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Finite element methods are presented which include discontinuity-capturing operators to accurately 
solve elastodynamics problems exhibiting sharp gradients in their solution, e.g., wave propagation. The 
formulation involves finite element discretization of the temporal domain as well as the usual finite 
element discretization of the spatial domain. Linear least-squares terms are included that enhance the 
stability of the space-time finite element method. Nonlinear discontinuity-capturing operators are 
presented that result in more accurate capturing of wave fronts in transient solutions while maintaining 
the high-order accuracy of the underlying linear algorithm in smooth regions. Stability of the 
discontinuity-capturing formulation is proved and a convergence proof is given for a particular choice 
of the discontinuity-capturing operator. Numerical results are presented that demonstrate the effective- 
ness of the proposed discontinuity-capturing operators for elastodynamics. 

1. Introduction 

The development of algorithms to solve problems that exhibit discontinuities (shocks) or 
sharp gradients in the solution principally has focused on problems in fluid mechanics. 
Numerous problems in solid mechanics also require accurate capturing of discontinuities, e.g., 
wave propagation. The classical approach towards capturing discontinuities is to introduce a 
shock viscosity in an algorithm. Since the fundamental work of Von Neumann and Richtmyer 
[ 11, numerous shock viscosities have been proposed within the finite difference community for 
computational fluid mechanics. While successful algorithms have been developed for one- 
dimensional flows, extending these formulations to the multidimensional case has been a 
major challenge for the last 40 years. Christensen has recently developed an effective 
multidimensional viscosity called the flux-limited shock viscosity. Benson [2] has extended the 
flux-limited shock viscosity to solve solid mechanics problems using a multidimensional 
Lagrangian formulation on an arbitrary mesh. (A good overview of shock viscosities using the 
finite difference approach is given in [2].) 

New finite element methods for computational fluid dynamics have been developed that also 
are capable of accurately capturing shocks. The work of Hughes et al. [3] and Hughes and 
Mallet [4] introduced effective shock-capturing operators within the context of finite element 
formulations for fluid mechanics. Johnson and Szepessy [5-81 and Galego and Dutra do 
Carmo [9, lo] have further advanced the development of shock-capturing operators for 
first-order hyperbolic systems. A general framework for the design of discontinuity-capturing 
operators has been developed by Shakib [ll] for the Navier-Stokes equations. One advantage 
of these finite element methods, compared to finite difference methods, is that from the outset 
they are formulated for multidimensional problems. Also, the finite element formulations are 
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more amenable to mathematical analysis, e.g., Johnson and Szepessy [5-81 have proved 
convergence of their discontinuity-capturing formulations for Burger’s equation. Their studies 
are interesting as they show that discontinuity-capturing operators are needed to prove 
convergence for problems exhibiting sharp gradients. 

This paper presents a finite element formulation for solving elastodynamics problems; 
discontinuity-capturing operators are included to accurately resolve wave fronts. The underly- 
ing foundation of the proposed formulation is the space-time finite element method in which 
both the temporal and spatial domain are discretized using finite elements. Linear least- 
squares terms are included that enhance the stability of the space-time finite element method. 
The space-time Galerkin/least-squares method for elastodynamics was first presented in [12]; 
stability and convergence of the formulation was proved for arbitrary polynomials in space and 
time. For wave propagation problems, nearly oscillation-free solutions are computed using the 
space-time Galerkin/least-squares method; a few oscillations occur near the wave front. The 
nonlinear discontinuity-capturing operators presented in this paper are designed to control 
these oscillations without degrading the accuracy of the underlying Galerkin/least-squares 
method in smooth regions of the solution. 

In Section 2, a brief review of the equations of linear elastodynamics is given. The 
space-time Galerkin/least-squares method is presented in Section 3. In Section 4, the design 
of discontinuity-capturing operators is discussed and two choices for these operators are given. 
A stability proof and derivation of error estimates for a particular choice of the discontinuity- 
capturing operator are presented in Section 5. Numerical results are given in Section 6 to 
demonstrate the effectiveness of the proposed discontinuity-capturing algorithms. Finally, 
conclusions are drawn in Section 7. 

2. Classical linear elastodynamics 

Consider an elastic body occupying an open, bounded region 0 C Rd, where d is the 
number of space dimensions. The boundary of R is denoted by r. Let rg and r, denote 
non-overlapping subregions of r such that 

I-=r,U&. (1) 

The displacement vector is denoted by u(x, t), where x E fi and t E [0, T], the time interval of 
length T > 0. The stress is determined by the generalized Hooke’s law: 

a( Vu) = c * vu (2) 

or, in components, 

uii = c z,klUk.l ? 

where 1~ i, j, k, 1 d d, uk, = auk/ax,; summation over repeated indices is implied. The elastic 
coefficients cijk, = C,,(X) are assumed to satisfy the following conditions: 

‘ijkl = Cjik, = Cjjlk (minor symmetries) , (4) 

‘ijkl = ‘kli, (major symmetry) , (5) 

ci~k/(ci,$kI > 0 ‘$11 = $ji # O (positive definiteness) . (6) 
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The equations of the initial/boundary-value problem of elastodynamics are 

pii =V. @(Vu) +f on Q = 0 x IO, T[ , (7) 

u=g on Yg = Zg X IO, T[ , (8) 

n * a@) = h on Y, = r, x IO, T[ , (9) 

zi(x, 0) = u,(x) for xE 0, (11) 

where p = p(x) > 0 is the density, a superposed dot indicates partial differentiation with 
respect to t, f is the body force, g is the prescribed boundary displacement, h is the prescribed 
boundary traction, u0 is the initial displacement, u,, is the initial velocity and n is the unit 
outward normal to Z. The objective is to find a u that satisfies (7)-(11) for given p, c, f, g, h, 
u. and u,. 

REMARK. The form of the generalized Hooke’s law, (2), was chosen as it enables a 
generalization of the proposed finite element formulation for nonlinear elastodynamics where 
the first Piola-Kirchhoff stress, P, replaces u (see [13]). 

3. A space-time Galerkinheast-squares finite element formulation 

3.1. Preliminaries 

Consider a partition of the time domain, Z = IO, T[, having the form: 0 = t, < t, < . - * < 

t, = T. Let Z, =]tn_l, t,[ and At,, = t, - t,_,. Referring to Fig. 1, the following notations are 
employed: 

Q, = fi? X I,, , (12) 

Y, = r x z, ) (13) 

(14) 

Q, is referred to as the nth space-time slab. 
Let (n,,), denote the number of space-time elements in Q,; Q”, C Q, denotes the interior of 

the eth element; Yz denotes its boundary. Let 

Q; = “ij’ Q; (element interiors) , (16) 
e=l 

Yz = ?l’ YE - Y, (interior boundary) . (17) 
e=l 

Inner products over domain D are denoted by (wh, u”) D ; the strain-energy inner product is 
denoted by a(., .)n (a(., .)a, is the strain-energy inner product over the nth space-time slab). 



412 G. M. Hulbert, Discontinuity-capturing operators 

Q 

Fig. 1. Illustration of space-time finite element notation 

Assuming the function w(t) to be discontinuous at time t,,, the temporal jump operator is 
defined by 

Uw(~, III = w(C ) - w@, > 7 (18) 

where 

w(t,‘) = hYl* w(t, + E) . (19) 

The argument x has been suppressed in (18), (19) to simplify the notation. 
Consider a typical space-time element with domain Qe and boundary Y’. Let n denote the 

outward unit normal vector to Y’ n {t} in the spatial hyperplane Qe fl {t}. Consider two 
adjacent space-time elements. Designate one element by + and the other by -; let n+ and n- 
denote the spatial unit outward normal vectors along the interface (see Fig. 2). To simplify the 
notation, the argument t is suppressed. Assuming the function w(x) is discontinuous at point x, 
the spatial jump operator is defined by 

[w(x)] = w(x’) - w(x_) ) (20) 

where 

w(x’) = Kr& w(x + En) ) (21) 

n=n+=-n-. (22) 

The trial displacement space, 5fh and the weighting function space, cCrh, include kth-order 
polynomials in both x and t. The functions are continuous on each space-time slab, but they 
may be discontinuous between slabs. The collections of finite element interpolation functions 
are given by 
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Fig. 2. Illustration of spatial outward normal vectors. 

Trial displacements 

P={uhlu”E(%~@, 

Displacement weighting functions 

a,))‘, uhiQE E <~,“(Q~>>“, uh = g on $} . (23) 

Th={~hIw”E(~o(~~Q,))d,Wh(p.~(~*(a:))d,~h=Oon Yg}. (24) 

where Pk denotes the space of kth-order polynomials and ye0 denotes the space of continuous 
functions. 

3.2. Variational equations 

The objective is to find uh E .5fh such that for all rvh E ‘Vh , 

BGLS(wh, uhjn = J&,,(w~), , n = LT. . . , N, 
where 

B,,,(wh, ~4~)” = (W”, piih)on + a(tih, u~)~, + (L?wh, p-17=Zuh)Qz 

+ (n +r(Vwh)(411, P-‘sn *b(W(r>ll),, 

+ (n * a(Vwh), p-h * a(vuh))(yh,, 

+ (wh(t,‘-l>, pl;h(t,‘_l))n + a(whkX 

L,,,(Wh), = (tih, f)Q, + (Gh, h),yh,n + WWh? P-w@ 

(25) 

(26) 

+ (n - a(Vwh), p-lsh)(y*)n + (w”(t,‘_,), Pih(L))n 

+ a(w”(L), uhLNn 7 (27) 
in which 

2eu = pii -v* u(Vu) . (28) 

With 7 = s = 0, the formulation is a time-discontinuous Galerkin method. The three terms 
evaluated over Q, act to weakly enforce the equation of motion, (7), over the space-time slab; 
terms evaluated on (Y,), act to weakly enforce the traction boundary condition, (9), while the 
terms evaluated over 0 weakly enforce continuity of displacement and velocity between slabs 
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II and IZ - 1. The matrices r and s are called the intrinsic time scale matrix and slowness 
matrix, respectively (having respective dimensions of time and slowness); both are d x d 
matrices. The corresponding least-squares terms add stability to the underlying time-discon- 
tinuous Galerkin method without degrading its accuracy. 

4. Discontinuity-capturing operator design 

In general, least-squares operators of the form (%#, ~-‘r-Fez?)of provide control over a 
particular component of solution gradients, i.e., 2uh. The purpose of the discontinuity- 
capturing operator is to provide control over all components of the solution gradients. In the 
context of elastodynamics, first derivatives of the solution are already under control; the 
least-squares and discontinuity-capturing operators provide control of the second derivatives 
iih and Auh, where Auh =V-Vuh. Defining an operator, 

v,, = 

-(a2/at2) I, 

(a’/axf) I, 

(a2/axi) I, 1 
I . (29) 

where I, is the d x d identity matrix, we could attempt to control the second derivatives by 
including terms having the form Vx2uh -Vx2uh. The resultant operator is dimensionally inconsis- 
tent and thus cannot be implemented in the given form. Dimensional consistency could be 
achieved by replacing V,, with 

q2 = 

- (a2/at2) I, 

c2 (a2/aX;) Id 

c2 (a2/axi) Id 

,c2 (a*/ ax;> Id, 

where c is the dilatational wave speed. 
An alternative solution to the difficulty of dimensional consistency is to design the 

discontinuity-capturing operator to control local second derivatives of the solution. The local 
gradient matrix is defined by 

V&Z = 

r(a2ia& 

(a’m3 
(a”#) 

-(a’~a~~) 

Zd 

Zd 

Zd 
7 

Zd- 

(31) 
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where tab, tl, . . . , &, are the element local coordinates. The discontinuity-capturing operator 
is designed to control V,,u” -Vtah and has the form 

I Q’ 4Vtzwh Tp” dQ , 
n 

(32) 

where 19 2 0 and is called the viscosity coefficient. Note that the discontinuity-capturing 
operator is defined over each element of a space-time slab. The discontinuity-capturing 
formulation is given by 

where 
B(Wh, Uh)n = L(Wh), ) Iz = 1,2,. . . ) N ) (33) 

B(wh, u~)~ = B,,,(wh, uh),, + go 8Vgzwh +uh dQ , 
I n 

UWhL = ~GL,(WhL Y 

(34) 

(35) 

To retain the accuracy of the underlying Galerkin/least-squares formulation, the discon- 
tinuity-capturing operator must also satisfy consistency requirements; this may be accom- 
plished by letting the viscosity coefficient be a function of the residual, i.e., 

6 =f(Rh) , (36) 
where 

Rh=JZuh-f. (37) 

The viscosity coefficient should be proportional to some power of the residual; the rationale 
for this design condition is as follows. If the solution is smooth, the solution gradients and 
residual are small; thus, the viscosity coefficient should also be small so that the formulation is 
essentially equivalent to the Galerkin/least-squares method. Conversely, in regions where the 
solution gradients are large, the residual also is large and the viscosity coefficient should be 
large for the discontinuity-capturing operator to be effective. Two choices for the viscosity 
coefficient are presented in this paper: the ‘quadratic’ and ‘linear’ viscosity coefficients. 

4.1. Quadratic discontinuity-capturing operator 

The quadratic discontinuity-capturing operator is obtained by letting 

6= (Rh.p-‘rRh) 

(V6ZUh *Vg*uh) ’ 
(38) 

where T is the intrinsic time scale matrix of the GalerkinAeast-squares formulation. Then, the 
quadratic discontinuity-capturing operator is given by 

(Rh - p-%Rh) 

(Vg2uh *v6zuh) 
Vfzwh 4’ph dQ . (39) 

Galego and Dutra do Carmo [9] first developed a quadratic discontinuity-capturing operator 
for first-order advective-diffusive problems. Shakib [ll] generalized the quadratic discon- 
tinuity-capturing operator for first-order systems by using local gradients. 
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4.2. Linear discontinuity-cupturi~g operator 

The linear discontinuity-capturing operator is defined by choosing 

The linear discontinuity-capturing operator is given by 

(41) 

We emphasize that the discontinuity-capturing formulations are nonlinear since the viscosity 
coefficient depends on the residual. The labels ‘linear’ and ‘quadratic’ were chosen because of 
the similarity of the corresponding discontinuity-capturing operators to the linear and quad- 
ratic artificial viscosities used in finite difference methods. 

In the context of fluid dynamics, the discontinuity-capturing operators of Hughes et al. [3] 
and Hughes and Mallet [4] are variants of linear discontinuity-capturing operators. Alternative 
linear discontinuity-capturing operators have been developed by Johnson and Szepessy [5-S]. 
Their work is particularly interesting in that it includes mathematical analyses of the resultant 
finite element formulations that demonstrate the need for the discontinuity-capturing 
operators for nonlinear problems. 

5. Stability and convergence analyses 

The discontinuity-capturing operators are designed to increase the stability of the GalerkinI 
least-squares method near sharp gradients in the solution without degrading accuracy in 
smooth regions. Thus, one would like to prove that the discontinuity-capturing formulations 
are stable and have the same convergence rates as the Galerkin/least-squares formulations. 

Stability and convergence of the Galerkin/least-squares method, (25), as measured in the 
jjI*Ijl norm, were proved in [12]; the assumptions, pertinent steps and results of these proofs 
are repeated here as they are needed to prove stability and convergence of the discontinuity- 
capturing formulation. 

By summing (25) over the time slabs, 

where 
43,S(Wh~ u”) = &,,(Wh) , (42) 

B,,,(Wh, u”) = 5 {(W”, f3iih)Q, + a(tih, Uh)Q, + (.Ywh, p-wUh)Q~ 
fl=l 

+ (lifh(O+), ptih(o+))o f a(w”(O’), uh(o+))Jz > (43) 
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The norm associated with (42) is defined by 

N-l 

+ (u~m” >wn * n 

(44) 

+ (a(Vwh)* n, p-‘su(vwh)- n)(yh,,> 7 (45) 

where, for linear elastodynamics, the total energy is defined as 

z?(w) = $(G, pW), + &z(w, w)fJ . (46) 

The stability condition for the Galerkin/least-squares method is 

llIWhll12 = ku(Wh, w”). (47) 

A sufficiently smooth exact solution of (7)-(11) and (3) satisfies the variational equation 

&l_s(wh~ 4 = bxs(wh) * 

Thus, for all wh E ‘Vh , 

(48) 

&,,(wh, 4 = 0, (49) 
where 

e=uh-u. (50) 

Equation (49) is an appropriate consistency condition for (42). 
Let 17~ E Yh denote an interpolant of u. The error, e, can be written as 

e=eh+r), 
where 

eh = (u” - IIu) E Yfh , 

q=nu-u. 

(51) 

(52) 

(53) 

An appropriate space-time mesh parameter is given by 

h = max{c At, Ax} , (54) 
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where c is the dilatational wave speed and Ax and At are maximum element diameters in space 
and time, respectively. 

THEOREM 1 (Galerkinlleast-squares error estimates). Assume 7 and s satisfy 

cg d llsll =s c4, (56) 

where c,, c,, c3 and c4 are positive constants (c, > c, , c4 > c3). Assuming u E (Hk+‘( Q))d, the 
interpolation error, q, satisfies 

N 

c (vj, p~-‘i&~ d c(u)h2k-’ , 
n=l 

i (cYq, ,&2?~&~ d c(u)h2k-1 , 

n=l 

(57) 

(58) 

(59) 

li {(n * lbP7>(4D7 P -‘sn . lbm>(4n>,~ 
n=l 

+ (n * 4ww7 P -‘HZ - a(V~)(x))o,,} d c(u)h2k-1 , 

WdT-1) + WdO+)) 

N-l 

+ x1 { %( T&, >I + %( rl(t,+ I>> d +w-’ 7 

where c(u) is independent of h. Then 

(60) 

(61) 

lllel112 d c(u)h2k-1 . 

PROOF. The basic steps of the proof proceed as follows: 

1114112 = &dehy e”> (by (47)) 

= &,,(eh7 e - 4 (by (51)) 

= -4dehy 7) (by (49)) 

s Ih_,(eh~ ~111 

c i llleh1112 + c(u)h2k-1 , 

(62) 

(63) 

where the steps to obtain the last line of (63) have been omitted. From the interpolation 
estimates, (45), and the triangle inequality 

1114112 s 2111eh Ill2 + 2111 rllll s Wh2k-1 ) (64) 

which completes the proof. Cl 
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Stability and convergence of the discontinuity-capturing formulation are proved in the [\I- 111 

norm, (45) Summing (33) over the time slabs, 

B,,(uh; Wh, 2) = 
where 

B,,(zP; Wh, U”) = 

(65) 

(66) 

~DCW) = L-,,W) . (67) 

Since the discontinuity-capturing terms are positive-semidefinite, the stability condition for 
the discontinuity-capturing formulation is easily obtained using (47) and (66); the result is 

III Wh)l12 6 B,c(z& Wh, w”) . (68) 

Error estimates are more difficult to obtain than the stability condition; clearly, the 
convergence proofs require an explicit form of the viscosity coefficient. The principal difficulty 
is showing that the discontinuity-capturing operator is sufficiently small for problems having 
smooth solutions. For the quadratic discontinuity-capturing formulation, we shall prove that if 
the solution converges at a given rate then it will converge at the optimal rate. Another 
interpretation of this restriction on the proof is that the residual is assumed to be bounded 
from above by certain powers of the mesh parameter, h. These results are useful in that they 
provide a measure of the smoothness required to prove convergence although the restriction 
on the residual is more stringent than desired. Numerical results presented in Section 6 
demonstrate that both the linear and quadratic discontinuity-capturing formulations achieve 
the same rates of convergence as the GalerkinIleast-squares formulation. 

THEOREM 2 (Quadratic discontinuity-capturing error estimates). Assume (.55)-(61) hold. 
Assume the following seminorm equivalences and inverse estimate hold: 

c,h41wI; s (V,zw, Vez~)aX d c2h4/w(; , (6% 

44: s I I g(w) dts c,lwl: , ” 

Iwl; d ch-*[WI; , (71) 

where c, c, , c2, cg and c, are positive constants (c, > c, , c, > c,); I w( 1 and I WI 2 are the H1 and 
H* seminorms, respectively. Finally, the residual is assumed to be bounded by 

max ( max 
n=l,2,. ,N t-=1.2,. ,(n,,), 

(m$Rh * p-l~k’))) d ch* . (72) 

Then 
lllelll s c(u)h2k-1 . (73) 

That is, the quadratic discontinuity-capturing formulation converges at the same rate as the 
Galerkin lleast-squares method. 

PROOF. Before proceeding with the proof, we note that (72) may be expressed as 
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max ( max 
n=l,Z,. ,A’ e=l,Z.. ,(?I,,), 

(max(Ze - p-‘TLfe))) S ch* . 
Q; 

(74) 

Integrating the expressions on both sides of (74) over Qz and summing over the time slabs 
yields 

N 

c (Ze, p-‘rze)Q; G CT Vol h2 , 
n=1 

(75) 

where Vol = In dR. In words, (75) places a restriction on the applicability of the proof by 
requiring that the solution converge in the seminorm (L?‘e, p-‘TZ’e),r at least at O(h*). Note 
that (75) is independent of the order of the displacement interpolation, k. 

Derivations of inverse estimates similar to (71) may be found in [14]. 
The following estimate is needed in the proof: 

V,*(Ih) -V,2(Ih) 

(V,,u” V,,u”)’ 
d ch-4. (76) 

This estimate is relatively easy to prove provided that Vg:uh .V,ZU” is bounded away from 
zero. Such a check is implemented in the algorithm and so it may be assumed to be enforced. 
It is straightforward to show that the numerator is bounded since nu = 3 + u. The h4 factor is 
obtained by converting the local (5) derivatives to global (x) derivatives. 

Using (48)-(53) and (65)-(67), 

BDC(uh; eh, e”) 

= B,,,(eh, eh) + n., fQz 3(Rh)Vt?eh mV5Zeh dQ 
” 

= B,,,(eh, uh - flu) + i J Q~ 6(Rh)V6zeh vV~Z(U” - 17~) dQ 
n=l ” 

= B,,,(eh, u”) + i 
I 

Qz 8(Rh)Vgzeh .Vg2uh dQ 
n=l n 

- %,,(eh, nu) - n$l lQZ fi(@)V& .V,z(nu) dQ 
n 

= &c(eh) - &s(eh, nu) - a$1 IQZ fi(Rh)Vgzeh V.#U) dQ 
n 

= BGLS(eh, u - Du) - n$l IQ1 6(Rh)Vt2eh .V,2(lIu) dQ 
n 

= -&dehy rl) - n$, jQs 6(Rh)VCzeh *V,2(flu) dQ . 
n 

Using (68) and (77), 

(77) 

lllehll12 4 BGLs(ehy e”> 

+I5 I Qz fi(Rh)Ve2eh *Vezeh dQ 
n=l ” 
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From the proof of Theorem 1, 

I&&‘, 41 s ~llVlll* + Wh2k-1 . 

Substituting (38) into (78), the remaining term to be bounded is 

(Rh - p-17Rh) 

(v,,u” +u”) 
VC2eh *V,,(IIu) dQ 

421 

(78) 

(79) 

(80) 

Using (69)-(72) and (76), 

(Rh - p -'7Rh) 

(+uh *+uh) 
Vgzeh *V,,(IIu) dQ 

4 ; (Rh, P-%R~)~; + 2 
II 

(Rh * ‘-lTRh) 
Q: (V6zzfh +rch)’ 

(V6Zeh *V,z(IIu))’ dQ / 

+2 (Rh * p-lrRh) tVezeh 

(V52uh *Vfmh)2 
.VC,eh)(Vt,(17u) *V,~(nu)) dQ 

S t (Zeh, pP1zYeh) Q:+ +hj,p-'~~~)Q;+ c %(e") dl. (81) 

Summing over the time slabs, 

The first term on the right-hand side of (82) can be subsumed by the left-hand side of (78), 
while the second term is bounded from above by c(u)h2k-1 using the interpolation error 
estimate (58). Thus, 

lljeh Ill2 < c(u)h2k-1 + gl c i iiT dt . (83) 
n 



422 G. M. Hulbert, Discontinuity-capturing 

Using a Gronwall inequality [15] (also see [S]), 

]]]eh]]12 d C(U)P’ . 

Finally, using (64) and (84)) 

lllell12 s C(U)P’ . 

0 

operators 

(84) 

(85) 

Thus, provided that (72) holds, the quadratic discontinuity-capturing formulation converges 
optimally; that is, at the same rate as proved for the GaIerkin/least-squares formulation. 

If we restrict k = 2, then optimal convergence can be proved using a less restrictive bound 
than (74), i.e., 

max ( max 
n=1,2 ,.... N e=1.* ,.... (n,,), 

(max(Ze - p-‘T-Ye))) s C . 
a; 

Q-36) 

Optimal convergence is proved by obtaining bounds on the difference between solutions 
computed using the Galerkin/least-squares and discontinuity-capturing formulations. If (86) 
holds, then it can be shown that 

Ill& - &sll12 =s Ch3 ) (87) 

where z& and u&s are the solutions computed using (33) and (25), respectively. Thus, using 
(62) and (87), 

Ill& - 4112 = III& - & + &s - 4112 
~2lll& - &sll12 + 2lll& - 4112 
ach3. (88) 

6. Numerical results 

To demonstrate the performance of the discontinuity-capturing formulations, we consider 
the impact against a rigid wall of a one-dimensional, homogeneous elastic bar (see Fig. 3). 
Initially, the bar is moving with a uniform speed; the left end of the bar then impacts the rigid 
wall. This generates a compressive stress wave in the bar that starts at the impacted end and 
propagates towards the free end. Attention is restricted to the time interval during which the 
stress wave remains compressive, that is, before the wave front reaches the free end of the 
bar. The bar has a length of 4; the density, area and Young’s modulus have unit values; the 
uniform initial speed also has unit value. Each space-time slab was discretized using 200 
9-noded quadrilateral space-time elements as shown in Fig. 4. The intrinsic time scale and 
slowness matrices used for all computations were 

At 

‘=4viT-r 
(89) 
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Fig. 3. One-dimensional elastic bar impact problem 
(top: model problem; bottom: exact solution). 

Fig. 4. Space-time finite element discretization for the 
bar impact problem using 200 9-noded quadrilateral 
elements. 

s=O, (90) 

where C = c At/Ax is the Courant number. 
Figure 5 shows the stress distribution in the bar after the wave front has propagated through 

150 elements; the solution was computed using the Galerkinileast-squares method with 
C = 0.5. The discontinuity is captured quite well; the stress jump is spread over 8 elements, 
including the overshoot in front of and the undershoot behind the discontinuity. Because the 
Galerkinileast-squares algorithm is dissipative, the discontinuity will be smeared as the wave 
propagates through the mesh. However, the amount of smearing is small; after propagating 
through 50 elements, the stress jump is spread over 6 elements. That is, the stress jump has 
spread only one element on each side of the discontinuity after propagating through 100 
additional elements. 

The quadratic discontinuity-capturing formulation produces a monotone solution (see Fig. 
6). Comparison of these results with the Galerkin/least-squares solution (Fig. 7) shows that 
the quadratic discontinuity-capturing operator maintains the accuracy of the Galerkin/least- 
squares method in the smooth region as well as near the discontinuity; note that the computed 
slopes across the wave front are virtually identical. These results emphasize that the 
discontinuity-capturing formulation is a high-order accurate scheme. The solutions obtained 
using the quadratic and linear discontinuity-capturing operators are compared in Fig. 8 

I 

b 

-0.6 - 

-0.8 - 

Fig. 5. Bar impact problem. Stress distribution calcu- 
lated using the Galerkin/least-squares algorithm. 
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Fig. 6. Bar impact problem. Stress distribution calcu- 
lated using the quadratic discontinuity-capturing al- 
gorithm. 
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Fig. 8. Bar impact problem. Comparison of stress 
distribution calculated using discontinuity-capturing al- 
gorithms; C = 0.5. 

z 

Fig. 7. Bar impact problem. Comparison of stress 
distribution calculated using the Galerkin/least- 
squares and quadratic discontinuity-capturing al- 
gorithms. 

(C = 0.5). The linear discontinuity-capturing operator, while providing a monotone solution, 
is substantially more dissipative than the quadratic discontinuity-capturing operator; the stress 
jump is spread over 21 elements. Although the quadratic discontinuity-capturing operator 
performance is better than that of the linear discontinuity-capturing operator, their relative 
performance changes when the Courant number is increased. Figure 9 shows the stress 
distributions computed using C = 2.0. The quadratic discontinuity-capturing operator response 
is similar to the Galerkin/least-squares response, although slightly more dissipative. The linear 
discontinuity-capturing operator maintains a monotone solution without increasing the spread 
of the stress jump, when compared to the Galerkin/least-squares results. Thus, the quadratic 
viscosity coefficient is too small when C = 2.0 to control the overshoot/undershoot of the 
Galerkin/least-squares method. These results suggest the choice of viscosity coefficient should 
be based on the Courant number. Because the discontinuity-capturing operator is constructed 
at the element level, different discontinuity-capturing operators can be employed in different 
elements of the mesh. This procedure is easily implemented in a finite element code: for each 
element in the space-time slab, an estimate of the Courant number can be obtained; if 
C 2 1.0, the linear viscosity coefficient is used, otherwise the quadratic viscosity coefficient is 
activated. 

-0.4- 
b 

-0.6 - 

-0.8 

0 

Fig. 9. Bar impact problem. Comparison of stress distribution calculated using space-time finite element methods; 
c = 2.0. 
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Fig. 10. Comparison of numerical error using Galerkin/least-squares (GLS), linear (DC,,,) and quadratic 
(DC,,,,) discontinuity-capturing formulations; error measured in the 111 . l/lr,o norm; 6 is the spatial distance 
between adjacent nodes. 

To study the numerical convergence rates of the discontinuity-capturing formulations, the 
response of a one-dimensional, homogeneous elastic rod was calculated. Both ends of the rod 
were fixed, no external loads were applied, the initial velocity was zero and the initial 
displacement was proportional to the first harmonic. Unit values were specified for the length, 
area, density and elastic coefficient of the rod. The response was calculated for the time 
interval 0 d t d T = 1.2. The convergence rates of the Galerkin/least-squares, linear and 
quadratic discontinuity-capturing formulations are shown in Fig. 10. (III- lllT,o denotes the 
norm, (43, with s = 0.) Note that the convergence rates are identical for all formulations; the 
linear discontinuity-capturing formulation exhibits slightly larger errors. These results suggest 
that a proof for convergence of the linear discontinuity-capturing formulation may be possible. 

7. Conclusions 

Space-time finite element methods for elastodynamics were developed that include discon- 
tinuity-capturing operators to accurately resolve sharp gradients in wave propagation prob- 
lems. Control of the local second derivatives and a viscosity coefficient, defined at the element 
level, comprise the essential components of the proposed discontinuity-capturing operators. 
These operators were designed to maintain the high-order accuracy of the underlying 
Galerkin/least-squares finite element method; hence, they do not inherit the deficiencies of 
classical artificial viscosities. Stability of the new method was proved and error estimates were 
derived for the quadratic discontinuity-capturing formulation. Numerical results demonstrated 
that the quadratic discontinuity-capturing operator produces a monotone solution with 
excellent resolution of the discontinuity for Courant number C = 0.5. The linear discontinuity- 
capturing operator was shown to be more dissipative but provided better, monotone solutions 
for C = 2.0. Thus, an appropriate choice of the discontinuity-capturing operator is dependent 
upon the element Courant number; this choice may be easily implemented in a finite element 
program. Numerical results also demonstrated that both discontinuity-capturing formulations 
exhibited the same convergence rates as the Galerkin/least-squares method. 

While the numerical results presented were limited to one-dimensional problems, the 
formulations are applicable to multidimensional problems. Of particular interest in the 
multidimensional problems is the possibility of waves propagating with different wave speeds. 
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Generalization of the discontinuity-capturing operator may be needed to accurately resolve 
different wave fronts; research efforts are underway to study such problems. 
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