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We present a new bijective proof of the equality between the number of 
Littlewood-Richardson fillings of a skew-shape i/n of weight v, and those of the 
conjugate skew-shape A’/$, of conjugate weight v’. The bijection is defined by 
means of a unique permutation a,,, associated to the skew-shape i-/p. Our 
arguments use only well-established properties of Schensted insertion, and make no 
reference to jeu de taquin. % 1992 Academic Press, Inc. 

Given partitions p of r and v of s, it is well known that the product 
sP(x) s,(x) of the corresponding Schur functions s,,, s,, can be written as 
a non-negative integral linear combination of Schur functions: 

s&d S”(X) = c c;,%(x), (1) 

where the sum runs over all partitions 1 of r +s; the ciV are the 
Littlewood-Richardson coefficients. 

In [LR], Littlewood and Richardson give a combinatorial interpretation 
of the coefficients et,, namely, as the number of lattice permutations of 
weight v which lit the skew-shape 21~. (For a direct bijective proof, see 
[Tho]; a completed version of the proof in [LR] and in [L], appears in 
[Macd].) We refer to such lattice permutations as Littlewood-Richardson 
fillings of A/p, of weight v. 

If 1’ denotes the conjugate or transpose of the partition 1, then it follows 
(from the representation theory of the symmetric group S,,, for instance) 
that 

c1 = C/J 
P pv (2) 
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2 HANLON AND SUNDARAM 

This may also be seen by applying to (1) the involutive algebra 
automorphism w  [Macd], defined on the ring of symmetric functions (for 
which the Schur functions form a Z-basis) by 

W(S~(X)) = sit(x). 

In this paper we present a new bijection which establishes (2). A key 
element in our correspondence is a certain permutation a,, associated 
to each skew-shape n/p. The permutation a,,, is shown to satisfy some 
interesting properties. In Section 1 we describe the motivation behind the 
search for our bijection. In Section 2, we set up more notation and record 
some basic theorems which we shall need to establish our results. The 
main theorem of the paper appears in Section 3, and further interesting 
properties of the bijection are developed in Section 4. 

1 

In this section we briefly outline the motivation behind our search for 
a canonical correspondence establishing (2). We start with some basic 
definitions. 

DEFINITION 1.1. If i/p is a skew-shape, the Littlewood-Richardson 
(LR) labelling of the cells of i/p is an assignment of labels which orders the 
cells of i/p in increasing order from right to left along each row, and from 
top to bottom down the rows. Thus the rightmost cell in the first non- 
empty row of 1/p has LR label 1. See Example 1.1. 

EXAMPLE 1.1. Take J-/p = (6, 4, 4, 1 )/( 3, 2, 2). The LR labels of J/,u are 

DEFINITION 1.2. A lattice permutation w  = wlwz .. . w, is a word in 
{ 1, 2, . . . . > such that for every i = 1, . . . . n, the initial segment w1 . wj of w  
contains at least as many occurrences of the letter i as it does of (i + l), for 
every i> 1. The weight of a lattice permutation w1 wq ... w, is the integer 
vector (vi, v2, . . . . v,), where vi is the number of i’s in w1 ... w,. Clearly a 
lattice permutation always has partition weight. 
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EXAMPLE 1.2. The word 11221324 is a lattice permutation of weight 
(3, 3, 1, 1). 

DEFINITION 1.3. If ,?/p is a skew-shape of size n, a word w  = w1 . . w, is 
said to lit 1+/p if the skew-tableau of shape A/p obtained by inserting wi in 
the cell “of A/p with LR label i, is semistandard, i.e., is weakly increasing 
along rows (left to right) and strictly increasing down the columns. We say 
w  is a LR filling of J-/p, of weight v, if w  is a lattice permutation of weight 
v which fits 11~. 

DEFINITION 1.4. Let T be any standard Young tableau of shape v, 
where v is a partition of n. Define lp( T) to be the word w  = wi w2 . . . w,, 
whose ith letter is wi iff i appears in row Wi of T. Clearly lp(T) is a lattice 
permutation of weight v, and conversely, given a lattice permutation w  of 
weight v, there is a unique standard Young tableau T of shape v, such that 
lp( T) = w. 

EXAMPLE 1.4. If T - then lp(T)= 111221332. 

Now suppose p is any partition whose Ferrers diagram has even 
columns (so B = (pi, p2, . . . . PZk), j?Zi-l = pli, all i = 1, . . . . k). Then there is 
a natural way to encode any LR filling of weight p, of a given skew- 
shape n/p, as a l-factor on the LR-labelled cells of 1/p, as illustrated by 
Example 1.5 below. 

EXAMPLE 1.5. Let n/,u = (5, 5, 2, 1)/(3, 2). The lattice permutation 
11221324 gives the following LR filling of A/p: - . . 11 

. *122 P 23 
4 

Also, 11221324 corresponds, via Definition 1.4, to the tableau 

T- 
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which in turn corresponds to the fixed-point free involution 
w  = (13)(46)(57)(28), via Schensted row-insertion. By putting an edge 
between the cells with LR labels i, j if (ij) is a transposition in w, we can 
encode the LR filling of A/p as the following l-factor filling of A/p: 

We had noticed that geometrically transposing such a diagram resulted in 
a l-factor filling of the conjugate skew-shape A’/p’, which, apparently, 
could then be decoded into a LR filling of A*/$, of conjugate weight /I’. We 
then surmised that this phenomenon must be a special case of a canonical 
bijection between the LR fillings of A/p, of weight v, and those of Jr/p’, of 
weight VI. 

EXAMPLE 1.6. Continuing with Example 1.5, we have 

, . . . . . P 
which transposes to 

This new l-factor corresponds to the involution (42)(53)(61)(87), which 
gives the tableau 

T* - 

Now 
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gives the lattice permutation 11212133, which is indeed a Littlewood- 
Richardson filling of the transpose of n/p: 

*ll 
- 2 Er - 1 

12 
3 3 

Also note that the original LR tilling of n/,u had weight v = (3, 3, 1, l), 
while the LR filling of At/p’ obtained in this manner has weight 
(4, 2, 2) = Vf. 

2 

We shall assume that the reader is familiar with the elementary com- 
binatorics of standard Young tableaux and in particular with Schensted 
row insertion and column insertion [S]. Following the notation in [S], for 
a permutation w  in S,, the symmetric group on the letters { 1, 2, . . . . n}, we 
write 

to mean that row-inserting wr, then w2, .,., and finally w, produces the pair 
of standard Young tableaux P, Q; we write 

- - 
(w-*4)=(f’, Q) 

to mean that column-inserting w,, then w,- 1, . . . . and finally w1 produces 
the pair of tableaux P, Q. 

Now suppose w  is in S, and p in S, is the reversing permutation, i.e., 
p(i) = n + 1 -i. We list some well-known facts about row and column 
insertion: 

THEOREM 2.1. (1) [S] Row and column insertion are bijections between 
the set S, and the set of all ordered pairs of standard Young tableaux of the 
same shape A, where A runs over all partitions of n. 

(2) 
- - 

[S] If (q5+ w)=(P, Q) and (w-+d)=(P, Q), then P=i? 

(3) [Sch] If (4 + w) = (P, Q) then (4 +- w-‘) = (Q, P). 

(4) Cschl If (d+w)=(P, Q) then (w-d)= (P, Q,,,,), where Qevac 
is obtained from Q by a process known as evacuation. 
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(5) Zf ($tw)=(P,Q) then (wp+~$)=(P’,Ql) and (d+pwp)= 
(P,vac 3 Qw 1. 

We will use this fact as a dqfinition of the evacuation of a standard tableau. 

(6) Evacuation and transposing commute, i.e., (Q,,,,)’ = (Q’),“,,. 

(7) [Sch] Evacuation is an involution, i.e., (Qevacfevac = Q. 

(8) If Cd+-w)=(P, Q) then (4+w)=(P’, Q&J and (#+Pw)= 
(P La,> Q*). 

We now state the main theorem used to prove the results in the next 
section. 

THEOREM 2.2 [Wh,]. Let o be any permutation in S,, and 3.1~ a skew- 
shape of size n. Zf (a + 4) = (S, T) then lp( T) fits A/p iff the permutation ap 
fits L/p. 

The theorem as stated above is, in fact, the special case of the main 
theorem in [Wh,], restricted to permutations. White’s result is, in effect, a 
bijective proof of the Schur function identity 

s,,,(x) = c qhw 

We shall need a slightly different version of this result: 

COROLLARY 2.3. Let D be any permutation in S, and 3-1~ a skew-shape 
of size n. Zf (4 + a) = (T, S), then Ip( T) fits A/,u iff the permutation pa - ’ 
fits L/p. 

EXAMPLE 2.4. Take a = 784591236 and A/p = (5,4, 3)/(2.1). Then 

Observe that 

= 111221332, 

which gives the following LR filling of 
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Also pop1 = 432761985 which fits 3,/p, giving the standard skew-tableau 

Proof of Corollary 2.3. We have 

(4+g)==(T, 8 

* (4 + PW) = (Tev,,> Se,,,) by Theorem 2.1(5) 

*Cd + PO-‘~1 = (Sew Te,,,) 

--(P~-1P+4)=bLc> T) by Theorem 2.1(7). 

Hence by Theorem 2.2, 

lp( T) fits A/p e (pa -‘p) p = pa -’ fits R/p. 

3 

DEFINITION 3.1. Given a skew-shape A/p of size n, define a permutation 
in S,, a,,,, as follows: 

a,,, is the permutation which takes the LR labelling of A/p to 
the LR labelling of the conjugate skew-shape IZ’/,u’; i.e., if the cell 
(s, t) in A//J has LR label z’, then the cell (t, s) in J”‘/,u’ has label 
a,,,(i). 

EXAMPLE 3.2. If 11~ is the skew-shape (4, 3,2,2,)/(3, 2) then the LR 
labels of n/p are 

. . 1, 

. . 2 

43 

65 

while those of A’/p’ are 

..2 1, 

‘.4 3 

.5 

6 

so that CC,+ = 654231 
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Remark. Observe that if we till in the cells of A//A with the numbers 
1, . . . . IZ, starting at the leftmost cell in the bottom row and moving up the 
columns, then over to the right to the next column, CI~,/, is precisely the 
permutation obtained by reading this filling of i/p according to its own LR 
labelling. In the above example, 

xj&= . . .6 

. 5 

24 

13 

LEMMA 3.3. If L/p is a skew-shape of size n then 

(1) aAlp (l>=n, a2&)= 1. 

(2) 
-1 

a,V/p = a i/p . 

(3) A permutation w  fits i’/p’ iff the permutation w~l>,,~ fits 2/p. 

Proof. (1) and (2) are clear. 

For (3), observe that putting w(i) into cell i of Az/pf is the same as 
putting ~~~~,C~,ij (i)l t in o cell ai/: (i) of 1,/p. Since the fillings are all 
standard, the result follows. 

DEFINITION 3.4. Suppose T is a standard tableau of shape v, for some 
partition v of n, and suppose w  is any permutation in S,. By T” we mean 
the array of the same shape v, obtained by replacing each entry i in T by 
w(i). Note that T” need not be a standard tableau. 

EXAMPLE 3.5. Take 

T=l 3 4, w=4 1 6 3 2 7 5. 

2 6 7 

5 

Then 

T”=4 6 3 

1 7 5 

The next three lemmas, 3.6, 3.7, and 3.8, are essential to the main result 
of this paper (Theorem 3.14). The proofs are long, and, as is typical of 
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arguments in this subject, somewhat intricate. Following the suggestions 
of the referee and the editor, we refer the reader to [HS] for all the 
unpleasant details of the proofs. A good understanding of the main ideas 
can also be obtained by studying the Remmel-Whitney algorithm for 
multiplying Schur functions [RW]. 

We emphasize that our arguments use only well-established properties of 
Schensted-insertions, with no reference whatsoever to jeu de taquin. For the 
remainder of this section, we fix a skew-shape 11~ of size n. The 
permutation a,,, has the following interesting property: 

LEMMA 3.6. Given a skew-shape A/u, let T be any standard Young 
tableau such that lp(T) fits A/p. Then 

TporAlfl is a standard tableau. 

Proof: See [HS]. 

The next two lemmas will enable us to write the permutation which, 
when row-inserted, produces the pair of standard tableaux (Tpai’p, T). 

LEMMA 3.7. Suppose T is a standard tableau such that lp( T) fits A/u. Let 
Q be a permutation such that (4 t o) = (T, S), for some standard tableau S 
(of the same shape as T). Suppose the entry in T corresponding to n in S 
is t,. Then row-removing paAip(t,) from Tilp results in bumping out 
prxi.,,(a(n)). In other words, if (4 +- w) = (Tpai’@, S), then w(n) = pa).,,(a(n)). 

Proof See [HS]. 

LEMMA 3.8. Suppose lp(T) fits A/p and o is a permutation such that 
(qh c (r) = (T, S). Let T (*-I’ be the tableau obtained by inserting the first 
(n- 1) letters of g (so T= T(“-‘I+- o(n)). Then lp(T’“-“) fits the skew- 
shape I-/p’” ~ ‘I, where ,uL(“- I) = ,u u {cell of A/,u with LR label o(n)}. 

Proof See [HS]. 

In fact, the proof shows 

COROLLARY 3.9. Zf lp(T) fits A/u and (4 t a) = (T, S), then there is a 
sequence of skew-shapes A/u = A/u’“’ c A/p(+‘) c . . c A/u(l) c A/p(‘) = I. 
such that lp( T(‘)) fits i/p@-‘) where T(“=(q6+-a(l)+-0(2)+ ... +-o(i)) 
and ,uCi) = p u (cells in A/p with LR labels a(n), a(n - l), ,.., a(n - i + l)} = 
P “-l)u{ceZZof~/,ulabeZZeda(n-i+l)} (sop~p(‘)e ... ~u(“-~)c/2).In 
particular, 

(1) the cell of 1/u labelled o(n - i + 1) is a corner cell of p@) for all 
idn- 1 and 

(2) a(l) is a corner cell of A. 

An example illustrating the content of the above corollary follows. 
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EXAMPLE 3.10. Let (T be the permutation given by 

i 

123456789 . 
a=7 8 4 5 9 12 3 6’ > 

let %Jp be the skew-shape A/p= (5,4,3)/(2,1). Figure 1 shows how the 
skew-shape grows (first column of Fig. l), and how the lattice permutation 
evolves, as we go through the successive insertions of a(i). 

We now deduce the following crucial result. 

THEOREM 3.11. Suppose T is a standard Young tableau such that lp( T) 
fits iv/p, and a is a permutation satisfying (4 + a) = (T, S) for some standard 
tableau S (of the same shape as T). Then (4 + pcz,,,a) = ( Tpa*ip, S). 

Proof: If o is the permutation giving the pair ( TQaL@, S), Lemma 3.7 
shows that o(n) = pa;./,(a(n)). 

To complete the proof, we continue to row-remove entries in PaA’@, 
corresponding to entries in S. Let (T Pzi’~ (nP I) be the tableau obtained by ) 
row-removing from Tpaib, the entry corresponding to n in S, i.e., 
(TPaLjp)(n-l) is the result of bumping out pc~>.,~ (a(n)). 

Consider the pair ((Tpailp)(n-l), SCnpl), where SGn-i is S with entry n 
erased. By Lemma 3.7, since bumping paths were “preserved,” we have 
( TpaA’@)*-’ = ( T(n-l))paL’u if T(“- ‘) denotes the tableau obtained by row- 
removing the entry corresponding to n in (T, S), i.e., T(“- ‘) is the result of 
the row-insertion q5 t a( 1) c . . c a(n - 1). 

But the previous lemma says that the pair (T’“- ‘I, S,,- i), which 
corresponds to the two-line array { ’ a(l) j&l1 ,> , has the property that 
lp(T’“-“) fits some sub-skew-shape A/p n ‘) of A/p. Therefore the 
arguments of Lemma 3.7 apply to row-removing the entry corresponding 
to (n - 1) in S, in the pair 

giving pcc,,,a(n - 1) as the bumped-out entry. Continuing this argument 
produces the two-line array 

i 

I 2 . . . n-l n 

w2,,a(l) . . p~ll,4n - 1) w21,a(n) 1 

as the result of row-removal in the pair (TpaQp, S). 

COROLLARY 3.12. Suppose (4 c a) = (T, S) and lp(T) fits A/p. Then 
(d+ (aj.,,oa))= ((TPai’r)&, s’). 

Proof. This follows immediately from Theorems 2.1(8) and 3.11. 

DEFINITION 3.13. Denote by 55’” */fi the set of all standard tableaux T of 
shape v, such that lp(T) is a LR filling of A/l. 
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T(i) 

7 

lp (Tci') 

Ep . . . . . EF 
. . 
. . 

. . 1 . .1 

FP . . . . . . tP . . . . 78 

. 11 . 21 

E? 

. . . 

. 3 EP 

. 
1 

48 

7 

. 12 ’ 21 

F . . . 
1 1 EP . . Ir 3 

. 21 

45 

7 8 

. 22 

EP . . , . 1 1 83 
. . . 
4 3 

459 

78 

1 2 2 5 2 1 

EF 
. . 6 
G 3 F . 1 

* 1 2 

159 

LB 

7 1 2 3 5 2 1 

EF . 7 6 

4 3 

Ep . 2 . 2 1 1 

1 3 3 

129 

45 

7 a 5 2 1 

EP 8 7 6 

. 4 3 EF 1 1 1 

. 2 2 

123 

459 

78 5 2 1 2 3 3 

I I I 
t? I 9 a 0 3 7 6 459 1236 Ep 1 2 1 2 1 1 

5 2 1 7 8 2 3 3 

FIG. 1. Ip(T(‘)) is obtained as follows: In cell of 3./p with LR label x, put the row number 
of x in T(‘). 
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(Thus ( %‘:/P 1 is just the LR coefficient ci,.) We are now ready to state 
the main result of this paper: 

THEOREM 3.14. Given a skew-shape l/p, define a map cp:‘” on %?:lW by 

rp;il”(T) = [Tpgl’fi]&. 

Then cp tit’ is a bijection from Vtjp to SF?$~~[. 

Proof. By Lemma 3.6, qyP( T) is a standard tableau and has shape v’, 
since T has shape v. Also clearly q:li’ is l-1 (evacuation is an involution). 

Claim. lp[ ( TPaA’c)&] tits n’/p’. 

Pick any permutation cr such that (4 t o) = (T, S) (for some tableau S 
of shape v). We have TE %‘$* + lp(T) fits n/p, so by Corollary 3.12, 
(4 + a~,/) = ((TPaA’vL,c> S). Hence by Corollary 2.3, to establish our 
claim it suffices to show that ~(!x~,~a)-’ fits J.‘/$. But Ip(T) fits 

3,/p * pa ~ l fits n//l (Corollary 2.3) 

=+- (pa- ‘) a,-,1 tits A*/$ (Lemma 3.3), 

and the claim follows. 

Thus fp$“’ is a l-l map from VyP into %Y$‘P’. Therefore 1 %?t’” j d ) %‘$‘Pf 1, 
and a symmetric argument shows that I%?:,, A”p”( Q (%??y” ( ; i.e., the two sets 
have the same cardinality. 

Hence the map (~3’~ : ‘GF?~‘~ --t U$‘Pt is also onto. 

EXAMPLE 3.15. If n/p = (5,4, 3)/(2, 1) and 

T=l 2 3 6, 

4 5 9 

7 8 

we observe that lp( T) gives the following LR filling of J/p : 

. . EF 111 

. 122 

2 3 3 
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From the labelling 

124 

we obtain xnlP = 9 8 6 7 5 3 4 2 1, so paAlP = 1 2 4 3 5 7 6 8 9. Then 

1 2 4 7 1 2 4 9 

TP”@@ = 3 5 9 whose evacuation is 3 5 7 . 

6 8 6 8 

Hence 

1 3 6 

2 5 8 
(TPaA~“):VaC =4 , 7 

9 

which indeed gives a LR filling of 11~: 

. . 
EF 

1 . 1 2 * 
1 2 3 
2 3 
4 

We point out the effect of conjugating a permutation by a,, in 

COROLLARY 3.16. Suppose T is a standard tableau such that lp(T) is a 
LR filling of JJp, and suppose z is an involution such that (4 c z) = (T, T). 
Then (4 + a,+za$) = (( TPaA’~)eVac, ( TPai’p)ey,,). 

Proof. Applying Theorem 3.11 to z, we obtain (d, +- pay, 0 z) = ( Tpa@, T) 
and so (4 t Ta,>i p) = (T, Tpn*‘@) (since z = 2-l). Now Theorem 3.11 applies 
to the permutation za<j P, giving (4 + pa,lP(za,:: P)) = (7’ PWP, Tp”G). Hence 

( TPzA’g),,,,), (by definition of evacuation; see 
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4 

In this section we investigate further properties of the permutation c.c?.,~ 
and show that the map q, *lp described at the end of the last section is the 
inverse of the “reverse” map cpt?@‘. 

DEFINITION 4.1. Given a skew-shape J./p, define its complement, 
denoted q, geometrically as follows: 

G is obtained from 3.1~ by reflecting the skew-shape once about the 
horizontal axis, then once about the vertical axis. Formally, if 
A=(&> ... >i,20), p=(pl>/ ..’ > p,>/ 0) then to obtain a, take 
fi = (AI - Pr, 4 - P/- 1, ...> Lr-pl) and ,!=(A, --A,, h,-;II_, ,..., 0); then 
(VP) = l/P. 

Note that j& X are respectively the complements of p and A in a 1, by I 
rectangle (Ai rows, 1 columns). 

EXAMPLE 4.2. Take A/p = ($4, 3, 2)/(2, 2): . . . . EP 
Then a is simply A.J,u viewed from the northern boundary (row 1) of 1 
(turn the paper upside down to obtain a): 

x x x 

n/p= x x 

-cffP 

= p/x = (5, 5, 3, 3)/(3, 2, 1). 

x 

LEMMA 4.3. Given 21~. Then 
- 

(1) U/P) = VP 

(2) “gi = pa,/, P 

(3) A permutation w fits L/p o pop fits n/p 

(4) Transposing and complementing commute, i.e., (n/p)’ = L’/p 
(where the transpose of ~/,LI is defined to be At/p’). 
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Proof: (1) is obvious. 

(2) Recall that to obtain a,,,, we fill i/p with 1,2, . . . . working up the 
column, starting at the bottom of the leftmost column, and then we read 
the tilling according to the LR labels for A/p (i.e., right to left, top to 
bottom along rows). 

Now observe that a,,,p is this filling read in reverse order, i.e., in the 
order of the LR labelling for ,G/;Z, and that the elements in aj,,~p are exactly 
the complements of the elements in up,2 (aPlr would fill the cells of n/,u with 
1 2, . ..) from top to bottom down the columns, and starting at the rightmost 
column). Thus cxullp = ~a,,~. 

(3) The same geometric reasoning shows that if o fits 1/p, then the 
operations of complementing and reversing w  produce a permutation 
which tits @. But this is precisely pop. Now use the fact that p2 = 1 and 
the first statement of this lemma to obtain the reverse impliction. 

(4) (/l/p)<= (ji/ii)t=ji/x’=ji/F= %1/,t. 

LEMMA 4.4. TE $?:I” o T,,,, E @cl’; i.e., lp(T) fits 1/p o lp(T,,,,) fits 
@IL. 

ProoJ: Let z be the involution such that (4 t r) = (T, T). Then pzp is 
the corresponding involution for T,.,, : 

lp( T) fits n/#Ll e pz - l= pz fits n/p (Corollary 2.3) 

0 p(pz) p = zp tits Alp (Lemma 4.3) 

- lp( Tevac) fits lb//~ by Theorem 2.2, 

since (ptp)-’ = pzp. 

Remark. This lemma says that the skew-Schur functions s~,~ and s~,/~ 
are equal. This is easy to see by means of a direct bijection between the 
associated semistandard skew-tableaux. 

THEOREM 4.5. Suppose T E %?tj”. Then [( TevaJa2’@]’ E W$‘g’ and 
( TevaJaz/@ = ( Tpor2’p)evac. 

Prooj T E V;lfl o lp( T) tits A/p o lp( T,,,,) fits a = /Yi/n * 
lp([(T,,,,)Pa~&J tits (a)‘=iP/x’ by Theorem 3.14 applied to the 
skew-shape n/p. But (( T,,,,)p%)~,,, = (( Tevac)crjJ@)&c by Lemma 4.3 (In 
particular, this says ( Tevac)b2’~P = ( T,,,Jp% is standard.) So we obtain that 
~P((T,,,P~“):,,, fits ,G’/X’. Hence (by Lemma 4.4 again) lp[(T,,,,)““‘@]’ 
tits m= 1*/p’. Also, clearly [(Tevac)ai’@]r has shape vf, if T has shape v. 

582a/60/1-2 
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Finally, if t is the involution such that (0 t t) = (I”, T), then pzp is the 
corresponding involution for T,,,, . 

By Corollary 3.16, since lp( Teyac) tits q, 

({U’ev,,Y~L.vac> W’evaJpa~Lva,) 

= Cd + ANT;; u$) = (6 +- P”A,p$j:P) by Lemma 4.3, 

so (4 + “n//Ltu,/, -‘) = ((Tevac)pa~, (TevaJpaZ). But then again by 
Corollary 3.16, ( Tpa+)evac = ( Tevac)‘% = ( Te.ac)ai’pp. 

COROLLARY 4.6. The map qp3/” : G?:/” -+ %?$Jp’ and the map cp$Jfit : 
$g ‘yP’ + $$ ?lr are inverses. Equivalently, lp( T) fits k/p iff lp(( TPOL21p)&c) 
fits A’Jj.d. 

q ;;‘$, t/P . (T) = cp ;j”‘( ( T+W):yaC) = ( [ ( TP%)tvac] ~WP’ > tv,, 

= ( [ ( Tpr;.l~)eVac] &‘}evac 

(transposing commutes with everything) 

= C{(T,,,,)~~~~}pa~i:levac (by Theorem 4.5) 

=(T ) evac evac =T. 

The above result enables us to deduce easily the following. 

THEOREM 4.7. Suppose z is an involution. Then 

Proof. Suppose T is the standard tableau obtained by row-inserting r, 
i.e., (4 c r) = (T, T). Then pi = pi - ’ tits k/p o lp( T) fits A/p (by 
Corollary 2.3) o lp[( TPa@)&] tits 2*/p’. 

But by Corollary 3.16, 

(4 + b,,,%j;) P) = ((Tap”“):yac, (TpaA’p)f). 

Hence 

pz fits A/p 0 ,o[(u,,,zu~;) p] -1 fits df/pLf 

(again by Corollary 2.3) 

=a UAl,T 
-1 -1 

“up = uA/p~@i./p -l fits At/p’ 

0 uj.,pz tits n/p (by Lemma 3.3). 
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The reader will observe that the statement of this theorem does not 
involve LR fillings: the authors can, in fact, prove this result by a direct 
argument similar in flavour to the arguments in Section 3. 

We now record the implications of these results for the case when p = 4; 
i.e., when the skew-shape is, in fact, a full shape A. In this case we note that 
there is a unique standard tableau Ri giving the unique LR filling of 1, 
which is the row-superstandard tableau of shape 1, obtained by filling the 
cells of 3, with 1, 2, . . . . starting at the top row and moving left to right along 
the rows. 

The column superstandard tableau C, of shape A is defined analogously; 
we note that (CiJ)‘= R,. 

EXAMPLE 4.8. If E, = (5, 4, 1, l), 

R,=l 2 3 4 5, C,=l 5 7 9 11. 

6 7 8 9 2 6 8 10 

10 3 

11 4 

COROLLARY 4.9. If I is a shape then 

where GI j. = CI j.lb. 

Proof: Immediate from the above remarks. 

APPENDIX 

The authors have learned that White [Wh,] has found a bijection 
between the sets Vt/” and U$‘O’ using a jeu de taquin approach, which 
apparently produces the same output as the mapping (~3~~ of this paper. 
The connection between the two bijections is not at all obvious from the 
definitions and has as yet been unexplored. 
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