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1. Results and discussion 

Let X,, X,,... be an infinite sequence of independent random variables with a common distribution 
function F(x) = P(X < x}, x E R, defined on the same probability space, and for each n = 1, 2,. . . , let 
X’“’ , , . . . , X,!$) be the ordinary Efron bootstrap sample from X,, . . . , X,, with bootstrap sample size 
m = m(n), where (m(n)) is a sequence of positive integers. The variables X,‘“‘, . . . , Xc’ result from 
sampling m times the sequence X,, . . . , X, with replacement such that at each stage any one element 
has probability l/n to be picked. 

There is an extensive literature on the asymptotic distribution of the bootstrap sample mean 
m-‘Cim_rXj”). (See Arcones and Gin6 (1989) for the newest results and some earlier references.) Strong 
laws of large numbers have been proved by Athreya (1983) for this mean together with the weak law. The 
aim of the present note is to improve on Athreya’s strong laws by using a simple direct and elementary 
proof, an easy modification of which is also applicable to give the weak law. 

The validity of the strong or the weak law of large numbers, i.e. 

’ lim - mf’X;n) = E( X) almost surely 
fl+m m(n) j=l 

or 

+ E(X) in probability as IZ + 00, 

(1.1) 

(1.2) 
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under the minimal moment condition E( 1 X I) < m, is one of the most natural theoretical problems and, 
in view of the statistical importance of the bootstrap, the results are likely to find numerous applications 
in large sample theory. In fact, the technical necessity of a law, preferably a strong law, has become 
apparent in work with Murray Burke and Edit Gombay on applying the nonparametric bootstrap in 
composite goodness-of-fit bootstrap tests when unknown parameters are estimated using maximum 
likelihood based on the bootstrap sample, and thus one wishes to substantiate condition (A6) in Burke 
and Gombay (1988) in the maximum likelihood setting. I also thank Murray Burke for calling my 
attention to Athreya (1983) after the first version of this note was completed. 

Introducing the sequences 

l?(n) = (log n)l+s, If(n) = (log n)(log log n) . . . (log,_, n)(log, n)‘+s, 

r=2,3 , . . . , 6 > 0, where log, stands for the r times iterated logarithm and n is always taken as large as 
needed to make these definitions meaningful, our main result is the following. 

Theorem. If for some 0 < 6 < 1, 

l-6 

E( I X I l+‘) < 03 and lim sup n < co, 
n+m m(n) 

(1.3) 

then we have (1.1). Zf for some r = 1, 2, . . . and 6 > 0, 

cY4 <co 
E(X2) <m and lim sup- 

n+m m(n) ’ 
(1.4) 

then again we have (1.1). Furthermore, if 

~(IXl)<cc and m(n)+w asn*m, (1.5) 

then we have (1.2). 

The weak law in the third statement has been first proved by Bickel and Freedman (1981). Another 
proof of it was given by Athreya (1983). Since we give below what we believe to be a simplest possible 
proof, we included this statement for the sake of completeness. 

Athreya (1983) formulates his strong laws, as first results of their kind, in two theorems. His Theorem 
1, stating (1.1) under E( I X I> < m and requiring an exponential growth rate for m(n), is redundant in the 
sense that the special case 0 = 1 of his Theorem 2 provides a better result in demanding only an 
algebraic power growth. This Theorem 2 of Athreya establishes (1.1) under the condition that 

np 
E(IXI’)<w and limsup- <co forsome0>1andp>Osuchthatr3/3>1. 

n+m m(n) 

While requiring an algebraic growth of m(n), our condition in (1.3) is strictly weaker in the range 
1 < 13 = 1 + 6 < 2. As long as 0 2 2, condition (1.4) asks only for a logarithmic growth of m(n). (See also 
the finer form (1.10) of this condition below.) Athreya’s proof is indirect and not elementary in the sense 
that it arrives at (1.1) through a conditional strong law and it is based on a rather sophisticated inequality 
of Thomas Kurtz. We aim at equivalent forms of (1.1) and (1.2) directly and use only the Markov and 
Chebyshev inequalities. 

To expose the nature of our approach and an interpretation of the meaning of (1.1) and (1.21, a few 
more remarks are in order before the proofs in Section 2. Clearly, Cjm_ rX1”) = Cy= 1 fix,, where fj > 0 is 
the frequency of Xj, 1 <j < n, in X,‘“), . . . , Xcn) and the Multinomial(m, l/n,. . . , l/n) frequency vector m 
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(f,, * ‘. 3 f,) is independent of (Xi,. . . , X,). To achieve an explicit representation, suppose without loss of 
generality that the original probability space is rich enough to carry an infinite sequence U,, U,, . . . of 
independent random variables uniformly distributed on the interval (0, 1) such that the two sequences 
{X,) and {Uj) are independent, and let G,(t) = m-‘#{l <j <m: Uj < t), t E IR, denote the mth uniform 
empirical distribution function. Then we have the distributional equality 

Such a representation is implicit already in Bickel and Freedman (1981). (See also Burke and Gombay 
(1988), for example.) Setting 

it follows that the statement (1.1) of the theorem is equivalent to 

pLn:= kwn(j)Xj-+E(X) as. asn-+m 

(1.6) 

(1.7) 
j=l 

and the statement (1.2) is equivalent to 

II,, -+ E(X) in probability as n -+ 00. (1.8) 

These are laws for random linear combinations of the original variables Xi, X,, . . . . In this form, the 
intuitive meaning of the law is that the linear combination pn behaves asymptotically as if all the random 
weights w,(l), . . . , w,(n) a 0 were replaced by their common expectation 

E(w,(j))=i, j=l,..., n. (1.9) 

Note that, even though the sequence of weights (w,(l), . . . , w,,(n>> and the sequence of independent 
weighted variables (Xi,. . . , X,) are independent, the summands in (1.7) are not because the weights 
themselves are dependent: we have w,(l) + * * * + w,(n) = G,,,, (1) = 1 almost surely. Hence the ordinary 
strong law of large numbers (cf. Etemadi, 1981; or Billingsley, 1986, pp. 290-292, for a recent best proof; 
and Stout, 1974, Section 3.2, for example, for old proofs) or triangular-array versions of the Etemadi-type 
strong laws for non-identically distributed variables in Csiirgii, Tandori and Totik (1983) are not 
applicable, nor are results from the theory of strong laws for deterministic linear combinations (Stout 
1974, Chapter 4). Nevertheless, it is completely natural to follow the basic outline of Etemadi’s best 
proof. This is what we do, though because of some new subtleties certain details have to be refined and 
part of this outline has to be essentially reversed. 

Of course, the intuitive idea of substituting in the expectations (1.9) does not work by itself. Assuming 
only E( I X I) < m, which is necessary for the ordinary law, the resampling size m(n) must go to infinity, 
as n + m, to have (1.1). When we have E( I XI l+‘> < co for some 0 < 6 < 1, the condition in (1.3) 
requires m(n) to diverge to infinity at least at the rate of n’-a and thus compensates for possibly heavier 
tails in a clear fashion. I do not have a proof to show that these conditions on m(n) in (1.3) are in fact 
necessary but conjecture that they are close to being so. Note that in the most important special case 
when 6 = 0, the condition requires m(n) to grow at least as the sample size n, and this is satisfied in 
most practical situations, as for the naive bootstrap when m(n) = n. 

When ,%X2> < m, the tentative (very mild) growth rates required in (1.4) are only typical but not 
optimal. This condition, while keeping the same proof given below, can be replaced by the more 
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complicated but mathematically weaker condition that there exists a sequence of positive numbers I(n), 
slowly varying at infinity, such that 

f(n) m 

lim sup - 
m(n) 

< CQ and c 
1 

- <m. 
n-+m n=l nZ(n) 

(1.10) 

This condition cannot be far from being necessary either. 
It is of some interest to underline generally that here we talk about conditions for (1.1) that require 

the resampling size m(n) to grow fast enough. Contrary to this, the slower m(n) grows, the better chance 
we have for a reasonable asymptotic distribution statement when only moments of order less than 2 exist. 
This is clear from the results reviewed or proved by Arcones and GinC (1989). 

Finally we point out that our proof may in principle be applicable to bootstrap means resulting from 
resampling schemes different from the uniform scheme treated here, which lead to weights w,(j) 
different from those in (1.6). It always works whenever 

as n -+ CQ, and an inequality of the type of (2.3) below holds both for the truncated and the original 
variables q and Xj. The corresponding extended versions of the Theorem are easily formulated for 
linear combinations of the form in (1.7). Not surprisingly, the trivial special case w,(j) = l/n, j = 1,. . . , n, 
of the case 6 = 0 of any one of such extended versions gives Etemadi’s (1981) strong law for (pairwise) 
independent, identically distributed random variables. 

2. Proof 

Following Etemadi (1981), we assume without loss of generality that X > 0. This can be done here, too, 
since the weights are non-negative. 

First we prove (1.7) under the conditions in (1.3). Set k, = k,(a) = [a”] for some (Y > 1, where the 
brackets denote integer part, and introduce 

q=XjZ(Xj<j), j=l,2 ,..., 

using the Khinchin-Kolmogorov truncation scheme, where I(.) is the indicator function. Etemadi (19811, 
and ;n fact already Khinchin (1929) proved that under E(X) < 03, 

f P{X, # k;.) < m. 
j=l 

Extending somewhat the argument of Etemadi (1981), who establishes the 
present moment condition E(X1? < co, 0 < 6 < 1, it is straightforward 
argument is given) that 

5, & 5 E(q*) ccQ. 
n j=l 

Using the fact that for 0 < s < t < 1, 

E(%&)G,&)) = $ + 
m(n) - 1 

m(n) 
st, 

P-1) 

case when S = 0, under our 
to show (once the original 

(2.2) 
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by elementary calculation we obtain 

m(n)-1 1 q40)=&+ m(n) ;;i”-‘$7 
rim(n)) 

1 GjGn, 

and 

Hence, if we define w,(j) = 0 for j >, n + 1, by non-negativity, 

Var Cov(w,(i)y, w,( j)k;) 
lGi<jak 

j=l lgi<j<k 

(2.3) 

for every k a 1 and n 2 1, and if C(6) denotes the finite supremum of the sequence {n’-s/mbz>} in 

(1.3), 

5P(Iw,,(j)I>EJG-$ C(6) 2 --&+ f f -cm 
n=l i n=l n=l 1 

(2.4) 

for every fixed j > 1 and E > 0. 
After these preliminaries, for each n = 1, 2,. . . , let i(n) be the integer such that 

k,,, < n G kc,)+ 1. (2.5) 

Clearly, i(n) + 03 as n + CC and by non-negativity, 

k l(n) ki(n)+ 1 
L(n) := C w,(j)X,Gp,< C wn(j)Xj=:U(n). (2.6) 

j=l j=l 

Consider now the truncated versions of the lower and upper bounds L(n) and U(n) defined by 

k l(n) k I(“)+, 

L*(n) = C w,(j)? and U*(n) = c w,(j)y. 
j=l j=l 

It follows from (2.4) and the Borel-Cantelli lemma that 

max w,(j) -+O a.s. asn+w 
lgjgk 

and hence, for every fixed k a 1, 

iwJj)I;+O and i wn(j)Xj+O a.s. as n-m. 
j=l j=l 

These relations, combined with (2.1), give 

h&(L(n) -L*(n)) =0 and iFm(U(n) -U*(n)) =0 as., 



Volume 14. Number 1 STATISTICS & PROBABILITY LETTERS 4 May 1992 

and hence by (2.61, almost surely, 

lim inf L*(n) G lim inf pu, < lim sup I*~ < lim sup U*(n). 
n+m n+m n-m n-tm 

Next, using the inequality (2.3) with k = kic,,+l and the fact that 

(2.7) 

where we used (2.51, by (1.3) and (2.2) we obtain 

for every E > 0. Thus, again by the Borel-Cantelli lemma, 

;‘_m(U*(n) -E(U*(n))) =0 a.s., 

and by the same argument, 

;lm(L*(n) -E(L*(n))) =0 a.s. 

Therefore, (2.7) yields the almost sure inequalities 

lim infE(L*(n)), 1 < iminf~.,Glimsup~L,<limsupE(U*(n)). 
n+m n-m n-tm n-+m 

Finally, using (1.9), (2.5) and an easy argument involving Ceshro summation, 

P-8) 

3 lim inf 
n-*m 

and similarly, 

lim supE(U*(n)) <(YE(X). 
n-m 

Since (Y > 1 is as close to 1 as we wish, these two inequalities and those in (2.8) give (1.7) and hence the 
first statement of the theorem. 0 

Even though the variance is finite, when proving (1.7) under (1.4) we still use the same truncation. 
Elaborating further on Etemadi’s (1981) argument one can easily show that under E(X2> < 03, 

for every fixed r = 1, 2,. . . and 6 > 0, and if C,(6) denotes the finite supremum of the sequence 
{IB(n)/m(n>} in (1.4) then by (2.3) again, 
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for every fixed j >, 1, r >, 1, 6 > 0, and F > 0. In fact, in both relations one can replace the sequences 
lF(. > by any slowly varying sequence I(. > satisfying (1.10). Using these two inequalities in place of (2.2) 
and (2.4), or the corresponding two inequalities with the general I( .> function, respectively, the same 
proof as above gives (1.7) under (1.4) and hence the second statement of the theorem. 0 

Finally, to prove the third statement of the theorem, we prove (1.8) under (1.5). We can still assume 
without loss of generality that X 2 0, but-modify the truncation by introducing the triangular array 

E;,,=xjl(xj<nAm(n)), j=l,..., y1, n=l,2 )...) 

where n A m = min(n, m). We have 

E( zlwn(j)q,.,) = /II’^“““)x dF(x) *E(X) as 12 + w. (2.9) 

Thus, on the one hand, by non-negativity and the Markov inequality, 

O< twn(i)xjm kw,(i)q,,-0 in probability as n + 00, 
j=l j=l 

and hence it is enough to show that 

j$lw,(i)v,,, -+ E(X) in probability as n + 00. 

To show this via the Chebyshev inequality, (2.9) implies, on the other hand, that it is enough to see that 
the variance of the latter sequence converges to zero as II + 03. But by (2.3), applied with k = n and 

Y r,*, . . . , Y,,, replacing Y,, . . . , Y,, we have 

and this upper bound goes to zero by the dominated convergence theorem of Lebesgue. 0 
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