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Given a metric space whose bounded sets are relatively compact (i.e., have 
compact closures), we show that a nearest point selection from a sequence of 
Kuratowski converging sets converges to the nearest point in the limit set whenever 
the latter point is unique. The result is extended to Kuratowski limits of linear 
varieties in infinite dimensional Hilbert spaces where this nearest point (relative to 
the origin) is necessarily unique. Finally, we show that the Kuratowski limit of 
hyperplanes must itself be a hyperplane and that a necessary and sufficient condi- 
tion for the associated nearest points to the origin to converge as above is that the 
canonial points parametrizing the hyperplanes converge. 0 1992 Academic Press. Inc 

1. INTRODUCTION 

Suppose X is a metric space, S is a non-empty subset of X, and {S,} is 
a sequence of non-empty subsets of X. Assume that lim S, = S in the sense 
of Kuratowski (Section 2). The general problem we consider is that of 
finding a constructive way of selecting a sequence of points {sn}, one from 
each S,, which converges to a point s in S. Our particular approach is to 
use best approximations, i.e., from each S,, (resp. S), we select a point s, 
(resp. s) which is nearest to some reference point p in X. The problem is 
then to find conditions on X, S, and the S, under which {s,} converges 
to s. 
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This problem was considered by the authors in [18] for the case where 
X is compact and the selections {sn} are more general, i.e., not necessarily 
nearest-point selections. The main advantage of the compactness assump- 
tion is that (for closed subsets) lim S, = S is equivalent to convergence of 
{S,} to S in the underlying Hausdorff metric. However, a significant 
disadvantage is that ordinary Euclidean space is excluded. In [18], among 
other things, we gave sufficient conditions for {sn} to converge to s in the 
presence of compactness for X. Our main objective here is to conclude such 
convergence without the compactness assumption on X. Unfortunately, as 
we shall see, some weaker forms of compactness still appear to be 
necessary. 

In Section 2, we establish the ncessary mathematical preliminaries. In 
Section 3, we consider the case where X has the property that bounded 
subsets are relatively compact (i.e., have compact closure, e.g., Euclidean 
space) and the S, are arbitrary. If p in X has unique best approximation 
in S and lim S, = S, then lim s, = s, where s, is any best approximation to 
p in S,,, each n, and where s is the unique best approximation top in S. If 
every p in X admits a unique best approximation s in S (depending on p), 
then lim S, = S if and only if lim s, = s, for any nearest-point selection (sn} 
from the S, relative to any p in X. 

In Section 4, we assume S,, and S are closed linear varieties in Hilbert 
space, i.e., 

s,= {XEX:A,,x=yn}, n = 1, 2, . ..) 

s= {xm Ax= y}, 

where X, Y are Hilbert spaces, A,, A are bounded linear operators from X 
into Y, and y,, y are elements of Y, n = 1, 2, . . . Assuming AA * is inver- 
tible, if A,, + A uniformly and y, -+ y, then lim S, = S. (Later on, we show 
that this is not true if the A,, converge strongly to A.) Moreover, we exhibit 
a selection (possibly not nearest-point) from the S, which converges to a 
point in S. If the A, and A have closed ranges, then this seection will be 
a nearest-point selection relative to the origin in X. 

In Section 5, we restrict our attention to the case where Y is the real 
numbers and each S, is a closed hyperplane not passing through the origin. 
Recall that each such hyperplane is uniquely determined (as in Section 2) 
by a non-zero element a, of X. We first show that the limit of hyperplanes 
is again a hyperplane. Specifically, for S non-empty and not containing 
the origin, if lim S, = S, then there exists non-zero a in X such that S is the 
closed hyperplane defined by a and the a, converge weakly to a. In the 
presence of this weak convergence, we give necessary and sufficient condi- 
tions for nearest-point selection convergence, i.e., lim s, = s, where this 
time, the nearest-points are taken relative to the origin in X. We also give 
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a condition on the Q,~ relative to a under which lim s,, = s is equivalent to 
lim S, = S. 

Finally, in Section 6, we apply our selection convergence results to the 
following problems: 

(i) approximating a solution to an infinite system of inequalities in 
unbounded variables; 

(ii) approximating a best approximation (to an arbitrary point) in a 
convex body in Euclidean space. 

2. PRELIMINARIES 

We begin by defining Kuratowski convergence [ 121 for a sequence of 
sets in a metric space. For the moment, suppose (X, d) is an arbitrary 
metric space with S, c X, n = 1, 2, . . . . Define: 

(i) lim inf S,, = set of points x in X for which there exists x,, E S,, for 
n sufficiently large, such that d(x,, , x) -+ 0, as n + co. 

(ii) lim sup S, = set of points x in X for which there exists a 
subsequence {S,,} of {S,} d an a corresponding sequence (xi} such that 
x,~S,,allj,andd(x~,x)+O,asj+x, 

In general, lim inf S, s lim sup S,. If S E X is such that S c lim inf S, and 
lim sup S, s S, i.e., lim inf S, = lim sup S,, = S, then we write lim S, = S and 
say that {S,,} Kuratowski converges to S. If {S,,} converges to S in 
the underlying Hausdorff metric, then lim S,, = S [9, p. 1711. However, the 
converse is false in general. If X happens to be locally compact, then the 
closed subsets of X may be topologized so that lim S, = S is equivalent to 
convergence relative to this topology [17]. 

Let p E X and SE X. Then there may or may not exist s in S such that 
d( p, s) = d( p, S), where 

4P, a= 
i 

inf{d(p, Y): YES}, s z 4, 

03, s=qs. 

If such s in S exists and is unique, i.e., p has unique best approximation in 
S, then we say that p is a uniqueness point for S in X. We denote the set 
of such p in X by U(S). In general, S s U(S) c X. Note that U(S) = X if S 
is a singleton. For convenience, define U(4) = X. 

In Section 3, it will be important that bounded subsets of X have 
compact closures. Such X must necessarily be a locally compact metric 
space. Of course, all compact metric spaces and all closed subsets of finite 
dimensional normed linear spaces have this property. Moreover, all finite 
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products of such spaces also have it. Thus, there exist non-compact, 
non-Euclidean metric spaces having the property that bounded subsets 
have compact closures. 

The following results will be useful in later sections. Let 8 E X denote a 
fixed, arbitrary point. If X is a normed linear space, then 0 will be assumed 
to be the zero element. For x E X and Y > 0, we denote by B,(r) the closed 
ball of radius r centered at x. A subset B of X is hounded if there exists r > 0 
for which BG B,(r). 

LEMMA 2.1. Suppose bounded subsets of X have compact closures. 

(i) Jf S is a closed, non-empty subset of X, then d(x, S) is attainedfor 
each x in A’. 

(ii) If S, G X, all n, then lim S, = q5 if and only if for each Ibounded 
(resp. compact) subset B of X, B n S, = q5 eventually. 

Proof: (i) Let x E X. Since S is non-empty, we have that d(x, S) < co. 
For each positive integer n, let y, E S be such that 

d(x, S)<d(x, y,)<d(x, S)+;. 

Then d(x, y,) + d(x, S), as n + co. Hence, the sequence { Y,~} is contained 
in S and is bounded. Let r > 0 be sufficiently large such that { yn} E B,(r). 
Since B&r) is compact by hypothesis, passing to a subsequence if 
necessary, we may assume that there exists ye BB(r) such that y, + y, as 
n + co. Since S is closed, y E S necessarily. Moreover, d(x, y,) + d(x, y), as 
n -+ co, so that d(x, y) = d(x, S). 

(ii) This is proved as in [ 163, where it was assumed that X=: R”. 1 

In Section 5, we will be interested in convergence of closed hyperplanes 
in Hilbert space. Thus, for the moment, suppose X is a real Hilbert space. 
It is well known [S, 111 that closed hyperplanes in X which do not pass 
through the origin 8 are in one-to-one correspondence with the non-zero 
elements of X, where the correspondence a + H(a) is given by 

H(a) = {xE X: (x, a) = 1 }, 

for a E X, a # 0 (H(a) = d, for a = 0). Since H(a) is closed and convex, there 
exists [l, S] a unique best approximation s in H(a) to 8, where s # 8. 
Necessarily, s is the orthogonal projection of 0 in H(a) and must satisfy 
PI 



116 SCHOCHETMAN AND SMITH 

Consequently, a must be equal to (l/llsil ‘)s, i.e., 

II(a) = {XE X: (x, s) = ilsll2) 

for such a. Moreover, llall = l/l/sll and s = (l/llal12)a. 

3. CONVERGENCE OF BEST APPROXIMATIONS 

Suppose once again that X is a metric space. Before we can establish our 
main result in this section, we require the following. 

LEMMA 3.1. Suppose bounded subsets of X have compact closures. Let 
p E X and S,, G X, all n. Suppose {s,,} is a nearest-point selection from the S, 
relative to p, i.e., s,, E S, and d( p, s,) = d( p, S,), all n. If lim sup S, # I#, then 
is,,) has a convergent subsequence in X. 

Proof Suppose not. Let r > 0 be arbitrary and consider the closed ball 
I?,(r) which is compact by hypothesis. If (s,} is not eventually outside 
B,(r), then there exists a subsequence inside B,(r) which must in turn have 
a convergent subsequence. Contradiction. Thus, {sn > must be outside BP(r) 
eventually. Hence, for each r > 0, there exists n, such that d( p, s,) > r, for 
each n 3 n,. 

Now let x E lim sup S,, which is non-empty by hypothesis. Let 6 > 0 and 
set r = d( p, x) + 6, so that r > d( p, x) 3 0. Let n, be as above. By the choice 
of x, there exists a subsequence {S,,} of {S,} and a corresponding 
sequence { y,} such that y, E S,, all j, and yj + x, as j -+ co. In particular, 
let j, be sufficiently large such that n, 2 n,, for j 2 j,. Then j 2 j, implies 
that d( p, s,,,) > r. Also, d( p, s,,) d d(p, y,), all j, since sq is a point in S,, 
nearest to p. Moreover, d( p, y,) -+ d( p, x), as j + co. Hence for j> j,, we 
have 

d(P,-~)+6<d(P,s,,)6d(P, Yj). 

Contradiction. Therefore, {s,,} has a convergent subsequence in X. 1 

Our main result in this section is the following. 

THEOREM 3.2. Suppose bounded subsets of X have compact closures. Let 
S be a non-empty subset of X and {S,} a sequence of non-empty subsets of 
X. If lim S, = S, then for each p in U(S) and each nearest-point selection 
is,,} from the S, relative to p, the sequence {sn} converges to the unique 
point s in S nearest to p. 

Proof If (sn} d oes not converge to s, then there exists a subsequence 
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{sn,> of bn> h’ h b w ic is ounded away from s; i.e., there exists Y > 0 such that 
d(sn,, s) > Y, j= 1, 2, . . . . We also have that 

4#S=limS,=limS,, 
,I i 

[3, p. 1211, so that lim sup, S, # 4. Hence, by Lemma 3.1, {s,,} has a con- 
vergent subsequence. Passing to a subsequence if necessary, we may assume 
there exists x in X such that s,, + x, as j + co. Thus, x E lim sup S,,, = S by 
hypothesis. Moreover, 

i.e., 

r < db,, s) < dh,, -xl + 4x, s), 

0, s) > r - db,, xl, all j. 

Since d(s,, x) -0, as j+ co, we have that d(x, s) > r > 0. Consequently, 
x # s and necessarily d( p, s) < d( p, x), since p E U(S). Define 

from which it follows that 

d(p,s)+p=d(p,x)-p>O 

and 

d(p, 3) < d(p, xl -P, 

Thus s is in the interior of the ball B,(a), where (T = d( p, x) - p. Let 
0~6 <p be such that B,(~)GB,,(cJ). If y~B,~(6), then d(s, y) <6 and 
d(p, y)<d(p>x)-p. 

Now s E S implies that s E lim, S, = lim, S,. Thus, there exists a sequence 
in the S, which converges to s. Consequently, the S, must eventually 
intersect B,(6), i.e., there exists j, sufficiently large such that 

S,, n B,(d 1 Z 4, j> j,. 

For such j, let yi E S, n B,(6). Then d(s, y,) < 6. Moreover, 

d(P, sn,)dd(P, Yj) 

d 4 p, s) + d(s, Y,) 

<d(p,s)+6 

<d(p,s)+p, 
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i.e., d(p, s,J < d(p, x) - p, for ,ja j,. Since d( p, s,,) + d( p, x), as j --f co, it 
follows that d( p, x) 6 d( p, .Y) - p, where p > 0. Contradiction. Therefore, 
s,,-,s, as n-+c0. 1 

Remarks. 1. If we assume in addition that S and the S, are closed, then 
alternate proofs of Theorem 3.2 may be obtained by (1) combining 
Theorem 3.1 of [3] with Lemma 1.0 of [4] or (2) by suitably adapting the 
second part of the proof of Theorem 1.0 of [ 151. 

2. Theorem 3.2 requires that we know U(S) in order to apply it. In 
general, this is difficult to determine. In some applications, it is possible to 
verify directly that a particular point p is in U(S) (see [14], for example). 
However, it is desirable that U(S) = X, so that p may be chosen arbitrarily 
in X. This will be the case, for example, if X is a Hilbert space and S is 
closed and convex [ 1, p. 151. 

THEOREM 3.3 (Selection Convergence). Suppose bounded subsets of X 
have compact closures. Let S be a non-empty, closed subset of X and {S,} 
a sequence qf non-empty, closed subsets qf X. Assume that U(S) = X. Then 
the following are equivalent : 

(i) lim S,, = S. 

(ii) lim d(x, S, ) = d(x, S), for all x in X. 

(iii) For each p in X, and each nearest-point selection {s,,} from the S, 
relative to p, the sequence {s,,} converges to the unique point s in S nearest 
to p. 

Proof Statements (i) and (ii) are well known to be equivalent; see [ 10, 
Theorem 51 or [4, Theorem 2.31, for example. Thus, it suffices to show 
(iii) implies (ii) and (i) implies (iii). 

(iii) implies (ii). Let XE X. By Lemma 2.1, there exists s, E S,, all n, 
and SE S such that d(x, s,) = d(x, S,), all n, and d(x, s) = d(x, S). By 
hypothesis, d(x, s,) + d(x, s), so that d(x, S,) -+ d(x, S), as n --r co. 

(i) implies (iii). Th’ is o f 11 ows immediately from Theorem 3.2. 1 

Remark. Notable versions of Theorem 3.3 have been obtained by 
Beer [S] and Tsukada [203 in the context of closed, convex subsets 
of a reflexive Banach space (with additional structure) relative to set 
convergence in the sense of Mosco. 

Recall that X is locally compact if bounded subsets have compact 
closures. Let X, denote the one-point compactification of X, where cc is 
the point at infinity and X, = Xu {m }. The following is our selection 
convergence result for S = 4. Recall that U(4) = X. 



CONVERGENCEOFBESTAPPROXIMATIONS 119 

PROPOSITION 3.4. Suppose bounded subsets of X have compact closures. 
Let (S,} be a sequence of non-empty, closed subsets of X. Then the following 
are equivalent: 

(i) lim S, = fj, i.e., lim S, = { co } in X,m. 

(ii) lim d(x, S,) = a3, for all x E X. 

(iii) For each p in X, and each nearest-point selection {s,,> from the S, 
relative to p, the sequence {s,} is eventually outside every bounded 
(resp. compact) subset of X, i.e., s, -+ CC in X,. 

Proof Part (i) implies (iii) by (ii) of Lemma 2.1. 

(iii) implies (ii). Let XE X. Then by Lemma 2.1(i), for each n, there 
exists s, E S, such that d(x, s,) = d(x, S,). Since s,, + cc by hypothesis, for 
each r >O, there exists n, such that for n an,, s,,# B.,(r), i.e., d(x., s,,) > r. 
Consequently, d(x, S,,) + CD. 

(ii) implies (i). Let xElim sup S,,. Then there exists a subsequence 
{Snm} of {S,,} and a corresponding sequence {x,,} such that x,, E S,,, all 
m, and x, -+x, i.e., d(.u,,,, . x) -0. Let PE X. Then by the hypothesis, 

d(p, S,J + ~0, so that d(p, x,) -+ co. Since d( p, x) 2 d( p, x,) - d(x, x,), it 
follows that d( p, x) = co. Contradiction. Thus, lim sup S,, = 4 and hence, 
lim S,=f$. 1 

Remark. Part (iii) of Proposition 3.4 is consistent with (iii) of 
Theorem 3.3 since the point cc at infinity may be interpreted as “the unique 
point in 4 nearest p.” 

4. CONVERGENCE OF BEST APPROXIMATIONS FROM LINEAR VARIETIES 

Let X and Y be Hilbert spaces, with x E X, y E Y, and x, E X, y,, E Y,,, 
all n. Let A, A, be bounded linear operators from X into Y, all n. Consider 
the corresponding linear varieties S = {x E X: Ax = y}, and S, = {.x E X: 
A,x= y,}, n = 1, 2, . . . . In this section, we study convergence of linear 
varieties, as well as convergence of nearest-point selections (relative to the 
origin), in the presence of converging defining parameters. 

LEMMA 4.1. Suppose A,, + A untformly and AA* is invertible. Then 
A,A,* is eventually invertible. In this event, S # 4 and S,, # 4, eventually. 

Proof Let G denote the set of bounded linear operators on Y whose 
inverses exist and are bounded. Then G is an open set in the space of all 
bounded linear operators on Y equipped with the uniform topology, i.e., 
operator norm topology, and the mapping T -+ T-l is a homeomorphism 
of G [7, p. 584; 19, p. 1931. By hypothesis, A,A,T + AA* uniformly and 
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AA* E G. Hence, A,A,* E G, i.e., A,,A,* has a bounded inverse, and 
(AnA,*)-’ + (AA*)-’ uniformly, for large n. Moreover, A*(AA*)-‘y is an 
element of S and A,*(A,,A,T)-‘y,, is an element of S,,, for large n. 1 

THEOREM 4.2. Suppose AA* is invertible, A,, + A uniformly, and y,, -+ y. 
Then: 

(i) lim S,=S. 

(ii) The selection s,= A,*(A,,A,*)-‘y,, in S,, for large n, converges to 
the selection s= A*(AA*)-‘y in S. 

(iii) If A has closed range and A,, has closed range eventually, then the 
points s,,, s are points from the S,, S respectively, which are nearest to 0, and 
s,, + s. 

Prooj (i) Let x E lim sup S,. Then there exists a subsequence {SE,> of 
{S,} and a corresponding sequence {xk} such that xk E Snk, i.e., 

A,kxk = y,q> all k, and xk + x. To show x E S, we have 

IlAx- YII 6 IlAx-A,,xlI + IIAnp- ~nrll + IIY,,, - YII 

6 IIA - A,,ll I/XII + IlAnk= A,ixAl + II ~ni, - YII 

6 II.4 - A,,lI llxll + lIA,,lI llx - -xkll + II ~,q - YII, 

where the right hand side goes to zero, as k + co. Thus, lim sup S, c S. 
Next suppose that x E S, so that Ax = y. To show x E lim inf S,, by the 

proof of Lemma 4.1, we may let 

x, = A,*(A,A,*) - ‘( yn - A,x) +x, 

for large n. Clearly, x, E S,, for such n, and x,, + x because 

/Ix,,--4 6 llA,*ll II(A.A,*)-‘II Ilyn-Anxll 

6 llA,*ll IIM,A,*)-‘II Clly,-YII + IlAx-AAl, 
where the right side goes to zero, as n + co. Hence, S c lim inf S,. 

(ii) For convenience, let s,= A,*(A,A,*)-‘y,, for large n, and 
s= A*(AA*)-‘y. Clearly, s,ES,,, for such n, and SES. Also, 

/Is,--slI Q IIA,*(A,A,*)-‘Y,-A*(AA*)~‘y,ll 

+ IIA*(AA*)--‘y,-A*(AA*)- ‘~11 

G IIA,*(A,A,*)~‘-A*(AA*)~‘/I llynll 

+ lIA*(AA*)- ‘II llyn- YII, 

where the right side goes to zero, as n -+ co, i.e., s, -+ s. 
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(iii) If A and A, have closed ranges, then s and s, are the points in 
S and S,, respectively, which are closest to 0 [13, pp. 161-1621. 1 

Remarks. 1. Under the hypotheses of this theorem, parts (i) and (ii) 
guarantee existence of a convergent selection. However, s and s, need not 
be of minimum norm. 

2. If the A,, are required only to converge strongly to A, then the 
theorem is not true. We give a counter-example in Section 5 (Example 2). 

3. In the first part of the proof of (i) above, it suffices to assume A, 
converges strongly to A in order to conclude that lim sup S, E S. 

5. CONVERGENCE OF BEST APPROXIMATIONS FROM HYPERPLANES 

In this section we consider the convergence of closed hyperplanes in a 
Hilbert space versus the convergence of the corresponding sequence of 
points nearest the origin 0. It is likely that the results of this section can be 
obtained in Banach spaces which, along with their duals, are reflexive, 
strictly convex, and have Kadec norms (property (H) in [20]). We leave 
this pursuit to the interested reader. 

Recall the results and notation of Section 2. 

LEMMA 5.1. Let {H(a,)} b e a sequence of closed hyperplanes in the 
Hilbert space X not passing through the origin, where {a,,} is the corre- 
sponding sequence of non-zero defining elements of X. If 0 $ lim inf H(a,), 
then {a,,} has a weakly convergent subsequence in X. 

Proof Let r > 0. Suppose {a,,} is not eventually outside B,(r). Then 
there exists a subsequence {a,} of {a,} such that a,,E B,(r), all j. The 
Alaoglu Theorem [7] then guarantees a weakly convergent subsequence. 

Now suppose {a,} is eventually outside B,(r) for each r. Then /lznjl -+ cc 
necessarily. Let s, be the unique point in H(a,) nearest to 8. Of course, 
s, # 0, all n. Moreover, we have that a, = (l/ils,ll’)s, and lls,,ll = IJa,II -‘, all 
n, where 0 < I(a,lj < co. Hence, [Is,/1 + 0, i.e., s, + 8 in X. But then 
8~ lim inf H(a,), since s, E H(a,), all n. Contradiction. Thus, {a,,} must 
have a weakly convergent subsequence. 1 

The following theorem shows that the limit of hyperplanes is itself a 
hyperplane and moreover, the defining elements of the sequence converge 
weakly to the defining element of the limit. 

THEOREM 5.2. Suppose X is a Hilbert space and { H(a,)) is a <sequence 
of closed hyperplanes in X not passing through the origin. Suppose 
lim H(a,) = S, where S is a non-empty subset of X not containing 8. Then 
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there exists a # 8 in X such that S = {x E X: (x, a) = 1 }, i.e., S is a closed 
hyperplane H(a) in X, and (a, } converges weak1.v to a. 

Proof: Since 0 $ S, necessarily 0 $ lim inf H(a,). Hence, by Lemma 5.1, 
there exists a in X and a subsequence { aH,} of {a,} such that {a,} 
converges weakly to a. Define H = {x E X: (x, a) = 11. Note that if a = 0, 
then H = 4. We next show that S= H. 

Let x E S. Then x E lim inf H(a,,,), so that there exists x, E H(a,), all j, 
such that x, -+ X. Then (x,, a,,,) 1 = 1, all .j, and 

I1-(~~,a>l=l(x,,a,,i)-(~~,a)l 

d l(xi, a,,) - <x, a,,,)( + 1(x, an,> - l-u, a>1 

=I(x,--X,a,,,)I+I(.~,a,,)-(x,a)l 

6 lbi-4 Ila,,I/ + I(4 a,,,)- (x3 a>l, all j, 

where (x, arl,) -+ (x, a) and x, -+ x, as j -+ ry3. Also, lla,,I/ is bounded 
[ 11, p. 2001. Thus, (x, a) = 1, i.e., XE H. Hence, SCH. 

Conversely, since H # 4, we have that a # 0. Let XE H, so that 
(x, a) = 1. Define 

and 

q= lllla,,,llZ(l - (A a,,,>) 

x, = x + crja,,, all j. 

Then x, E H(a,), since (x,, a,*,) = 1, all j. Next we show that {xi} 
converges to x in X. We have 

Ilxj-xll = lgjl Ila,,/I 

= 11 - Cex, a,,,)lllla,,fll, all j. 

If { Ila,,ll } is not bounded away from 0, then there exists a subsequence 
(which we may assume is { Ila,, /I }) such that Ila,,II + 0, i.e., a,, + 0, as 
j+ co. Contradiction, since a # 8. Thus { IJa,J } is bounded away from 0, 
i.e., there exists E > 0 such that Ila,,/I 3 E, all j, which implies that 

IIXj-XII G (l/E) I1 - (4 %,>I, all j, 

which converges to 0, since x E H. Consequently, 

i.e., HE S. 

x E lim inf H( a,,) = lim H( a,,) = S, 



CONVERGENCE OF BEST APPROXIMATIONS 123 

Thus, H = S, where H = H(a), for a # 8. Hence S is a closed hyperplane 
H(a) in X not passing through 8. 

Finally, we show that {a,} converges weakly to a. This follows from 
(1) * (2) of Theorem 4.1 of [2]. We give an alternate proof in this context. 

Let x E X and consider the sequence ( (x, a,,)}. Let { (x, a,,,) } be any 
subsequence of { (x, a,)}, so that {u,} is a subsequence of (a,,}. 
Necessarily, S= lim H(u,,,). Applying the previous part of this proof to 
{H(u,,)}, we see that there exists VEX, b #O, and a subsequence {a,+} of 
{u,) such that {u,,~} converges weakly to 6. Also, 

S={XEX: (x,b)=l}. 

But S is uniquely determined by a, i.e., a = b, so that {cl,+, } converges 
weakly to a. In particular, ( (x, u& } is a subsequence of ( (x, a,,) } which 
converges to (x, a). Consequent!y, {(x, a,)} converges to (x. a) [6, 
p. 881. Since x is arbitrary, (a,} converges weakly to a. 1 

We have the following converse to Theorem 5.2. 

PROPOSITION 5.3. Let X be a Hilbert space. Suppose {a,} is a sequence 
in XunduEX. Zf{u,l} converges weakly to a, then lim H(u,,) = H(u), where 
H(u)=4 ifa=@ 

Proof Let XE H(u), so that (x, a) = 1. Let ~1, = (x, a,), all n, so that 
c(, -+ 1, as n + co. In particular, cz,, # 0, eventually. Define x, = u,,; ‘x, for 
large n, so that x, E H(u,), all such n. Necessarily, x, + x, as n -+ a3. Hence, 
x E lim inf H(u,), i.e., H(u) z lim inf H(u,). 

Now, let x E lim sup H(u,). Then there exists a subsequence {u,,,} of (a,} 
and a corresponding sequence {x,} such that x, E H(u,,), i.e., (xi, a,,) = 1, 
all j, and xj + x. Arguing as in the proof of Theorem 5.2, this may be 
shown to imply that (x, a) = 1, so that XE H. Thus, lim sup H(u,)G 

H(a). I 

COROLLARY 5.4. Let X be a Hilbert space, {a,,} c X, a E X, a # 8. Then 
lim H(u,) = H(u) if and only if {a,} converges weakly to a. 

Proof This follows from Theorem 5.2 and Proposition 5.3. It also 
follows from Corollary 4.2 of [2]. 1 

Remark. In Corollary 5.4, a, -+ a if and only if lim H(u,) = H(Lz) in the 
sense of Mosco. See Theorem 5.1 and Corollary 5.5 of [Z]. 

It is natural to ask for conditions under which {a,} converges to a 
(strongly) in Theorem 5.2. The next result shows that this is equivalent to 
convergence of the best approximations (to the origin). 



124 SCHOCHETMAN AND SMITH 

PROPOSITION 5.5. Let X be a Hilbert space. Suppose (a,} and a are 
non-zero elements of X with s,, (resp. s) the nearest-point in H(a,) (resp. 
H(a)) to 8, all n. Assume {a,,} converges weakly to a. Then the following are 
equivalent : 

(i) {a,} converges to a. 

(ii) (s,2} converges to s. 

(iii) {sn} converges weakly to s. 

(iv) (Ila,,// } converges to Ilali. 

(v) t IM 1 converges to I/~/I. 
Proof: From Section 2, we see that (i) implies (ii) and (iv) is equivalent 

to (v), while (ii) implies (iii) in general. Thus, it suffices to show that (iii) 
implies (iv) and (iv) implies (i). 

(iii) implies (iv). Suppose {s,} converges weakly to s. Let XEX be 
such that (x, s) #O (for example, x=s). Then (x, s,) + (x, s) and 
hence, (x, s,,) # 0, eventually. By the results of Section 2, (x, s,) = 
(1/lla,I12K~, a,> and <x, s> = (Wl12Kx, a>, so that 

(x, a,,) ‘j2 
lMl= ~ [ 1 (x3 s,> 

and 

(x, a) ‘,‘2 
llall = cx, sj . [ 1 

Hence, by our hypotheses, { ljanII } converges to llall. 

(iv) implies (i). Suppose { llanI( } converges to Ilalj. Then 
lim sup llanll < ilall. Since (a,} converges to a weakly, it follows that {a,,} 
converges to a by [ 11, p. 2061. 1 

EXAMPLE 1. Let (H(a,)} be a sequence of (closed) hyperplanes in R” 
not passing through the origin, i.e., a,, E R”, a, # 8, all n. Let s, # 8 denote 
the unique point in H(a,) nearest to H(a,), all n. Suppose S is a non-empty 
subset of R” not containing the origin such that lim H(a,) = S. Then S is 
also a hyperplane not passing through the origin (Theorem 5.2). Moreover, 
if s is the unique point in S nearest to 8, then s, --t s, as n -+ co (Proposi- 
tion 5.5). 

EXAMPLE 2. Suppose X is a Hilbert space, {a,} is a sequence in X which 
converges weakly, but not strongly, to a in X, a # 13. Necessarily, a, # 0 
eventually. Then, by Proposition 5.3, lim H(a,) = H(a). But, the nearest- 



CONVERGENCEOFBEST APPROXIMATIONS 125 

point selection {s,,} from the H(a,) relative to 8 does not converge to the 
point s in H(a) nearest 8, by Proposition 5.5. Thus, it is easy to find 
examples where lim H(a,) = H(a) but s, f* s. 

Alternately, the sequence of bounded linear operators A,,(x) = (zx, a,,), 
x E X, converges strongly but not uniformly to the bounded linear operator 
A(x) = (x, a), XE.X. (Recall Theorem 4.2.) Note that AA* is invertible 
and, for each n, y, = 1 and A, has closed range; similarly for y and A. 
Thus, strong convergence of A,, to A is not sullicient in Theorem 4.2. 

The next result gives a sufficient condition for strong convergence, as 
well as nearest-point convergence, to hold in Theorem 5.2. 

PROPOSITION 5.6. Let the notation be as in Proposition 5.5. Suppose 
lim sup (1 a, 11 < I/ a 11. Then the following are equivalent : 

(i) lim H(a,) = H(a). 
(ii) {a,} converges weakly to a. 

(iii) {a,} conuerges to a. 

(iv) (s,,} converges to s. 

Proof: Part (iii) is equivalent to (iv) by the results of Section 2, and (ii) 
is equivalent to (iii) by [ll, p. 2061. Part (i) is equivalent to (ii) by 
Corollary 5.4. 1 

6. APPLICATIONS 

In this section, we give two applications of our convergence results. The 
first is an extension to the case of unbounded variables of an application 
given in [lS]. 

Solving Systems of Inequalities 

Consider an infinite system of inequalities 

g;(x,, . . . . x,) d b;, i = 1, 2, . . . . 

where x = (xi, . . . . x,) E R”; i.e., each xj is an unbounded real variable. We 
assume the gi are convex and continuous, all i. Define 

S,= {xER”: g,(x)<b,, i= 1, . . . . n>, n = 1, 2, . 

Then each S, is the closed, convex subset of R” satisfying the first n 
inequalities. If we define 

S= {SERB: g,(x)<b,alli}, 

409. 166: l-9 
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then S is the closed, convex subset of R” satisfying all the inequalities. We 
assume S# 0. Our objective is to approximate a point in S. Observe that 
s=n,z, s,,, s,,+,- = S,, so that S, # 4, all n. Moreover, lim S,, = S [ 12, 
p. 3393 and U(S) = R” = U(S,), all n. 

THEOREM 6.1. Suppose S # 4. Let p be any point in R”. Let s, (resp. s) 
be the unique point in S, (resp. S) nearest to p, n = 1, 2, . . . . Then the 
sequence {s,,} converges to s. 

Proof Apply Theorem 3.2. fl 

Approximating Best Approximations 

Suppose S is a non-empty, convex body of R”, that is, a convex subset 
of R” which is the closure of its interio So, so that So is also non-empty. 
Let p be any point in R”’ and consider the problem of approximating the 
unique point in S which is nearest to p. To do this, we employ the 
following grid approximation technique. 

For each n, let 

Z, = {j/n : j is an integer}, 

G,= fj Z,, 
h=l 

and define 

S,=SnGG,nB,(n). 

Then each S, is a finite, discrete subset of S. In particular, for each 
k = 1, 2, . . . , we have S2k+ I c Szk. The S,, are not nested however. 

LEMMA 6.2. If S is a non-empty convex body, then lim S, = S. 

Proof Since S, G S, all n, it follows that lim sup S, c S. Conversely, let 
x E So, which is open. Let V be a bounded open, neighborhood of x such 
that V G So. Suppose n, is sufficiently large such that VC B,(n), for n 3 n, . 
Choose E > 0 sufficiently small so that the m-dimensional open cube W 
around x of side E satisfies Wg V. Let n2 2 n, be such that l/n < ~12, for 
n > n,. It is not difficult to see that for each j= 1, . . . . m and n = 1, 2, . . . . 
there exists an integer ky such that k;/n 6 x, d (ky + 1 )/n. In addition, for 
n3n,, we have 

Iky/n -x, 1 <c/2, j= 1 , . . . . m. 

Hence, for n 3 n2, the point xn defined by 

xn = (kqln, k;/n, . . . . k:,/n) 
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belongs to W. Consequently, 

x*~VnG,nB,(n)cVnS,, for n>n,, 

i.e., the S, eventually intersect an arbitrary neighborhood of x. This implies 
x E lim inf S,, so that So c lim inf S,, in general. But lim inf S, is closed 
[9, 123, so that S c lim inf S,, which completes the proof. 1 

Remarks. The S, are eventually non-empty. This follows from the proof 
of Lemma 6.2. Since they are also finite, there exists a point in S,, which is 
nearest to p, for n sufficiently large. 

THEOREM 6.3. Suppose S is a non-empty convex body, p E R", and the S,, 
are as above. Let s, be any point in S,, nearest to p and s the unique point 
in S nearest to p. Then the sequence {s,} converges to s. 

ProojI Apply Theorem 3.2. 1 
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