] 

Qs,cef {s E Add([G, A++), A’): 3q E Ha (q ) 6)-s E Q,} 

and endow it with the ordinary G on Add([G, il++), A+). Pick a canonical name 

06,~ e VQa for Q6.c For each q E Q, (6 s 5 s A.++) pick a term is,< E VQ6 with 

Lemma 2.12. For each 5 with 6 c g 6 A++ 

0 
@s: Q,-+Q,*Q,,, 

4 - (4 IS 69 4d 
defines an komorphism of Q, with a dense suborder of Q, * $O,C 0 
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Next we associate with each nice Add(h++, A’) name r for a subset of il+ a 

canonical name 6r E VQ6 such that 

(2.13) It,, gr = {(rj, h): q <A+ A h E Add([G, A++), A+) A 

3f E r3g E Add(G, A+) ((q, g-h) E t r\f 1 6 sg)}. 

Note that 

It,, “gr is a nice Add[(G, A++), A’) name for a subset of A+“. 

Lemma 2.14. For any complete sequence (ti-: C < ,I++) of nice Add(A++, A’) 

names for subsets of AC 

II,, “(sz5: I; -=C A++) is a complete sequence of nice 

Add([G, A++), A+) names for subsets of A+“. 

Proof. Suppose q E Q, and 8 E V”” such that 

q ItQ, “6 is a nice Add([G, A”), A+) name for a subset of il+“. 

Define a nice Add(A++, A+) name t for a subset of A+ by 

t = {(r~, h): rj <A+ A h E Add(A++, A+) A hi0 6 E Q, 

A h1°6Sq A h(0c31tQo(q, h 1 [6, il++)) E 8). 

By applying definition (2.13) we obtain 

qll,,,z= CJ. 

By the completeness of (t<: 5; < A++) there are arbitrarily large 5 < A++ with 

t = rr. Obviously for each such c 

We are now going to explain what we mean by modified 6, ;1++ iterations. 

Suppose we have partitioned some 6 E (A’, A++) into A0 and {A’yY: y < A+, 1 c i c 

n - l} and we have enumeration of tupels of terms ((ttY, . . . , $7: c E AkSY) for 

y < ilc and 1 c k 6 n - 1, where each r2’ is a nice Add(il++, A’) name for a 

subset of il+. Let (Q,: C c 6) denote the iteration defined from these parameters. 

Now let H be Qs generic. Suppose that in V[H] we’choose a partition of [a, A++) 

into cofinal pieces A0 and (AkVy: y < A+, 1 c k s n - 1) and we have enumerations 

of tupels ((tkY,. . . , $‘): 5; E Akvy) of nice Add([G, A”), A+) names for subsets 

of A+ that are for each y < A+ complete for Add([G, A++), A’). Let PH = 

{(HY: y < il+, y even), (((f$‘)“, . . . , (Ztsy)“, HC): 5‘ cAkSyfl 6, y < A+, 1 <k s 
n - 2)) and P the set of parameters that we fixed in V[H]. Working in V[H], we 
can now define the modified 6, A++ iteration (o&P,, P): S s (Y G ,I++) by 

induction on cx 6 A++ (we drop the PN and P to avoid excessive notation): Let 

Q,,s be the trivial partial order on the one element set {lAddccb, h++j, n+,}. If (Y is a 
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limit then let 

Qs,,ef {f E Add’“, *++)([c$ (u), A+): V/3 E [6, cx)fl’ [6, /!I) E &,}, 

where of course, for S E [6, A++) and q E Add([G, A++), A’) we define 

Add’s9”++)(S, A+)%f {f E Add([G, A++), A+): supp(f) c S} 

and q[‘SeAdd ‘691++)(S, A+) by ql’S(l;) = q(5;) for 5; E S. If (Y = p + 1 for some 
/3 E [6, A++) there are two cases: For p E [a, A++) - lJy<*+ AnP1sy we simply let 

Qs,~+~ = {f E Add t6J++)([6, p + l), A+): f 10 p E &fi}. 

If for some y < Iz+, /I E AnP1jy and y is odd, we let 

&B+1 dsf {f E Add @,*++)([6, p + l), A+): fl0 p E &s,p A fl0 p 1t~~flf’ &} 

where 6;~ says: 

f(P) is a condition for killing F,((@“, . . . , Q”,-‘pY)) if 

f&(PH, (ii’, . . . , :;;-‘*y, ((tiy, . . . , 4:sy, F): 1; E Ak,y n p, 
1 s k 7 n - 2)) and f(P) = 0 otherwise. 

and 6~ says that the killing conditions (as given by TE) are satisfied in (VIH])“b~o 

if we also refer to PH. For even y we use formulas 6;~ and 6, which are defined 
similar. The symbol * denotes an operation on terms defined as follows: 

1 
sitrSf {(r],f):f E Q)6,5. A 3g ((VP g) e zjy A f =S g)). 

An analogous proof as in 2.3 shows that modified 6, A++ iterations are <A+ 
Baire. Moreover, by the analogue of 2.11 once we fix H and PH as in the above 
definition then, in V[H] there is only one (up to isomorphism) 6, 3c++ iteration 
that refers to PH and to (F,: y c A’). 

Now suppose we have a set of parameters P in V, i.e., 

P={A”,(Ak~y:kE{l,. . . ,IZ-1}, y<h+), 

<<t;y, . . . ) $‘): y < A+, 5 E Akpy, k E (1, . . . , n - 1))) 

and (Qs: 5; =z 3L+) denotes the iteration defined from P. Let 6 < A++ and H be Q, 
generic. Let 

P = {A0 rl[6, A++), (AkTy n [6, A++): 1 s k s n - 1, y < h+), 

((645 . _.,st:‘Y):y<~+,g~Ak,y.[g,~++),k~{l ,..., n-l})}. 

Denote by (Q,: 6 s 5 s A++) the [6, A++) iteration defined in V[H] from PH and 0 
P. Recall the poset Q,,, from 2.12. The following lemma illustrates that 
(Qt : 5‘ < A++) factors in a nice way. 

Lemma 2.15. For each C E [6, ii++], 

d;, = Qs,c 
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Proof. The lemma is proved by induction on 5‘ E [6, A++]. For c = S the lemma is 
trivial. Now let c be a limit. If cf(<) = A’, there are no problems so suppose 

cf(5‘)ck. Q&cQ 6,c follows from the induction hypothesis. Conversely, for 
q E es,, pick S E [6, 1;) cofinal in c with ISI s )3. For each u E S pick h, E H with 
(h, 1 b)-q1°[6, Y) E Q,. Note that the sequence (hy: Y ES) is in V, thus we can 
pick h E H such that h IF,, VY E S h, E II One now argues that h-q E Q,; this 
proves that q E &‘,. Finally, consider a successor c + 1 < A+‘. Here we first 
establish the following 

Claim. If K is && generic over V[H], then for each y < ;1’ and k E { 1, . . . ,n- 

l} and Y eAksyfl [6, 51 

((&Y)W)K = (p/)@~‘lH*Kl 

where as is as in 2.12. Cl 

The proof of the claim consists of a straightforward inspection using the 

definition of the * operation. In order to prove the lemma for c + 1 we can 
obviously restrict ourselves to considering 5‘ E An-1By (for some y < A+). Suppose 

q E Addt’r*“)([S, 5 + 11, d’) and q(‘[6, I;) E && = 06,*. 

If q E &&+I pick h E H with (h 1 6)-q E Q,,,, i.e., 

(h ) @-(q 1’ [k <)I It,, f%:,,. 

We must show 

Conversely, if q E Q)s,C+l we pick h E H such that 

h ( 6 it,, “q 1’ [6, f) It;:’ fi;;,&’ 

(where k and $,, t are canonical Q, names for H and Q6, c) and (h ( 6)“(q I0 C) E 

Q,. Now we must show 

(h 1 @%I0 16, 5‘)) IF,, ‘%r;,r+ 

However, all this is easily checked since, by the claim, the formulas 8&,~ and 
@&; are merely restatements of each other when considered in the appropriate 
models. 0 

In the sequel we will also be using the following specialized construction: Again 
suppose we are working in V where (F,: y < A+) is a sequence of Lipschitz 
functions Fy : (2At)n-1 ---, 2’+ and GCH holds from d on. Suppose 6 E (A’, a++) 
and P = {A’, (A“,“: k E (1, . . . , n - l}, y < A+), ((tkY, . . . , rtsy): < EA“*~, k E 

(1, . . . , n - l}, y < A’)} is a set of parameters and (Q,: f s A++) the cor- 
responding iteration. In addition to this suppose that for some A* E [o, A+] with 
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order type of Eveni* = )L* 

Vy<A+Vl;eA ksy fl6 supp( ~2’) n Even*. = 0 

wherekE{l,...,n-l}andlGiSkand 

supp(r’fY) = u {supp (4): 3rl(% 4) E riy>. 

An argument from the proof of 2.10 shows that for each q E Q,, q(‘(6 - 

EvenA*) E Qg-EvenA* and consequently Q ~-Eve”a* ~~ Q,. 
Now let H be Qg-EvenA* generic. In V[H] define for 5; s 3L++ 

*Qs,a+i*+cEf {q E Add ‘69A++)([6, 6 + A* + t): 3h E H h 0 q E Q,,,} 

where h 0 q is defined as follows 

h 0 q(v)dgf q(6 + 5) if Y is the &th ordinal E Even,*, 

hOq(v)gfh(v) if YE h--Even,*, 

hOq(6+v)d~fq(6+A*+v) ifO<v<A++. 

We let *$s,6+I.+c be a canonical Q~-Eve”A’ name for *Qs,6+1-+L and for each 
q E Q,+, (c<A”) we pick a canonical Qg-EvenA* name *G6,6+A.1+5 similar as in 
2.12. Analogous to 2.12 we obtain a dense embedding 

*@a: Qs+y-+ Q:-Eve”A** *&,~+P+s 

qw (q/‘(a - EvenA*), *b6+h*+6). 

Moreover, if we pick a Q~-EvenA* generic H, then we can, working in V[H], 

define a special modified 6, A++ iteration. The idea is to choose a partition of 
[6 + A*, A++) into cofinal pieces and enumerate sequences of tupels of nice 
Add([G, A+‘), A+) names for subsets of 3L+ along the coordinates in all but one of 
the pieces that are each complete for Add([G, A+‘), I+). The definition of the 
special modified 6, A++ iteration (*es, 5: 5; E [6, A”)] which arises from these 
parameters (and from the sequence of parameters for the original iteration in V 

up to stage S) is entirely analogous to the definition of a modified 6, 3c+’ 
iteration except that at the v-th step of the iteration (i.e., at coordinate 6 + Y 
where 0 s Y < A*) we add the generic witness for the 2: statement that we want 
to hold about Fy where y is the v-th even ordinal <A*. Clearly special modified 6, 
3, ++ iterations are again 4’ Baire, and up to isomorphism there is only one 
special modified 6, A++ iteration in V[H] that refers to the parameters in V up to 
stage 6 and to (F,: y < A+). 

In an analogy with (2.13) we can associate with each nice Add(A++, A+) name r 
in V a canonical term gt in VQ~-““e”“’ such that 

kQ$-%A* ;t = {(q, q): ?j <A+, q E Add([G, A++), A’), 

3hEr3gEAdd~++(6_Even,*,il+)(h~g~(~,gOq)Et)}. 
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For a given complete sequence (rC: 5 < A++) of nice Add(k++, A’) names for 
subsets of A+ we obtain as in 2.14 

Il- Q*PCnL* “(6*rC: I; < A++) is a complete sequence of nice 

Add( [ 6, A”), A’) names for subsets of A’. ” 

Thus, once we fix a Q~-Eve”n* generic H, our set P of parameters in V gives rise to 
a set *P E V[H] of parameters for a special modified 6, A++ iteration, i.e., if 
P={A”,(Ak+y<A+,lSkS.-l), ((r$Y,...,t~SY): SEA’,“, lSk==n-1, 

y < A’)} let 

*A”=[6,6+A*)U{~+A*+~:6+<~Ao}, 

*A“~~={c?+A*+~:~++~;EA~~~} (lSk=~n-l,ySL+) 

and for 6 + f E Akpy let *r$Y+**+c = gr’BCc and 

*p = {*A”, (*AkJ: 1<kcn-1, y<k+),((*r;‘)..., *r?‘): 

c E *Aksy, k s n - 1, y <A+)} 

and 

PH = {(H”: 5‘ E Even,+ -Even,.), (((tfi’)“, . . . , CT:~)~, HP): 

/!LsA~~~,c?, lGkSn--2, y<n+)} 

and denote by *Q,(P,, *P) the special modified 6, A++ iteration defined from PH 

and *P. The same ideas as in the proof of 2.15 lead to the following factor 

lemma: 

Lemma 2.16. For all 5‘ s il++ 

*&s+n*+c = *a,,,+**+~(PH, “P). cl 

This completes our analysis of the fine structure of the iteration for now, and 
we turn to the task of establishing that the iteration preserves the II: 
indescribability of K. 

3. Preservation of the ZIE indescribability of K 

Recall the following characterization of II: indescribability (cf. [2, Theorem 
1.31). 

An inaccessible cardinal K is 17:: indescribable (m 3 1, n * 1) iff 

VM[Mtrans.,MkZF-, IMI=K, ibf’“cM, KEM + 

3j, N [N trans., IN( = JVK+m_-ll, NX~-l correct for K, 

j : M 4 N, crit(j) = K]]. 
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Our strategy for establishing the II; indescribability of K in VP,+’ is then as 
follows: Suppose p l VP,+’ is a name for a subset of K such that 

It p,+l “the transitive collapse of the structure coded by 
~1 is a model of ZF-, has size K, is closed under 
<K sequences and COIItainS K as an element”. 

Pick some 6 with cof 6 > K and V, k ZF-. By the usual arguments we can find a 
transitive M with ]M( = K, M’” E M, K E M and an embedding i : M % V, with 
cpt i > K and i(p*) = ,u for some p* E M. Since K is II: indescribable there is 
a transitive N which has size K+ and is 2’,_, correct for K and an embedding 
j: M + N with crit(j) = K. We are done if we can build a V generic G” for PK+i, 
an M generic GM for PF+l and an N generic GN for Pih;K)+l such that N[GN] is 
2z-i correct for K in V[G”] and GM, GN E V[G”] and i and j lift to embeddings 
(called again) i: M[G”] 9 V,[G”] and j: M[G”] q N[GN]. For then, if we let 
M* denote the transitive collapse of the structure coded by pGV, j 1 M* witnesses 
that K is II: indescribable in V[G”] (note that (,u*)“” = i((p*)GM) = pGV since 
crit(i) > K). 

3.1. Construction of GM and G” 

Let G, be V generic for P,. Since M’” E M, Pf = P,. Clearly G, is M generic 
and i lifts to i : M[G,] 4 V, [G,] b ecause i(p) = p for all p E P,. Next we consider 
Qk* Q”,. Let (0,: (Y < K) E V6[G,] be an enumeration of all the dense sets of 

(Q:* QJ 2 MtGK1 that belong to M[G,]. By induction on r] < K we now build a 
decreasing sequence ((“f,, Mqo): rj < K) such that (“f,, Mqv) E D, (for ?j < K) and 
there is a condition (f, q) E Qk* Qt which extends (i(“fv), (i(“q,)) for all 9 < K. 

The construction of this sequence takes place in V[GK], but any initial piece of it 
is an element of M[G,] which is <K closed in V[GK]. At stage 77 of this 
construction we pick M7” E (K+)~ and for each y E MT, we pick Mbl; s (K++)~ 

such that 

MTq= y<K I +:“A”-‘VY. u Supp(“q,)fO , 

“f, It2”d$!W 
‘1”‘1 I 

yy E MT,“b; = MAn-1sy fI u supp(“q,,). 
‘I’<0 

In addition to this we pick an ordinal M6, < (K+)~ and sets Msfi,$ . . . , Msz;:*y G 

(K+)~ for each y E MT, and p E Mbl; with 

Md, > Sup{dOm(“f~,((sI, . . . , s,-d)): r’ < rl, y E Sup&“f,,), 
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and 

Vy E MT, V/3 E Mbl; sup Mq,,(/3) > M6,. 

This completes the definition of the sequence ((“f,, Mq,l): ?,I <K). Now let 
f7 = i(“f,) and q9 = i(“q,). By the elementarity of i :M[G,] c* V,[G,] applied at 
each stage q < K of the above construction it follows that there is a condition 

(f, 4) E Qi* Q’K below all Ui,, sJ. m e argument for this was given in a more 
complicated context in the proof of 2.5. Pick some V[GK] generic zY *G for 
Qi* Q’, that extends (f, q) and let “FY e”G denote the filter generated by 

((“A, %I): rl <K). “6 * MG is M[G,] generic for (Qz* Qi)“IGK1 and i lifts, i.e., 

i: M[G,, MF,,, “Cl 9 v,[G,, gy:;, Gl. 

For the last two steps of stage K of P,+r recall that Q”,* Q”, has the K+ c.c., and 
c&(i) = (K+)~. Thus after we pick a V[G,, Fy, G] generic-$ * cY for Q”,* Q”, we 
simply let “iY and “c,, be the pointwise preimages of S, and eY respectively. 
Then with 

G”=GK*M$7:yMG*M$*M~,, and GV=GK*fiY*G*$,*?,, 

i will lift, i.e., 

Clearly M[G”] is still closed under <K sequences in V[G”]. 

3.2. Construction of GN 

Note that Pf = P, and j ( P, = id ) PK. Thus with any H that is N[G,] generic for 
the tail PEI(+ j : M 4 N will lift to j : M[G,] c, N[G, * H]. However, we also want 
to pick H such that N[GK * H] is still _XE_, correct for K in V[Gv]. Towards this 
end let n denote the <= least permutation of K+ such that 

I EvenK+ 3 Even,+ - Even(,+,M, 

Jr: 

Odd,+ -&$+ Odd,+ U Even(,+,M. 

Note that N[G,]” G N[G,], in V[G,]. Thus the forcing that N[G,] wants to do at 
the first step of stage K of P,^;r, equals Qi. Now define “FY dsfFn(v) for y < A+. 
Since Ed is in the ground model “$,, is Qk generic over N[G,]. 

Lemma 3.2.1. N[G,, “FYI zk ~~-1 correct for K in V[G,, 61. 
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Proof. Note that N[G,, “FYI = N[G,, ii;]. N ow the proof of the lemma is routine 
since lQ!J = IV,+,l. (Cf. [2, Lemma 1.21.) Cl 

Next we have to find a generic for the second step of stage K of PzKK). Recall 
that in N[G,, “$,,I we have a partition of K++ into cofinal pieces “A” and NA“py 

(1 s k s II - 1, y < K+) and complete sequences ((“tkY, . . . , “‘I$ “): /3 E NAk* ‘) 
from which we define an iteration (“‘es: c < (K++)~) that refers to “pY. Now let 

n*.K++ I:1 onto_ K++ - Even(,+)M 

be defined as 

n*(c) = JG( 5;) if 5 E Even,+, 

n*(5) = 5; if 5; E K++ -Even,+. 

;rd* induces an isomorphism of Add(K++, K+) with Add”++(K++ - Even(,+,M, K+). 
For q E Add(K’+, K+) we denote by q”’ the image of q under this isomorphism. 
We also use this isomorphism to associate with each nice Add(K++, K+) name t 
for a subset of K+ a nice Add”++(K++ - Even(,+,M, K+) name rn* in the usual 
way. Now in V[G,, i$] let P* denote the following set of parameters: Partition 
K ++ into cofinal pieces *A’, *Akvy (1 S k S n - 1, y < K+) and choose complete 
sequences ((*r~“, . . . , *T#‘): /3 EA“,~) such that *Aon (K++)~ = NA” and 
*AkdY) ” (K++)N = NAk.Y and *@=(Y) = (“$+Y)“* for p E NA’GY, y < K+ and 1 < 

k<n-1. Let (*Q,: c=SK ++) denote the iteration defined from P* and Fy. Note 
that for y < K+, k E (1, . . . , n - l} and /I? E *Ak*y~ (K++)~ 

supp( * ~2’) n Even(,+,M = 0 for 1 s i s k. 

Thus for c 6 (K++)~ and q E *Q, 

41’ (t - Even(,+)M) E *Q, and *Qf-Even(K+)~ c, *Q,. 

Moreover, X* induces an isomorphism of NQ(,++j~ with *Q{${~-EVe”(K+)M. Recall 
that for noncritical y < K+ (i.e., y and n(y) are both odd or both even) *Q and 
“Q agree on whether to make a Zz or a II: statement true about “F, = Frccyj. 
However, for critical y < K+ (i.e., y odd and JC( y) E Even(,+,M, *Q wants to force 
a Z:f statement about Fncyj, and NQ wants to force a II: statement about 

“F, = Fn(u). Note that range(n*) tl Even(,+)M = 0; hence no term that appears in 
*QcK++)~ can possibly ‘see’ the witness for the 2: statement about FXcyj (for 
critical y) that *Q adds at coordinate n(y) E Even(,+)M. Now the key point is that 
any branch in the tree for 2: which is labeled -0 leads into a subtree which is 
identical with the tree for II:. 

Denote by G the generic (coming from G”) for Q, the second step of stage K 

of PK,l. We know from 2.10 that Q and *Q are isomorphic. Let G* be the 
pullback of G to *Q via the isomorphism constructed in 2.10 and g* = G* fl 
*Q{;::j: . 

--EwI(,+~M Finally let g be the pullback of g* to NQ via the isomorphism of 
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“Q and *Q$$:{~-Even(K+)M induced by n*. Clearly g is N[G,, “$,,I generic for NQ. 
The argument that establishes that N[G,, “fiY, g] is Ez_, correct for K in 
V[GK, gy’;, G] is quite complicated. Therefore we defer its proof and show how to 
finish the construction of GN from here on. 

In the third step of stage K of Z’jh;) the poset “Q”, codes each “F, by a subset of 
K. Since “F, = Fncv) we can take “S,, sfSSn(,,) (where (S,,: y < K+) is the 
V[GK, 6, G] generic for Q”,), and (“S,: y < K+) will be N[GK, N$Y, g] generic for 
“Qi. Moreover, if N[GK, “zY, g] is Z$_, correct in V[GK, z,,:;, G] for K then 

N[G,> “I;;, g, “$1 is Xi_, correct for K in V[GK, gy, G, $,,I because IQ:1 = K+ 

(cf. Lemma 1.2 of [2]). 
For the fourth step “Q”, of stage K of NPi(K, we simply take “C, gf Cncv) (where 

(C,: y < K+) is the V[G,, c’;, g, $1 generic for Qz). Again (“C,: y < K+) is “Q”, 
generic over N[G,, “F,,, g, “SY] and N[GK, “FY, g, NSY, “&] is still X2 _-1 correct 

for K in V[G’]. 

Next we have to deal with the tail P~+)I,j(K). This is no problem as it has (from 

the view point of N[G,, “F,,, g, N&,, “C,]) for each Y < the least inaccessible of N 
above K a <v closed dense suborder. In the usual way we can construct an 

N[G,, “FY, g, Nsy, “CY] generic H for Pf+i,je) since we only have to meet few 
dense sets. With j(GK) = G, *N@,,*g*N&*NCy*H, jlifts, i.e., 

M-N / 

and N[j(G,)] is still 2z-r correct for K in V[G”] since the tail is highly Baire. 
Finally we have to consider stage j(K) of Pih;lcj+l. In the first 3 steps we use 

standard master condition arguments to lift j, i.e., 

M[G,, M&, “g, “$1 
A- 

I 
M 

i 
.N 

where “F,., “g, “SY denote the generics for the first 3 steps of stage K of Pf+l 

coming from GM. Clearly N[j(G,), j(“$Y), j(“g), j(“S,)] is still 2i-i correct in 
V[G’] because of the closure of these posets. Now let “CY denote the generic for 
the fourth step of stage K of PF+l coming from GM. There is only one candidate 
for a master condition in the forcing that N[j(G,), j(“g,,), j(“g), j(“S,,)] wants to 
do in the last step of stage j(K) of Pin;l+l: define c* by 

dom(c*) = j((K+)“) 
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c*(j(y)) = “C, U {K} for y < (K+)~, 

c*(C) = 0 for 1; E~((K+)~) -j[(~+)~]. 

This c* works provided we can show that c* is a condition. For this it suffices to 

argue that in N[j(G,), j(“FY), j(“g), j(“$,)] for y < (K’)~ 

(3.2.2) c*(j(y)) fl {p <j(K): ~1 is inaccessible A 

VP k P(j(“Qjcv, n VP, j(G) n VP, j(K) n ~1) = 0. 

Here c#J”~ is the 22 statement from above and (“3,: y < (K+)~) is the sequence of 
codes that one obtains from the generic (“~7,: y < (K+)~). Since (N[j(G,), 
j(“F’,), j(“g), j(“,$,)]), = (M[G,, MFY, “g, “s,]), we only have to worry about 
/4= K. Fix y<(~+)~. Note that j(K) fl K = K, j(GK) n V, = G, and j(MS)j(V) fl 
V, = j(“Z?,,) n V, = “3, = i(“$,) = $, (which is the y-th code that we add in the 
third step of stage K of P,+i). Recall that $, = N$z~~C,,) and n-l[(~+)~] c Odd,+. 
Thus in N[G,, “FY, g] the II: statement c#@($,, G,, K) holds at V,. In the last 
two steps of stage K of P& we do not add any new subsets of K+ all of whose 
initial segments are in N[G,, “FY, g], and the rest of the forcing up to N[j(G,), 
j(“l’,), j(“g), j(“$,)] is highly Baire. Thus V, I@‘;($,, G,, K) is still true in 
N[j(G,), j(“fi,,), j(“g), j(“$,)] and (3.2.2) is proved. 

Now build an N[j(G,), j(“F,,), j(“g), j(“$)] generic that extends c* in the 
usual way, then j lifts, i.e. 

/ 
NGNl 

i 
MIG"l 

I 
M-N 

I 

where GN = j(GK) * j(“$,,) * j(“g) * j(“$,) * j(“e,). Moreover, N[GN] is still 
J$_, correct for K in V[G”] since the forcing in the last step of stage j(K) of 

p&K)+1 is <j(K) Baire. 

3.3. zi_, correctness of N[G,, “fi,,, g] for K in V[G,, fiy, G] 

We begin with a general lemma 

Lemma 3.3.1 (r 3 0). Suppose X k ZF- is transitive and TZf correct for K in V. 

Suppose, in V that for some S c K, 2<“’ E L[S] and (K+)~ = K+. Let (Hy: y < 

K+) E X be a sequence of Lipschitz functions H, : (2KC)“-1 --, 2”+; and in JY, Jix a set 

of parameters consisting of NA”, NAkTy and ((“rfi’, . . . , Nosy): B l Aksy) for 

Y<K+, 1 Sk sn - 1. In V pick parameters A’, Akjy and ((?k’, . . . , Tks,“): /3 E 

Akry) for y<~+, 1 s k <n - 1 such that A0 fl (K++)" = NA”, Aksy fl (K++)x = 
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N”“,y and $y= “rby for jj < (K++)~. Let “Q and 0 be the corresponding 
iterations defined from the sets of parameters and from (H,,: y < A+). If G is V 
generic for 0 then .N’[e f~ “Q] is Ef correct for K in V[G]. 

Proof. Under the hypotheses it is clear that “Q is an initial segment of Q, i.e., 
“Q = &++)K. Hence G fl “Q generic over .K Now we proceed by induction on r: 

The case r = 0 is clear since Q is <K+ Baire. If we have arrived at r + 1 it suffices 
to consider #(A) in KI:+, and A E (X[G fl NQ])r+2 with X[G fl “Q] k“V& k 
$(A)” and to argue that V[G] k “VK k @(A)“. Fix 6 < (K++)” and a nice name 
A E Xed for A and a condition q E es fl (I? with 

q IF& “VK k @(A)? 

It follows from the factor Lemma 2.15 and from the analogue of 2.10 for modified 
6, (K++)~ iterations that 

X[G n &I) h “for all sets of parameters P and all modified 
d,K++ iterations Q(PG,-,~~, P) that refer to 

(4 : Y < K+), ItQ(/&j6,P) [v, k 4@)1” 
where 

PG,-,~, = {(G’: y E Even,+), (((8>“)“, . . . , (fg*y)‘, C?‘): 
S;EAk,yna, y<~+, lskkn-2)). 

The induction hypothesis applied within X[G tl &] yields in X[G rl Q,] 

(3.3.2) VA[.& trans., .A kZF_, l&l = jVr+ll, .4 _Z:f correct for K, Pc-,~., E A, 

AEJU, (H,,: ~<K+)EJ& .d/ua<K++ *+X 

.& I= “for all sets of parameters P and all modified 
6, K++ iterations Q(Pc,,,, P) that refer to 

(H,: Y < K+), ItQ(Pcn&P) [v, F ~(A)l”l. 
Since Pcng, consists of K+ many subsets of K+, we can code it by one subset of 
v,+i (Wing (K+)= = K+). By our assumptions for each y < K+, Hy c L[S] with 
S c K, thus we can use the canonical well-ordering of L[S] to code each H,, by a 
subset of K+ and then code these K+ many subsets of K+ by one subset of V,,,. 

Finally .& l= 6 < K++ can be expressed by choosing a well-ordering R of V,,, of 
order type 6 and then requiring that R E Jbl. Since R E V,,, this is 2:(R). 

Therefore the formula (3.3.2) is KIF+, in a parameter E (X[G fl NQs])K+2. Since 

lQsl s K+, JW n “Qd is flF+, correct for K in V[C? fl &] (cf. [2, Lemma 1.21). 
It follows that (3.3.2) holds in V[C? fl Q,]. Therefore, by reflection in V[C? n &] 
together with another application of 2.15 we obtain 

V[G] k “VK k @(A)“. Cl 

Now let A E (NC, “Fy, gl)K+2 and @(A) be a formula in 2z-i U II:_, with 

N[G,, “F,,, g] I= “V, .t @(A)“. 
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Lemma 3.3.1 together with the factor Lemma 2.15 and the analogue of 2.10 for 
modified (K++)~, K++ iterations imply 

(3.3.3) V[GK, NfiY, g] k [for all sets of parameters P and all modified (K++)~, 
K ++ iterations Q(P,, P) that refer to (NF,: y< K+), 

ItQ(Pg, P) “v, L 44AYl 

where 

Pg = {(gy: y E Even,+), ((N?iy)g, . . . , (“2tiY)g, go): 

p E NAk,y, y < K+, 1 S k C n - 2)) 

Recall that V[GK, “FY, g] = V[GK, RY:;, g*] which we call V* from here on. 
Moreover, by 2.16 in V* the ‘tail’ *Q/*Q~=::l~“E’““(x+)?I is isomorphic to a special 
modified (K++)~, K++ iteration that refers to 

Pg. = {(g*sy: y E Even(,+, - Even(,+,M), (((*f$‘)g’, . . . , (*?:“)g*, g*,p): 

/3 E *Aksy fl (K++)N, 1 S k S n - 2, y < K+)} 

and uses (Fy: y < K+). In order to finish the correctness argument we have to 
show that V[GK, Fy, G] b “V, b @(A)“. This will follow from 

(3.3.4) v* k [f or all sets of parameters P and all special modified (K++)~, K++ 

iterations *Q(P,*, P) that refer to (Fy: y< K+), 

Ik*Q(P&')“K k 44A)“l. 

Therefore we have to argue that (3.3.3) implies (3.3.4). We will be able to do so 
because of a special feature of Z’,/IIE iterations: the (n - 1) Back-and-Forth 

Property for .ZElrr’, for n 2 2. Before we explain this, we remark that from here 
on all modified iterations refer to Pg and “Fy and all special modified iterations 
refer to Pp. and Fy. 

Suppose now that QCK++j~,6, (where 6, < K++) is an initial piece of a modified 
(K++)&, K++ iteration. The (n - 1) Back and Forth Property claims that there is 
an initial piece *QCK++j~,si (6; < K++) of a special modified (K++)~, K++ iteration 
and a complete embedding QCK++j~,6,~ *QCK++j~,sj such that if n 23 and 

*Q (K++)N.di+6* (where & < K++) . is an initial piece of a special modified (K++)~, 

++ iteration extending *Q,,++,N,,; 
;++)N, K++ . 

then we can find an initial piece of a modified 
iteration QCK++j~,S,+6i (where 15; < K++) extending QCK++j~,6, and a 

complete embedding i,: *QCK++j~,6i+62 c, QCK++j~,G,+Si such that i,oil = idQC,++jN,a,. 
Repeating this procedure 12 - 1 times we can define a sequence of complete 
embeddings il, iz, . . . , i,_l with ik+l’ik =id ( dom(ik) (1 sksn -2) and 
ik+2 1 dom(i,) = ik (1s k S n - 3). Moreover, a sequence of embeddings 

. 

113 12, . . . , i,_, with analogous properties can be obtained if one starts with an 
initial piece Q(,;++)N,~, (where 6, <K++) of a special modified (K++)~, K++ 

iteration. The proof of the (n - 1) Back-and-Forth Property for Zz/rr”, is 
somewhat lengthy and will be done in gory detail below. Until then assume this 
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property. The following lemma is the heart of the correctness argument. 

Lemma 3.3.5. Suppose Q(K++j~,K++ is a modified (K++)~,K++ iteration, A a nice 

Q,K++p,, ++ name for a subset of V,,, and #(A) a formula in Zz_, such that for 

some condition 

qlIt;;++)N,,++ “V, b c#+i)? 

Pick 6, < K++ large enough so that q1 E Q(K++j~,6, and A E (V*)Q(r++)N,61 and there 
is a witness in (V*)Q(x++)N,al for the Zi_, statement @. Now pick 8; < K++ and 

define a special modified K++, 6; iteration*Q (K++)N,si such that there is a complete 

embedding iI: QcK++)~,a, C, *Q(~++)N,si and such that this procedure can be con- 

tinued as required in the (n - 1) Back and Forth Property. Then we have for any 
special modified (K++)N, K++ iteration *Q(Kt+I~,K++ that extends *Q(r++j~,g; 

(where A’1 is obtained from A by replacing all conditions q in A by i,(q) as usual). 

A similar fact holds when one starts out with an initial piece of a special modified 

iteration. 

Proof. The proof proceeds by induction on n 32 and we only present the 
argument for the first half of the lemma (the argument for the second half is 
totally analogous). 

Case n = 2. Suppose $(A) = 3X q(X, A) where X ranges over V,,, and Q, is 
2;. Now pick 6r as above and let k E (V*)Q(K++)“,6~ such that 

41 Ik &++jN,,++ “V, k f&i?, A)? 

If *Q(K++p,K ++ is any special modified iteration extending *QCK++j~,si where Si is 
as above then 

since Q, is 2; and all models involved have the same V,,,. 

Case n 2 3. Suppose @(A) = 3X VY q(X, Y, A) where X, Y range over V,,, 
and pl is _Zi_-3. Pick 6, as above and let k E (V*)Q(x++jN,61 such that 

(3.3.6) q1 It&++,N,,++ “V, kVY c&?, Y, A)“. 

Assume towards a contradiction that there is some special modified iteration 

*Q (K++)N,K ++ extending *QCK++j~,s; where & is as above such that 

(3.3.7) -l &(qJ lt.V;(,++&++ “V, k VY &?l, Y, Ail)? 

Pick 6,< Kc+ and a condition q2G iI in *QCK++j~,6i+62 and a name 
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(3.3.8) q2 II&++&++ “V, I=1 pl(& 9, A)“. 

Let b;<K++ and &++)N,~,+~~ be a modified iteration extending Q(K++j~,G, such 
that there is a complete embedding 

i,: *Q (W++)~.~i+62- &++y,6,+6i with izoil = id 1 QcK++j~,6, 

and such that this procedure can be continued as in the (n - 1) Back and Forth 
Property. 

Claim. i2(qz) It~;l++,,,rL+ “V, klrp(k, P2, A)” for any modified iteration 

Q,,++y,, ++ extending QcK++j~,6,+6i. 

Proof of the Claim. For n = 3 note that all models involved have the same V,,, 

and Q, is 2;. Furthermore (_?I)~z = k and (Ail)jz =A. If II 24 assume towards a 
contradiction that there is some modified iteration QcK++jN,K++ extending 
Q(rC++)N,6,+6j such that for some condition q3 E ecK++j~,6,+6i+63 with 6, < K++ and 

q3 s b(q2) 

q3 I$;,++)N,,++ “V, I= f.p(i!, Y’z, 2),, 

and there is a witness E (V*@ •+f’~l+~i+~3 for the Zi_, statement cp. Fix an ordinal 
s; < K++ and define a special modified iteration *Q(w++j~,6i+62+6j extending 
*Q(K++j~,6i+6Z such that there is a complete embedding 

i,: Qc r++)~,a,+~;+63 C, *QcK++p, 6i+62+6j with the properties that 

i30i2 = id ) *Q(K++)N,6;+62 and i3 ) QcK++j~,6, = il 

and that this process can be continued as required in the Back and Forth 
Property. Since QJ is E”,_, it follows from the induction hypothesis that 

(3.3.9) i3(q3) ltY&r++jN,r++ “V, k Qz@l, 9, Ail)” 

for any special modified iteration *QcK++j~,K++ extending *~‘(K++)N,6i+62+6j (note 
that 2-l = $1, (+)‘) = 9 and A’9 = A’,). 

Recall that for any such *QcK++j~,K++ there is an isomorphism with *Q(K++j~,y++ 
that is the identity on *Q(K++j~,6i+62. Thus i3(q3) s q2 together with (3.3.8) and 
(3.3.9) yield a contradiction and the claim is proved. 0 Claim 

Now fix a modified iteration Q(K++j~,p++ extending Qcw++j~,6i+dz. By the claim, 

(3.3.10) i2(q2) It&++jN,,++ “V, k+@, 9% A)“. 

Recall that there is an isomorphism of Q(K++j~,y++ with &(K++j~,K++ that is the 
identity on Q(K++j~,6,. Thus i2(q2) S q1 together with (3.3.10) and (3.3.6) yield a 
contradiction. Hence our assumption (3.3.7) was false and the lemma is 
proved. 0 3.3.5 
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We use this lemma to show that (3.3.3) implies (3.3.4) from which the 22-i 
correctness of N[ G, , “gy, g] for K inside V[G,, Fy:;, G] follows as remarked 
earlier. Assume that (3.3.3) holds. If #(A) is Ei-, then by the first half of the 
lemma we obtain (3.3.4). If #(A) is I7:.-, assume towards a contradiction that for 
some special modified iteration *QCK++j~,K++ and a condition q 

It follows from the second half of the lemma that there is a modified iteration 

Q,K++p,, ++ and a condition q’ with 

contradicting (3.3.3). 
In order to complete the proof of Theorem 1.1, we establish the (n - 1) Back 

and Forth Property in the next section. 

Proof of the (n - 1) Back and Forth Property ((n - l)BFP) for E~/I7~ 

We begin with some remarks in order to avoid excessive notation which would 
only blur the important ideas. Recall that Fr = FxCyj (y < K+) and that for ‘many’ 
y modified and special modified iterations either both want to force a 22 or both 
want to force a II: fact about Fy. For critical y (i.e., y < K+ odd and 
X(.(Y) < (K+)~ even), however, modified iterations force a II: statement about Fr 
and special modified iterations force a 2’: statement about FxCyj. In what is going 
to follow we can therefore safely ignore the noncritical y < K. Moreover, it makes 
no difference how many critical y we have to consider. Finally, the fact that we 
have to deal with tails of 2: and n: iterations rather than 2: and nz iterations 
themselves does not have any bearing on the method that we are going to use. 
For these reasons we choose to work in the following context: Assume we are 
living in some model which we call V for the remainder of this section and 
F:(2K+)“-1-+2K+ Is a Lipschitz function. Now, in V define 2: and II: iterations 
which make a 2’: and flz statement (respectively) true about this single Lipschitz 
function F in the usual way. We want to establish the (n - l)BFP for _Zt and II’, 
iterations in this context. 

Towards this end suppose first that II is odd, i.e., IZ = 2r + 1 and suppose “es, 
(where a1 <K++) is an initial piece of a 2: iteration. Denote [0, 6,) by I,,= and 
[0, 1 + 6,) by Z,,n and define i, :I1,=:-tl I.~ by i,(C) = 1 + 5‘ for 5 E I,., Note that 
0 $ rng(i,), and for reasons that will become apparent below we call 0 the new 
coordinate in I,,, Now define an initial piece of a nz iteration “Q,+,, where we 
choose as the underlying partition the partition of 1 + 6, induced by i, and the 
partition of 6, for “Qb, and where we associate no terms with coordinate 0. If 
g E Z,,, and a k-tuple of terms, say (rf, . . . , t,$), appears at < and k > 1, then with 
coordinate 1 + 5‘ E I,,, we associate the k-tuple ((2i#l, . . . , (@‘l). Here ^ refers 
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to the iteration =Qs, and as usual for some r in Add”++(&, K+), tit is the term in 
Add”++(l + 6,) K+) that is obtained by replacing all conditions q in r by their 
image under the map induced by ii. From here on we call ril the shifted image of 
t under il. If a single term rC appears at coordinate 5 E Z1,z then, assuming 
inductively that “Qi+, has already been defined, we pick a canonical term 
r* E Vnal+c such that, in VnQ1+c 

r* = the set that we add at the new coordinate in Ii,, (i.e., at 0) if 
certain changing conditions are satisfied in VQc about ?t and 

r* = (ZC)il otherwise. 

We will explain below what these changing conditions are, and we will show that 
in fact for each 5; E Z,,, 

il induces an isomorphism of ‘Ql. with “Q:~~-‘“’ 
which is a complete suborder of “Q1+LI. 

This shows in particular that V %t can be regarded as contained in VP)+, and the 
clauses in the definition of t* make sense. 

Now suppose ?&+a, has been extended to a ZZ’, iteration q1+6,+62 (with 
62-C K++). Let z*,n= [l + 6i, 1 + 6, + 6,) and Z,,,sf [6,, ~5~ + 2 + 6,) and define 

iz:Z1,n U Zz,n+Z~u ZZ,_X by 

GO) = 4, 

&(I + 5;) = I; (0 6 C < ai), 

i,(l+6,+C)=Sl+2+1; (O~~<C?,). 

Note that i20 il = id,,, and S1 + 14 rng(i,). We call a1 + 1 the new coordinate in 

Z 2,s 

Now we define a J?; iteration zQ6,+2+62 extending “Q,, by fixing the partition 

of 12,.x that is induced by i,. We do not assign terms to coordinates 6, E Z2,= and 
no terms are assigned to the new coordinate 6, + 1 in Z2,= If a k-tuple 

(r’,, . * . 9 rg) appears at coordinate 5; E Z2,n then the tuple ((@)‘z, . . . , (2:)‘~) 

consisting of the i,-shifts of the terms in the tuple at coordinate 5‘ E Z,,, is 
associated with coordinate i2(f;) for k # 2. If a pair (ri, rt) appears at coordinate 

C E z2.n we associate with i2(1;) the pair (t*, (9@) where z* E V9p’2(c) is a 
canonical term such that in VQ12(c) 

t* = the set that gets added at coordinate d1 + 1 if certain changing 
conditions are satisfied in V%S about Zk and 

t* = (2k)iz otherwise. 

Again we have to check that for each 5 E Z,,, i2 induces an isomorphism of “Qc 
with ‘Q~z[~]-‘“I”> which is a complete suborder of zQizC5j. 
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We continue in this fashion until we have defined Z,,, . . . , Z,-i,= and 
I 
j::; . 

. ) Ll,rr and embeddings ii, . . . , in_,. In the last step of the construction 
in step h = 2r) we do not introduce a new coordinate to define Zzr,= from 

2r,fl and we shift all terms at coordinates in Zzr,n to get the terms for the 
corresponding coordinates in Zzr,z 

The schematic picture for this construction looks like this: 

The numbers below the arrows stand for the arity of the tuple of terms whose first 
terms get changed at this stage of the construction. The symbol 0 indicates that 
we have a new coordinate in the interval where it occurs. 

Here is the definition of the changing conditions: Suppose we are at stage 
k s 2r - 1 of the construction above and k is odd (even resp.) and the k-tuple 

(rk, . . . , T$) is assigned to coordinate 5 E I,,, (f E Z,,, resp.). Consider the tree 

Tz:+, (Trr:,, resp.). Among the branches that end in ‘kill’ consider the positive 

killing branches, i.e., those killing branches whose last label is a nonnegative 
integer. Each such branch determines a certain combination of agreements and 
disagreements of (tk, . . . , 3;) with earlier tuples. The changing conditions at 
stage k are satisfied if at least one of these combinations of agreements and 
disagreements is valid in V3c (V-5 resp.). 

Now let me describe the construction for Zl&+JZZ&+r where we start with an 
initial piece “Q,, of a Z7&+i iteration (Si <K++). Let L,,n= [0, 6,) and 
Z1,z= [0, 1 + 8,) and as before il: Zl,n+Zl,r be defined by iI = 1 + c for 
c< 6,. Now define a ,3’$,+, iteration zQ1+6, by choosing as the underlying 
partition of Z,,= the one which is induced by il and assign no terms to coordinate 
0. If [ < 6, and some tuple of terms is associated with coordinate f E Z1,n then 
with coordinate iI associate the tuple consisting of the i, shifts of terms in that 
tuple. Clearly il induces an isomorphism “Q,, with zQ~:>$“} which is a complete 
suborder of zQ1+6,. This follows from the fact that no term appearing at any 
coordinates in Z1,z can ‘see’ the generic that we add at the new coordinate 0 E Ii,> 
Recall also that in TX;,+, the edge labeled -0 leads into a subtree which is 
identical with Tnb+,. (This argument has already been used in the construction of 
the generic g from G above.) In the remaining steps of the construction we 
proceed similarly as in the first n - 2 steps of the construction for _Xi/ZZz starting 
with an initial piece of a 2: iteration which we described above. Thus the 
schematic picture looks like this: 
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Again the numbers below the arrows indicate the arity of the tuples whose first 

terms gets changed if the changing conditions are satisfied where now the 
changing conditions for even (odd resp.) stage k E (2, . . . ,2r} are given by the 
positive killing branches in TX:+, (Tnf+l resp.). As before the symbol 0 indicates 
that we have a new coordinate in the interval where it occurs. 

The constructions for _Xi/Pn where n is even are totally analogous to the ones 
presented above. Now we have to argue that this really works. Let us examine 
first the f12,/z’2, construction starting with an initial piece of a P, iteration and 
assume that n = 2r + 1. We check at one stage after another that the construction 
works. For the sake of the argument suppose that we are at stage k s n - 1 with k 
being odd and g E Z,,, We need to argue that 

2 I,,U. .U&J-(new coordinatesl~,~} 
(3.3.11) Qikcfj cc =Qim 

X I,JwU.. .Ulk,x-{new coordinateel~~} (3.3.12) ik induces an isomorphism “Qs with Q,,,, 

where “Qikt<, (“Qs resp.) denotes the zz (rr”, resp.) iteration up to coordinate 

i,(c) e zk,Z (P E zk,II rev). 

We show this by induction on I; E Z k,n. The nontrivial case is that 5; is a 
successor, say, 77 + 1, where at coordinate r] E Zk,, we add a set that kills 
F((Z& . . . ) 2:)) if the killing conditions are satisfied. First we handle (3.3.12). 
By induction hypothesis “Q, is isomorphic to a complete suborder zQii(q,, 
therefore we can think of VnQq being contained in VxQax(s). In order to prove 
(3.3.12) it will therefore suffice to show 

(3.3.13) It cannot happen that we are on a killing branch of Tn; in V”Qn and 
on a saving branch of TX; in VxQik(q). 

(3.3.14) It cannot happen that we are on a killing branch of TX; in VrQik(“) and 
on a saving branch of Tn; in VnQn. 

Once this has been shown we can discard of (3.3.11): Let q E “Qik(,+) and 

4’ = 4 1’ @k(c) - {th e new coordinate in Zk,p}) and q” E Add”+‘(S, K+) such that 
(q”)i* = q’. It follows from (3.3.14) that q” E “Qc. Thus q' = (q")i* E xQik(c) by 
(3.3.13) and we have shown (3.3.11). 

Similarly we can use analogues of (3.3.13) and (3.3.14) to argue that in the first 
n - 2 steps of the construction for Et/ZZz (n odd) starting with an initial piece of 
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a 2: iteration things work out. Recall that in the last step of this construc- 
tion we have to show that i,_i : “Ql, G= zQi,_,tsj is for each 5‘ E Z,+1 a complete em- 
bedding. In order to argue that i,_I(q) E “Qin_,ts, for q E “QC we use the 
analogue of (3.3.13). In order to find for each q E “Q,_,,,, an i,_l-reduction 
in “Qs we proceed by induction on c E Z,_ i,=. For the case where 5 is a limit 
ordinal with cofinality K we use the method that was developed for the proof 
of 2.3. 

Finally we can formulate analogues of (3.3.13) and (3.3.14) which guarantee 
that things work out for the _Xz/ZZt constructions when n is even. 

In order to establish the BFP for .Xz/ZZz we thus have to prove (3.3.13) and 
(3.3.14). 

Proof of (3.3.13) and (3.3.14) for the Z~/II~ construction 

The proof proceeds by induction on it. We shall see how the rather complicated 
definitions of the killing and changing conditions together with certain patterns in 
the structure of the associated trees allow us to go back and forth sufficiently 
many times between 2 and Z7 iterations. 

We begin with the two cases _Ef/ZZ: and L’$/ZZ$. If we are given an initial piece 
of a Z7f iteration “es,, then we can define an initial piece of a _X$ iteration zQ1+6, 
by shifting all the terms in “Q,, so that they cannot see the 22 witness that we 
add a coordinate 0 in =Qi+*,. Clearly the two central facts hold in this case. If we 
start with an initial piece of a 2; iteration =Qs, and define an initial piece of a ZZZ 
iteration “Q6, by using the same parameters, then ‘Qs, c “Q,, (since the graph 
for Z7$ has no saving paths at all) and in fact this inclusion is complete. 

Now we examine the case where we start with an initial segment of a ZZZ 
iteration nQ6,. In the first step we define an initial piece of a .Yz iteration 2Q1+61 
by shifting all the terms in “Qs, so they cannot see the ,Y$ witness at coordinate 0 

in =Q1+6,. (3.3.13) and (3.3.14) clearly hold at this step. In the second step 
suppose we are at coordinate 5‘ E Z,,, and on a killing path for .Y: in V’@ so that 
we have either 0 or -0, -1. If we have 0 in VzQc then there cannot be a 1 in 
VnQa2(c) with a term that appears at a coordinate E I1 n since none of these terms 
can see the 2: witness that we add at the new coordinate 0 E Z,,,. Furthermore 
there cannot be a 1 in VnQi2(o with a term that appears at a coordinate E Z,,, since 
when going from Z2,= to Z2,n we change all l’s in Z 2,x because we assumed we have 
0 in VzQc. Thus we have - 1 in V”Qtz(c)* , i.e., we kill in V”Qt2(c). If we have -0, -1 
in VzQc then we clearly must have -1 in VnQ~2(c); i.e., again we kill in VnQtz(c). On 
the other hand suppose we kill at coordinate i2(C) of Z2,fl, i.e., we have -1 in 
VnQ82(o. In this case -0 in VsQc clearly implies that we also must have -1 in VzQc, 

because any 1 would survive when going from Zz,= to Z2,fl. Thus we kill in VzQc. 
The arguments for establishing (3.13) and (3.14) when one starts with an initial 

piece of a _Y?$ iteration are similar. 
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Now suppose n 2 4 and we have already proved (3.13) and (3.14) for all 
constructions Zi./l7$ with n’ <n. We will restrict ourselves to looking at odd 
n = 2r + 1 (r 3 2) and consider the case of Z$,+l/flz,+l where we start with an 
initial piece of a 172 2r+l iteration. The arguments for the other cases are similar to 
the argument that we present here in detail. 

First we want to argue that (3.3.13) and (3.3.14) are satisfied through the first 
2r - 2 stages of the construction. For this we make the following observation: The 
subtree of T~L+~ (Trrt+l resp.) which consists of all edges that are labeled by an 
integer of absolute value =~2r - 3 is identical with TX;,_, (Tn;,_, resp.) except that 
all nodes in TX%_1 (TIT:,_, resp.) of the form Q’, (Q E {V, 3)) have to be changed to 
a’,+, and we must replace each save node by rflI where the labels 1, -1 get 
replaced by 2r - 1 and -(2r - 1) resp. and each kill node must be replaced by 
T,: where the labels 0, -0, 1, -1 get replaced by 2r -2, -(2r -2) 2r - 1, 
-(2r - 1) resp. If we now apply the induction hypothesis about E$,_,/&_, 
together with this observation then we see that throughout the first 2r - 2 stages 
of the construction for ~~,+,/J7~,+, we have the following: 

Any time we are on a branch in the subtree of T,z,+, mentioned above 
that ends in ‘Z:’ we cannot be on a branch in the subtree of TX;,+, that 
ends in ‘a’ and similarly if we interchange @,+1 and _X&+1. 

Then note that throughout the first 2r - 2 stages of the construction for 

~‘2,+1/~zr+1 all the terms in 2r - 2 and 2r - 1 tuples merely get shifted. 
Moreover, a 2: iteration clearly does ‘more killing’ than a @ iteration. Hence 
the two central facts hold throughout the first 2r - 2 stages of the construction for 

zr+*l~r+l. 
Now we consider the last two stages of the construction for Zl~r+l/L&+l where 

we start with an initial piece of a fl $r+l iteration. First we show that if we kill on 
the fl&+1 side, we cannot save on the Zzr+l side. Inspection of T*;,+, tells us that 
there are two cases for killing branches: 

negative killing; i.e., the last edge in the branch is labeled -(2r - 1) and 
positive killing ; i . e . , the last edge in the branch is labeled 2r - 2. 

On the other hand there are two ways of saving in TX&+,: 

negative saving; i.e., the last two edges of the branch are labeled -(2r - 2), 
2r - 1 and 

positive saving; i.e., the last two edges of the path are labeled 2r - 3, 2r - 1. 
It can never happen that we are on a negative killing branch for L&+1 (i.e., 

-(2r - 1)) and on a saving path for Ezr+l (i.e., 2r - 1) since at stage 2r of the 
construction for Z’5,+1/J7z,+1 starting with an initial piece of a IIz,+1 iteration, a 
2r - 1 tuple gets altered only when we are on a positive killing branch of TX;,+,. 

It cannot happen that we are on a positive killing branch for fl:,+l (i.e., ends 
in 2r - 2) and on a negative saving branch for 2 $,+l (i.e., the next-to last edge is 
labeled -(2r - 2)). This is so because at stage 2r - 1 of the construction for 

-z+,lGr+, (starting with an initial piece of a IT $1+1 iteration) a 2r - 2 tuple gets 
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altered only if we are on positive killing branches of Tnt. However, the positive 
killing branches in Tn;, can be extended to save branches or negative killing 
branches in T,;,+,. 

Finally we consider positive killing in L&+, and positive saving in .Zzr+i. We 
observe that the positive killing branches in Tn;,+, are just all the killing branches 
in Tn~_, extended by one edge which is labeled 2r - 2 and the positive saving 
branches T,$+, are just all saving branches in T n;,_, extended by one edge labeled 
2r - 1. Now we can apply our induction hypothesis about the _X~,_,/fl&_, 
construction which tells us that this constellation can never arise. 

Next we show that in the last two stages of the construction .Y$,+i/@,+i 
(starting with an initial piece of fl &+l iteration) we cannot kill on the Z&+r side 
and save on the n$,.+i side. 

We have to check three cases here: 
Negative killing branch for z1$r+l (i.e., ending in -(2r - 1)) versus saving 

branch for 17z2r+l (i.e., ending in 2r - 1) cannot occur since the first term in a 
(2r - 1)-tuple that gets altered at stage 2r of the construction for _Z&+1/17z,+1 
(starting with an initial piece of a II2 2r+1 iteration) will then denote the set at the 
new coordinate E Zzr,m But no term at a coordinate E Il,nU . . . U Z2r,n can ‘see’ 
this set. 

Next we consider a positive killing branch for _I$,+, (i.e., ending in 2r - 2) 
versus a negative saving path in IZz,+1 (i.e., ending in -(2r - 2), 2r - 1). In this 
situation the 2r - 2 agreement on the E&+i side had to occur with a (2r - 2)-tuple 
whose first term denotes the set that we add at the new coordinate E Z2r_1,P 
Therefore the 2r - 1 agreement in fl:,+, had to occur at a coordinate E 12r,m 
Then this must come from a 2r - 1 agreement in Zzr+l at a coordinate E Zzr,> 
However, we assumed we were on a positive killing branch in A’;r+l. Thus any 
such 2r - 1 agreement would get destroyed at stage 2r of the construction for 

-%+1/@,+1 when going from Izr,= to lzr,n- a contradiction. 
Finally we consider the case of a positive killing branch in _X&+, (ending in 

2r - 2) versus a positive saving branch in IIz,+l (i.e., ending in 2r - 3, 2r - 1). 
We prove the following: 

Claim. If we are on a positive killing branch for Ezr+l and a positive saving 

branch for Il&+1, then there cannot be a 2r - 1 agreement on the IIi,+I side with 
a 2r - 1 tuple that appears at a coordinate E Z,,, U . . . U 12r,n. 

It follows from the claim together with the fact that the positive saving 
branches in T,&+, end with 2r - 1 that the case of positive killing in .Zz,+, versus 
positive saving in nz,+, cannot arise during the ~~,+,/II~,+, construction 
(starting with an initial piece of a II&+, iteration). 

Proof of the Claim. First we note that the 2r - 2 agreement on the ,Y$,+, side 
cannot occur with a 2r - 2 tuple that appears at a coordinate E Zzr,r because in 
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that case any 2r - 1 agreement on the Zl&+l side had to occur at a coordinate 

E 12, E Since we are on a positive killing branch for Zl$+i, the first term in any 
such 2r - 1 tuple will be altered when going from Z2r,Z. to Z21,n. This will result in 
-(2r - 1) on the ZZS,,, side-a contradiction. 

Now there are 2 possibilities for a positive killing branch in Zl&+r. If its 
next-to-the-last edge is labeled -(2r - 3) then the first term in any 2r - 3 
agreement on the Z&+i side has to agree with the set that we add at the new 
coordinate E Z2r-2,n. From this it follows that any 2r - 2 agreement on the _E&+r 
has to occur at a coordinate E Z2r--1,PU Z2r,r because none of the terms appearing 
at coordinates E Zl,=U . . . U Z2r-2,P can see the set that we add at the new 
coordinate Z2,-2,n. By the remark at the beginning of the proof of the claim, the 
2r - 2 agreement on the Zl&+r side must therefore occur at a coordinate E Z2r_-l,z. 
Now we observe that the positive saving branches in ZZ$,+1 are exactly the 
extensions of the positive killing branches in Z7& by one edge that is labeled 
2r - 1. Therefore the first term in any 2r - 2 tuple that gives a 2r - 2 agreement 
on the _J$,+l side has to agree with the set that we add at the new coordinate 
E Z2r-1,z. This implies that any 2r - 1 agreement on the _X&+, side has to occur at 
a coordinate E Zzr,> However, this is impossible by the remark above. 

So we have shown that the positive killing branch in J?zr+l cannot end with 
-(2r - 3), 2r - 2. Thus it must end in 2r - 4, 2r - 2. Inspection of the trees for 

-%+1 and ,Yz, shows that we are on a positive saving branch for J$, in this case. 
Inspection of the trees for ZZ&+i and ZZzr shows that the positive saving 

branches in ZZ$,+r are obtained from the positive killing branches in ZZ& by 
extending them with an edge labeled 2r - 1. We can assume by induction that: 

If we are on a positive killing branch for ZI& and a positive saving 
branch for ,Yfr, then there cannot be a 2r - 2 agreement on the E:, side 
with a 2r - 2 tuple that appears at a coordinate E Z1,zU. * * U Z2r--1,P in 
the construction for ,$,/ZZz, (starting with an initial piece of a ZZZ, 
iteration). 

It follows that the 2r - 2 agreement on the zzr+l side in the E$,+1/ZZ$.+1 
construction (starting with an initial piece of a ZZzrtl iteration) has to occur at a 
coordinate in Z2r,z But we already know this is impossible. 0 Claim 

This finishes the proof of (3.3.13) and (3.3.14), and the proof of the (n - 1) 
BFP for EG/rr’, is complete. 

The main ideas for establishing the consistency of c > n7d:: (m 3 3, n 3 2) have 
already been developed in the .Y;/ZZz case. Let us describe the m + 2 step 
iteration that we use at stage A (where A is Mahlo) in order to make A 2::: 
describable in V”+‘. 
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Suppose that GA is PA generic over V = L and in V[GJ A is inaccessible and 
A+’ = (A+‘)” for I5 1 and GCH”” holds. In the first step we add a sequence 
(F,,: y < A-‘) where each FY is a Lipschitz function (2hf(m-‘))~-1+ 2A+(m-‘). Thus the 
forcing Q: is a A+ product (with full support) of copies of the forcing notion PF 
where conditions in PF are functions f such that 

dam(f) is a subtree of (2L+(m-‘))“-1 of size <3L+(m-1) 
A V(s,, . . . , s,_,) E dam(f) [3a < jl+(m-‘)[a 2 dom(sl) 

r\f((s,, . . . , s,)) E 2’y+1 Af(@l, * . . , s,-1))(a) = 01 

A VL- [f((%P f . . ) s,_,))(5;) = 13cf(5;) = jl+(m-*)] 
A v(t,, . . . , t,-J E dam(f) [(ti, . . . , f,_J extends (si, . . . , s,_~) 

I$ f((h, . . . 9 LA) extendsf((sl, . . . , ~,-1))11 

and for f, g E PF we let f cg iff f zg. Clearly lQ:l = )3+(“-l) and Q: is <A+(m-2f 
closed. Hence if (F,: y < A’) is Q: generic in V[G,, is;] we still have that A is 
inaccessible, il+‘= (il+‘)L for 12 1 and GCHaA holds. 

In the second step we will do an iteration Q’, which will make a 2: fact true 
about F,, for y even and its negation for y odd. Q’, will be a certain suborder of 
Add(A+m, 13. +cmH1)). We partition A+” into cofinal pieces (Akpy: 1 c k s n - 1, y 4 
A’) and A0 with A’ E A’. For each k E { 1, . , . , n - l} and each y ( 1’ we fix a 
complete enumeration ((rty, . . . , I$~“): 5 EA~,~) of k-tupels of nice 
Add(A+m, A+(m-l)) names for subsets of A+(m-l). (Note that this is possible since 
Add()c+m, A+(*-‘)) is A’” cc. and has size A+” .) The poset Qf will add a subset 
of A+@-‘) at each coordinate in A+” - lJycL+ An-‘,“. At a coordinate (Y E An-‘sy 
(for some y < A+) Qi will add a club set E h+(m-l) that is disjoint from 
F,((ZLy, . . . , ?~-lpy)) if certain killing conditions are met. If these killing 
conditions are not satisfied we just force with the trivial poset, i.e., we save 
F,((@, . . . ) qy)). 

The killing conditions for LY E An-lpy were y is even (i.e., the killing conditions 
for 2:) are given by TX?. Similarly Tm; tells us whether we kill at some cr~A”-‘~” 
where y is odd. Now the tree for .ZT (Z7: resp.) looks exactly like the tree for 2: 
(flz resp.) except that the nodes are labeled 2: and Ur instead of 2::. and nf. 
Clearly Qt is <A +(m-2) closed (because of the cofinality restriction in the definition 
of conditions in Q:) and A+, C.C. (since compatibility in Q”, agrees with 
compatibility in Add(A+m, A+(m-l))). 

An analogous proof as in the Zi/IIz case shows that Qf is <A+(m-l) Baire. In 
particular this implies that for each y < A+ 

I@% ii;] dom(F’J = (2A++‘))n--l. 

Moreover the analogue of 2.5 can be proved for Q:; hence after forcing with Qf, 

F,((X,P . . . , X,-i)) (for y < A+, Xi, . . . , X, 5 A+(m-l)) will be stationary unless 
QX explicitly killed it. Therefore, if G is Q”, generic over V[GA, F,,] we have in 
V[G,, py, G] for odd y < K+: 

VXi E A+(“-l) 3X2 E A+(m-l) . . . Qx,,_1 E A+(m-‘) q(F,((X,, . . . , X+J)) 
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where Q = 3 (Q = V resp.) and q says F,((X,, . . . , X,-i)) is stationary (nonsta- 
tionary resp.) in A +~-i) for odd n (even II resp.). Clearly this is flz(F,,). For even 
y < K+ the negation of this statement will hold about FY, i.e., a _Xr(F,) fact. 

For each y < A+ we can find a code & E ;l+(“-l) for FY in V[G,, FY’;, G]. This 
uses the fact that 

(2 ) 
cl+(mm’) V[G&G] _ 2=2+(‘4 V[G*] 

-( 1 

and V[G,] = L[Gn] where GA c PA c LA. Hence we can use the canonical 
well-ordering <LIG,l on 2<‘+@-‘) to do this coding. 

The posets Q:, . . . , Q:+m--2 will generically code each pY G A+@-‘) down to 
a subset S,, E A. This is done in exactly the same way as in the c/n? proof (cf. 
[2]). Finally in the last step we add a sequence (C,,: y < A+) where each C, E )r is 
club and 

C,, fl {p < A: p inaccessible A V, It Gz (S, rl V,, GA n V,, A n p)} = 0. 

Here @* is the analogue of @=” from Section 2 for c. Now we can proceed as 
outlined in Section 1 and prove 

It pK+, “there are no 2:: indescribables SK, 

K is II: indescribable, K' is 2: indescribable”. 

The hard part of the proof of It,+, “K is II: indescribable” is again to show (in 
the notation of Section 3) that 

N[G,, NF,,, g] is Er-:_, correct for K in V[GK, FY’;, G]. 

The strategy for this is the same as in the Ez/rr”, case; i.e., the key point is that 
ET/II; has the (n - 1) Back and Forth Property which is proved by the same 
arguments as in the E’,/IIG case. 

5. Oracles-the final word on indescribability 

In order to state the final theorem we introduce the notion of an oracle. An 
oracle is simply a subset of w that codes a function with domain {(m, n): m 2 

2, n 3 1) that takes values in (0, l}. 
The final theorem is 

Theorem 5.1 (ZFC). Assuming the existence of 2: indescribables for all m and n 

and given any oracle 9, there is a poset PsF E L[ 91 such that GCH holds in 

(L[ S])pS and 

(5.2) Ikf;LS’ 
e<?C: if 9(m, n) = 0, 

<>Jd:: if s(m,n)=l. Cl 
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Before defining PS (for a given oracle function 9) we make some observations 
about small forcing and indescribability. In [2] it was shown that a forcing of size 
<K cannot destroy the 2: indescribability of K. The same statement is true about 
a fir indescribable cardinal K and the proof is analogous to the 27 case. 
However, the characterization of I7 indescribability in [2] makes it possible to 
give an even easier proof. 

To complete the picture we show (cf. Corollary 5.8) that no poset can create 
new L’F or fir indescribable cardinals (for any m, n 3 1) that are larger than the 
cardinality of the forcing. First we prove: 

Lemma 5.3 (ZFC). Suppose that K is inaccessible and P Is a notion of forcing with 

(P( <K. Let G be a P generic. Then, in V[G] for any X E VK+I, 

(5.4) XEV e X~VAVS((sEV~XnsEV], 

and for any % E VK+,,, (m a 2) 

Here s ranges over V, and Y over VW+,,, (of V[G]). 

Proof. To prove the nontrivial direction of (5.4) assume towards a contradiction 
that for some condition p* E G and some k E VP we have 

In V, pick a well-ordering of V, of order type K and let seg, denote the segment 
of the first o-many elements ((Y < K). We can (in V) for each a < K pick pn Sp* 

and x, E (V), with 

pa It k fl seg, = x,. 

IPJ < K implies that there is some p E P with p = pa for cofinally many (Y. Then let 

k = lJ x,. 
Pm.=P 

Clearly p It _%? = k, contradicting p IF k $ V. 

To prove the nontrivial direction in (5.5) we assume (without loss of generality) 
m = 2 and suppose towards a contradiction that for some p* E G and & in VP 
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Proof of the Claim. Let B “Gfr.o.(P) and H be B generic over V with p* E H. 
Since 1 BI C K we can find 6 E VB such that in V[H], ) &“I = K and &” G 2?’ and 

{Ilk E @II”: X E gH f-l (V),,,} = {Ilk E z??‘II”: x E 9” fl (V),,,}. 

Then gH 3 V implies 

(5.6) -I 3b E H VX E 6” n (V),,, b c Ilk E &II”. 

Now suppose ?? E VB with 9” 5 2!H G gH; it follows that gH $ V. Otherwise we 
can pick 2% E V with 112 = 311” E H and we get for all X E 4” n (V),,, 

Ilk E @I” 3 118 E LII” . Ipt c &‘II” 

2 11s E &‘II” * llsf = &“II” . II2 s 2k’II” 

= 119 = ik”II” . I@ E &‘II” E H, 

since for X E 9” fl (V),,, we clearly have Ilk E $11 = 1 because 4” c gH = 9. 
But this contradicts (5.6). Hence 6” works and the claim is proved. 0 Claim 

Let p E VP such that p* IIf : K 2 6. Then define (in V): 

?!/Sf {X E (V),,,: ii/l cp* ~cI’< Kp Ibx =&Y)}. 

Clearly 151 = K and p * IF ‘%’ E 9. Now (in V) well-order S in order type K and for 
a < K denote by seg, the segment of the first (Y elements. Note that for @ < K 

p*l~&nnseg,cV. 

Hence (in V) we can find for each a < K a condition pa cp* and %‘a with 

pa It- & n seg, = 9a. 

Since JPI < K there must be some p up* with p =pn for cofinally many cr. Then 

pit-&n9= U ~I_EV” 
Pa’P 

contradicting 

p*k&~En9~22. 0 

Lemma 5.7 (ZFC). Zf K, P, G are as in 5.3 then in V[G] for any 2? E V,,, (where 

m 2 1) the formula “%’ E V” is Zr(%‘, (V),) over V,. 

Proof. We use induction on m 3 1. For m = 1, (5.4) implies (s ranges over V,) 

~“EV iff ~~(V),~V~[[s~(v),~$nns(v),]. 
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Clearly this is EA(%, (V),). Now suppose m 2 1 and %?E VK+m+l; then by (5.5) 
(where .7 ranges over V,,,,,) 

2~ V iff Zs(V),+, AVF[~E~, (qcK+znnsv]. 

By the induction hypothesis and because any 3 E V,,, of cardinality SK can be 
coded by some element of If,,,, the whole formula is zr”(a”, (V),). Cl 

Corollary 5.8 (ZFC). 1f K is inaccessible and P a poset of size <K and G is P 

generic, then for m, n 3 1 

(K is A’: (IZ: resp.) indescribabfe)v[G1 

implies 

(K is 2:: (II: resp.) indescribable)‘. 

Proof. If # is 2: (flz resp.) then in V[G] for A E (V)w+l, (@(A))’ is 

-%‘(A (IX) (G’(A (I%) resp.) over V, uniformly for all inaccessible K > IPI. 
Note that we are allowed to use (V), as a parameter in V[G] since (V), E 

(v[Gl),+~. 0 

We are now turning to the proof of 5.1. Suppose 9 is an oracle and we have 
2: indescribables for all m, n. We know that in L[9] the following picture holds 
for m 32, n 3 1: (cf. [5]) 

(5.9) * *. < L’qfl< L’%r:: < L’qq+l < L’%G;+l <. . * . 

For the sake of completeness we give a proof of this fact. 

Proof of (5.9). Fix m Z= 2 and n 2 1. We work in L[s]. Let K be the least HF 
indescribable. The proof strategy is to find a J7: statement @(A, 9, K) with 
A s V, such that V, Ik @(A, 9, K) and any inaccessible A to which @ reflects is zr 
indescribable. @ can be found as follows: We know that K being the least J7: 
indescribable is 2: describable. We fix some A E V, and a 2: formula Y(A) 
such that V, b Y(A) and Y(A) does not reflect to any inaccessible A < K and such 
that the witness in the 2: formula Y is least in the canonical well-ordering cLt9] 
with the property that it is a witness for a _Xr formula Y’ in a parameter A’ as 
above. We pick a sufficiently large finite fragment T of ZF + V = L[%] such that 
any transitive model M of T with 9 E M is of the form &[%I for some (Y. Then 
we take @(A, 9, K) to be the formula 

VA [A! trans., A! k T, I.h!I = IVK+m_-llr .4X Z~-:_, correct for K, 

Jtl k “K is not ET indescribable” ~3. 4 k “V, k Y(A)“]. 

@ is fir over V,, and by the choice of T we get V, k @(A, 9, K). If A < K is 
inaccessible and V, b @(A fl V,, 9, A), then A must be 2: indescribable because 
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we cannot have V, k Y(A rl VA) by our choice of Y(A). Thus @has the properties 
that we want. 0 (5.9) 

Actually the proof that we just gave works for a large class of inner models. 
The key point is that the inner model under consideration (or at least its 
truncation up to the first measurable) must have a certain ‘good’ well-ordering. 

We now resume the proof of 5.1. Working in L[ 91 we define for m L 2 and 
n 3 1 the poset Pz” to be the trivial poset if 9(m, n) = 0. If s(m, n) = 1 then we 
use the exact same definition that we used in the _Zr/IIr case (with K = L[sln~ 

and K' = the least 2:: indescribable cardinal in the sense of L[9] above K) except 
that we replace L by L[S] and we do something only at Mahlo stages 3 Ltq<. 
Then we let 

We must show that (5.2) holds. So fix m’ 32 and n’ 2 1. Note that PF = 

P, x P2 x P3 where 

PldZf n pm7 
9 > 

p2d!fpgw, 
p3= n 

pm,” 
9 * 

m<m’or m>WZ’ Or 
(m=m’hn<n’) (m=m’Nz>n’) 

First assume that 9(m’, n’) = 1. We know from Section 2 that for each 
LY < L’q&l, P3 has a <LY closed, dense suborder. Hence P3 is < Llq&;l Baire. 
Thus if G3 is P3 generic over L[4], 

This implies that in L[9, G,], L’qn7 ’ is still IIF’ indescribable and that there are 

many .Z$ indescribables above L[qz7’. It implies also that L[9, GJs version of 
P$‘z”’ agrees with the P$‘,” of L[9]. Thus if we denote by K' at least 2:’ 
indescribable > L1qnz’ ’ m L[fl then for any G2 that is P2 generic over L[S, G,]: 
In L[S, G3, G,], L[q~$ is L$ indescribable, K' is 27’ indescribable and there 
are no 2; ’ indescribables below Ltq~z’. 

Clearly lPll < L’qc’. Hence by 5.8 for any G, that is PI generic over 
L[S, G3, G2] we obtain that in L[S, G3, G2, G,] there are no 2:’ indescribables 

E] Ll%fY’ L[4nz’] and clearly we cannot have any 2;’ indescribables below 

L140$.“dlso by lPll < “96’ we get that L[q~z ’ is still LIr,’ indescribable and K' 
is still 27’ indescribable in L[9, G3, G2, GJ This shows that for %(m’, n’) = 1 

we have 

Now we assume that 9(m’, n’) = 0. Then PF = PI X P3. The <fi;, Baireness of 
P3 implies 
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IGl < L1qc$’ together with the observation that no generic extension of L[S] can 
have any IIT’ indescribables < L[40z’ yield that 

lkq’ o$ < Jr?‘. 

Another factoring argument shows that for any cardinal p, It-$hF1 2p = ,u+. Hence 
we get 
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