Aiming Control: Residence Probability and (D, T)-Stability*†

S. KIM,‡ S. M. MEERKOV §§ and T. RUNOLFSSON ||

The problem of Aiming Control is analyzed using a residence probability measure along with the associated notion of (D, T)-stability.

Key Words—Linear Systems; stochastic control; large deviations; stability criteria; approximation theory.

Abstract—In this paper, the problem of aiming control is formulated and analyzed in terms of the residence probability measure. Specifically, the notion of residence probability in a domain is introduced and its asymptotic expression is derived for linear systems with small, additive white noise. The associated notion of (D, T)-stability, which characterizes the performance of stochastic systems with no equilibrium points, is introduced and investigated. Finally, the controllability of residence probability is studied and the necessary and sufficient conditions for (D, T)-stabilizability are derived. The development is based on the asymptotic large deviations theory.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Consider a system described by the Ito stochastic differential equation:

\[ dx = (Ax + Bu) \, dt + eC \, dw, \quad x(0) = x_0, \]

where \( x \in \mathbb{R}^n, u \in \mathbb{R}^m, \) \( 0 < e << 1 \) and \( w \) is a standard \( r \)-dimensional Brownian motion. Let \( D \subseteq \mathbb{R}^n \) be an open bounded domain with 0 in its interior, \( T < \infty \) a positive number and consider the following problem:

Given system (1.1) and the pair \((D, T)\), find a feedback law

\[ u = Kx, \]

and an open set \( D_0 \subset D \) such that the closed loop system (1.1), (1.2) has the following property:

\[ x(t, x_0) \in D, \quad \forall t \in [0, T], \quad \forall x_0 \in [D_0], \]

where \([D_0]\) is the closure of \(D_0\).

This problem is referred to as the problem of aiming control. Such a problem arises in a number of applications where the goal is to accomplish a certain task during a specified period \(T\) with a specified accuracy \((D)\). Examples include the telescope pointing problem (Skelton, 1973), robot arm and laser beam pointing (Cannon and Schmitz, 1984; Katzman, 1987), missile terminal guidance (Garnell, 1977), etc.

Let \( \partial D \) be the boundary of \( D \) and define the first passage time

\[ \tau^e_{x_0} = \inf \{ t \geq 0 : x(t, x_0) \in \partial D \}. \]

It is well known that \( \tau^e_{x_0} \) is almost surely finite (Freidlin and Wentzell, 1984). Therefore, the aiming process specifications, \((D, T)\), cannot be met exactly and some probabilistic meaning should be attached to their interpretation. Specifically, the problem of aiming control can be re-formulated in the following two probabilistic settings.

Residence time control. Given (1.1) and a pair \((D, T)\), find a feedback law (1.2) and an open set \( D_0 \subset D \) such that

\[ E[\tau^e_{x_0}] \geq T, \quad \forall x_0 \in [D_0]. \]

Residence probability control. Given (1.1), a pair \((D, T)\) and a constant \(0 < p < 1\), find a
feedback law (1.2) and an open set $D_0 \subset D$ such that
\[
\text{Prob}\{\tau_{x_0}^J > T\} > \rho, \quad \forall x_0 \in [D_0].
\] (1.4)

The residence time control problem (1.4) and its generalizations have been analyzed in Meerkov and Runolfsson (1988, 1989a, 1989b, 1990) and Runolfsson (1988). In these publications, the fundamental bounds on the achievable values of $E[\tau_{x_0}^J]$ have been investigated and the methods for controllers design, compatible with these bounds, have been developed.

Note that, since $\tau_{x_0}=0$ is a non-negative random variable, the Markov inequality gives:
\[
\text{Prob}\{\tau_{x_0} > T\} \leq \frac{E[\tau_{x_0}^J]}{T}.
\]

Therefore, if $\text{Prob}\{\tau_{x_0} > T\} > \rho$, the estimate for $E[\tau_{x_0}^J]$ follows immediately:
\[
E[\tau_{x_0}^J] \geq \rho T.
\]

This observation suggests that the residence probability control (1.5) is a stronger reformulation of the aiming control problem than the residence time control (1.4).

This paper is devoted to the investigation of the controllability properties of residence probability, i.e. to the question on when there exists a feedback law $u = Kx$ that solves the residence probability control problem. The related question of design of the residence probability controllers will be addressed in a companion paper. As it was the case in Meerkov and Runolfsson (1988, 1989a, 1989b, 1990) and Runolfsson (1988), the development is based on the large deviations theory of Freidlin and Wentzell (1984).

The idea of utilizing the residence probability as a measure of control systems performance is not new. Apparently, it was first introduced in Ruina and van Valkenburg (1960) and then analyzed in Kushner (1967), Fleming and Tsai (1981), and Dupuis and Kushner (1987).

The structure of the paper is as follows: In Section 2 an asymptotic formula for residence probability in a domain is derived. In Section 3, the notion of $(D, T)$-stability, that characterizes the behavior of stochastic systems with no equilibrium points, is introduced and analyzed. Section 4 presents the conditions for residence probability controllability and $(D, T)$-stabilizability. In Section 5, the conclusions are formulated. The proofs are given in Appendices 1–3.

2. RESIDENCE PROBABILITY IN A DOMAIN

Consider the Ito system
\[
dx = Ax \, dt + eC \, dw, \quad x(0) = x_0.
\] (2.1)

where, as before, $x \in \mathbb{R}^n$, $0 < e \ll 1$, $w$ is a standard $r$-dimensional Brownian motion and rank $C = r$. Let $D \subset \mathbb{R}^n$ and $D_0 \subset D$ be open bounded sets with $0$ in their interior and smooth boundaries $\partial D$ and $\partial D_0$, respectively. The first passage time of the trajectory originating at $x_0$ is
\[
\tau_{x_0}^J = \inf \{ t \geq 0 : x(t) \in \partial D \}.
\] (2.2)

As a random variable, $\tau_{x_0}^J$ is characterized by its probability distribution, i.e. $\text{Prob}\{\tau_{x_0}^J > T\}$. Based on this distribution, the first passage probability of the trajectories originating in $[D_0]$ can be defined as follows:
\[
P_{D_0}(\tau^J > T) \triangleq \sup_{x_0 \in [D_0]} \text{Prob}\{\tau_{x_0}^J > T\}.
\] (2.3)

Note that, due to the compactness of $[D_0]$ and the continuity of $\text{Prob}\{\tau_{x_0}^J > T\}$ in $x_0$ (Freidlin and Wentzell, 1984), the supremum in (2.3) is actually attained. Then the residence probability in the domain is defined as
\[
P_{D_0}(\tau^J > T) \triangleq 1 - P_{D_0}(\tau^J \leq T)
= \min_{x_0 \in [D_0]} \text{Prob}\{\tau_{x_0}^J > T\}.
\] (2.4)

These probabilities play a crucial role in the development that follows. They are characterized next.

Theorem 2.1. Assume that $(A, C)$ is disturbable, i.e. rank $[CAC \cdots A^{n-1}C] = n$. Then
\[
\lim_{e \to 0} e^2 \ln P_{D_0}(\tau^J \leq T) = -\min_{x_0 \in [D_0]} \min_{y \in \partial D} \sup_{0 \leq t \leq T} \frac{1}{2}(y - eA^t x_0)'X^{-1}(t)(y - eA^t x_0) = -\varphi(D_0),
\] (2.5)

where
\[
X(t) = AX(t) + X(t)A^T + CC^T, \quad X(0) = 0.
\] (2.6)

Proof. See Appendix 1.

Theorem 2.1 states, in particular, that $P_{D_0}(\tau^J \leq T)$ is closely related to $e^{-\varphi(D_0)}e^{t}$, i.e. for any $\delta > 0$, there exists an $e_0 > 0$ such that, for all $0 < e \leq e_0$,
\[
e^{-\left(t\varphi(D_0) + \delta \sqrt{\varepsilon}\right)} \leq P_{D_0}(\tau^J \leq T) \leq e^{-\left[t\varphi(D_0) + \delta \sqrt{\varepsilon}\right]}.
\] (2.7)

Note that $\varphi(D_0)$, the logarithmic first passage probability, is a coordinate-free characterization of system's performance. This follows from Theorem 2.1 and the fact that $\{x \in \mathbb{R}^n : x \in D\} = \{Qx \in \mathbb{R}^n : Q^{-1}x \in D\}$ for any invertible matrix $Q$. This property will be used in Section 4 to establish the upper bound of the achievable logarithmic first passage probability for system (1.1).
3. \((D, T)\)-STABILITY

If a stochastic system has an equilibrium point, its stability can be characterized by the usual notion of Liapunov stability modified in an appropriate stochastic sense (Kushner, 1967; Khasminsky, 1969). If the system does not have equilibria, as is the case for (2.1), the Liapunov stability does not apply. In this situation, the notion of first passage time could be used to describe its "stability" features. One way to accomplish this is as follows.

**Definition 3.1.** System (2.1) is said to be \((D, T)\)-stable with probability \(0 < p < 1\) if there exists an open set \(D_0 \subset D\) such that
\[
P_{D_0}(\tau^e > T) > p, \tag{3.1}
\]
or, equivalently,
\[
P_{D_0}(\tau^e \leq T) \leq 1 - p, \tag{3.2}
\]
where \(P_{D_0}(\tau^e > T)\) and \(P_{D_0}(\tau^e \leq T)\) are defined in (2.4) and (2.3), respectively.

In this definition, set \(D\) may be interpreted as a safe operating region, \(T\) as a desired operating time, and \(D_0\) as an initial, "lock in", set.

Sufficient tests for \((D, T)\)-stability and instability are given below.

**Theorem 3.1.** Assume that \(A\) is Hurwitz and \((A, C)\) is disturbable. Let \(M > 0\) be a matrix such that
\[
AR + MA < 0,
\]
and assume there exists a positive number \(R_0\) such that
\[
\Gamma \triangleq \min_{y \in \partial D} \frac{\|y\| - \frac{R_0}{\sqrt{\lambda_{\min}(M)}}}{\sqrt{\lambda_{\min}(M)}} > 0,
\]
where \(\lambda_{\min}(M)\) is the smallest eigenvalue of \(M\) and \(\|\cdot\|\) is the Euclidean norm of a vector. Then for any \(\delta > 0\) there exists an \(\varepsilon_0 > 0\) such that if \(0 < \varepsilon \leq \varepsilon_0\) system (2.1) is \((D, T)\)-stable with probability \(1 - e^{-K(T)/\varepsilon^2}\) where
\[
\alpha = \frac{\Gamma^2}{2\lambda_{\max}(X(T))},
\]
\(X(t)\) is the covariance matrix defined by (2.6) and \(\lambda_{\max}(X(T))\) is the largest eigenvalue of \(X(T)\). The corresponding initial set \(D_0\) in this case is:
\[
D_0 = \{x_0 \in \mathbb{R}^n : x_0^T M x_0 < R_0^2\}.
\]

**Proof.** See Appendix 2.

Theorems 3.1 and 3.2 provide the lower and upper bound for the residence probability in the domain:
\[
1 - \exp \left\{ -\frac{\min_{y \in \partial D} \|y\| - \frac{R_0}{\sqrt{\lambda_{\min}(M)}}}{\sqrt{\lambda_{\min}(M)}} \right\} \leq P_{D_0}(\tau^e > T) \leq 1 - \exp \left\{ -\frac{\max_{y \in \partial D} \|y\|}{2\lambda_{\max}(X(T))\varepsilon^2} - \frac{\delta}{\varepsilon^2} \right\}.
\]

4. RESIDENCE PROBABILITY CONTROLLABILITY AND \((D, T)\)-STABILIZABILITY

Consider again system (1.1) with control (1.2). As it follows from Theorem 2.1, if \((A + BK, C)\) is disturbable,
\[
\lim_{\varepsilon \to 0} \varepsilon^2 \ln P_{D_0}(\tau^e(K) \leq T) = -q_0(D_0, K),
\]
where \(q_0(D_0, K)\) is the logarithmic first passage probability defined by
\[
q_0(D_0, K) = \min_{x_0 \in \partial D} \min_{y \in \partial D} \frac{1}{2} (y - e^{(A+\delta K)\varepsilon}x_0)^T X^{-1}(t, K)(y - e^{(A+\delta K)\varepsilon}x_0),
\]
\(X(t, K) = (A + BK)X(t, K) + X(t, K)\)
\(X(0, K) = 0.\)

Note that if \((A, [BC])([BC]\) is the matrix whose columns are the columns of \(B\) and \(C)\) is disturbable, \((A + BK, C)\) is disturbable for almost any \(K\) (Davison and Wang, 1973). We would like to choose the feedback law (1.2) so that \(q_0(D_0, K)\) is as large as desired. This may or may not be possible. To characterize the various situations we introduce

**Definition 4.1.** System (1.1) is said to be strongly residence probability controllable (srp-controllable) if for any \((D, T)\) and \(K > 0\) there exists \(u = Kx\) and \(D_0 \subset D\) such that \(q_0(D_0, K) > \alpha\). Otherwise the system is weakly residence probability controllable.

Clearly the srp-controllability is closely related to the property of \((D, T)\)-stabilizability:

**Definition 4.2.** System (1.1) is \((D, T)\)-stabilizable if for any \((D, T)\) and \(0 < p < 1\) there...
exists \( u = Kx \) and \( D_0 \subset D \) such that
\[
P_{D_0}(\tau^* > T) > p.
\]

Below, the class of srp-controllable systems is characterized.

**Theorem 4.1.** Under the assumption of \((A, C)\) disturbability, \((1.1)\) is srp-controllable if and only if \( \text{Im} \, C \subseteq \text{Im} \, B \).

**Proof.** See Appendix 3.

When \( \text{Im} \, C \notin \text{Im} \, B \), there exists an upper bound on the achievable \( \varphi(D_0, K) \). This bound is analyzed next.

Consider again \((1.1)\) and assume that \( B \) has a full rank. Then there exists a similarity transformation \( x = Q^{-1}x \) that transfers \((1.1)\) to the form
\[
d\tilde{x} = (\tilde{A} \tilde{x} + \tilde{B}u) dt + \varepsilon \tilde{C} dw, (4.2)
\]
where
\[
Q^{-1}A = \tilde{A}, \quad Q^{-1}B = \tilde{B} = [0].
\]

Since \( \varphi(D_0, K) \) is a coordinate free characterization of system performance, the bounds will be established in terms of the realization \((4.2)\).

Assume \((A, B)\) is controllable and choose
\[
u = K_P \tilde{x}, \quad K_P = -\frac{1}{\rho} \tilde{B}^T P_{\rho}, \quad \rho > 0, (4.3)
\]
where \( P_{\rho} \) is the positive definite solution of
\[
\tilde{A}^T P_{\rho} + P_{\rho} \tilde{A} + I - \frac{1}{\rho} \tilde{B} \tilde{B}^T P_{\rho} = 0. (4.4)
\]

Let \( P_{22}(t) \) be a positive definite solution of
\[
-\dot{P}_{22}(t) = \tilde{A}^T P_{22}(t) + P_{22}(t) \tilde{A} + I - \frac{1}{\rho} \tilde{B} \tilde{B}^T P_{22}(t), (4.5)
\]
and \( P_{22} \) be the positive definite solution of
\[
\tilde{A}^T P_{22} + P_{22} \tilde{A} + I - \frac{1}{\rho} \tilde{B} \tilde{B}^T P_{22} = 0, (4.6)
\]
i.e.
\[
P_{22} = \lim_{t \to \infty} P_{22}(0).
\]

Finally let \( M > 0 \) and \( \rho_0 > 0 \) be a matrix and a number such that
\[
(\tilde{A} + \tilde{B} \tilde{K}_\rho)^T M + M(\tilde{A} + \tilde{B} \tilde{K}_\rho) < 0, (4.7)
\]
for all \( 0 < \rho \leq \rho_0 \) and let \( R_0 > 0 \) be number such that
\[
\Gamma = \min_{\rho \in \mathbb{R}} \| y \| - \frac{R_0}{\sqrt{\lambda_{\text{min}}(M)}} > 0. (4.8)
\]

Let \( \hat{\varphi} = (\hat{K} \in \mathbb{R}^{n \times n} : \hat{A} + \hat{B} \hat{K} \text{ Hurwitz}) \) and let \( \hat{\varphi}(\hat{D}_0, \hat{K}) \) be the logarithmic first passage probability of \((4.2)\) from \( \hat{D} = \{ \hat{x} \in \mathbb{R}^n : Q^{-1} \hat{x} \in D \} \).

**Theorem 4.2.** Under the assumption of controllability of \((A, B)\) and disturbability of \((A, C)\) the maximal achievable logarithmic first passage probability is bounded as follows:
\[
\frac{\Gamma^2}{2\lambda^{**}} \leq \sup_{\hat{K} \in \hat{\varphi}} \hat{\varphi}(\hat{D}_0, \hat{K}) \leq \frac{\max_{y \in \mathbb{R}^n} \| y \|^2}{2\lambda^{*}}, (4.9)
\]
where
\[
\lambda^* = \text{Tr} \hat{C}_2 P_{22}(0) \hat{C}_2, \quad \lambda^{**} = \text{Tr} \hat{C}_2^T P_{22} \hat{C}_2. (4.10)
\]

**Proof.** See Appendix 3.

Note that in the srp-controllability case \( \hat{C}_2 = 0 \), \( \lambda^* = \lambda^{**} = 0 \) and, therefore,
\[
\sup_{\hat{K} \in \hat{\varphi}} \hat{\varphi}(\hat{D}_0, \hat{K}) = \infty.
\]

To illustrate the bounds of Theorem 4.3, consider an example of the roll attitude control problem in a missile disturbed by a random torque (Hotz and Skelton, 1986). The dynamics of the system are described as
\[
\begin{bmatrix}
\dot{\delta} \\
\dot{\omega} \\
\dot{\varphi}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 \\
10 & -1 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\delta \\
\omega \\
\varphi
\end{bmatrix}
+ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u + \varepsilon \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \dot{w}, (4.12)
\]
where \( \delta \) is the aileron deflection, \( \omega \) is the roll angular velocity, \( \varphi \) is the roll angle, \( u \) is control of aileron actuators and \( \dot{w} \) is white noise. Note that \((4.12)\) is in the form \((4.2)\) with \( \hat{C}_2 \neq 0 \), i.e. the system under consideration is wrp-controllable and \( \varphi(D_0, K) \) is bounded. To evaluate this bound, assume, for simplicity, that \( D \) is a ball with radius \( R \), \( T = 3 \) and calculate
\[
\lambda^* = 0.1, \quad \lambda^{**} = 0.1.
\]

Choosing \( M \) as
\[
\begin{bmatrix} 0.25 & 0.25 & 0.25 \\ 0.25 & 0.35 & 0.35 \\ 0.25 & 0.35 & 1.35 \end{bmatrix}, (4.13)
\]
and verifying that \((4.8)\) holds, we finally obtain:
\[
5 \left( R - \frac{R_0}{\sqrt{0.042}} \right)^2 \leq \sup_{\hat{K} \in \hat{\varphi}} \varphi(D_0, K) \leq 15 R^2.
\]

Thus, there is no linear controller for missile \((4.12)\) that keeps the states in the ball of radius \( R \) during interval \( T \) with probability \( p > 1 - \frac{1}{e^2} \). On the other hand, there exists
a linear state feedback that accomplishes this
task with probability $p \leq 1 - \exp \left\{ -\frac{5}{e^2} \left( R - \frac{R_0}{\sqrt{0.042}} \right)^2 + \frac{\delta}{e^2} \right\}$, provided that at $t = 0$ the states
are locked into the initial set $D_0 = \{ x_0 : x_0^T M x_0 \leq R_0^2 \}$, where $M$ is given by (4.13).

5. CONCLUSIONS

(1) The residence probability control gives a
stronger reformulation of the aiming control
problem than the residence time control.
However, the resulting control problem is also
more complex: the performance depends on the
size of the initial, “lock in”, domain and on the
operating period.

(2) $(D, T)$-stability with probability $p$ is a
useful tool for characterization of the perfor-
mance of stochastic systems with no equilibrium
points.

(3) The logarithmic first passage probability of
a controlled linear system with additive white
noise can be modified in any desired manner, for
instance, made as close to $\infty$ as desired, if and
only if the range space of the noise matrix is
included in the range space of the control
matrix. Otherwise, the achievable logarithmic
first passage probability is bounded away from $\infty$
and estimates of this bound are characterized
herein.

REFERENCES

experiments on the endpoint control of a flexible one-link

time-invariant multivariable systems subject to arbitrary
AC-18, 3, 1–34.

probabilities; A large deviations approach. Proc. of the
26th IEEE Conf. on Decision and Control, Los Angeles.

Optim., 9, 3, 253–282.

Perturbations of Dynamical Systems. Springer-Verlag, New
York.


theory. In C. T. Snyder (Ed.), Advances in Control and


Englewood Cliffs, New Jersey.


Kwakernaak, H. and R. Sivan (1972). The maximally
achievable accuracy of linear optimal regulators and linear
optimal filters. IEEE Trans. Automat. Contr., AC-17, 1,
79–86.

control. IEEE Trans. Automat. Contr., AC-33, 4,
323–332.

AC-34, 11, 1171–1176.

Meerkov, S. M. and T. Runolfsson (1989b). Theory of
residence time control by output feedback. Proc. 28th
IEEE CDC, Tampa, FL.

control for linear stochastic systems, 11th IFAC Congress,
Tallinn, Estonia.


analysis of automatic tracking systems. Proc. 1st IFAC
Conf., Moscow.

subject to measurement noise. Proc. 27th IEEE CDC,
270–275, Austin, TX.

Skelton, R. E. (1973). Precise pointing control of space
vehicles with momentum exchange controllers. Sperry
Rand Report No. SP-250-754.

Control Let., 6, 165–172.

APPENDIX 1: PROOFS FOR SECTION 2

Proof of Theorem 2.1.

Consider, in conjunction with (2.1), the deterministic system

$$\dot{y} = Ay + Cu, \quad y(0) = x_0,$$  
(A1.1)

If $\phi$ is a trajectory of (A1.1) corresponding to an input function $u \in L_2[0, T, R^m]$ define

$$S_{\text{OT}}(\phi) = \min_{u \in U(T,x_0)} S_{\text{OT}}(u).$$  
(A1.2)

For the remaining continuous functions from $[0, T]$ into $R^m$
let $S_{\text{OT}}(\phi) = \infty$. Then $S_{\text{OT}}(\phi)$ is the action functional for (2.1) (Zabczyk, 1985).

Define

$$\tau_{\text{OT}} = \inf \{ \tau: x(\tau) \in D \},$$  
(A1.3)

where $D \subset R^m$ is an open bounded set in $R^m$ with 0 in its interior and smooth boundary $2D$ and $x(t)$ is the trajectory of (2.1) with $x(t) \in D_0$. Introduce also

$$H_D(T, x_0) = \min_{\phi \in C_D(R^m)} \{ \phi(x) : x(0) = x_0 \in D,$$
$$\phi(s) \notin D \text{ for some } s \in [0, T] \}.$$  
(A1.4)

$$U_D(T, x_0) = \{ u \in C_D(R^m) : \phi \in H_D(T, x_0),$$
$$\phi = A\phi + Cu, \quad \phi(0) = x_0 \}.$$  
(A1.5)

It follows from Theorems 1.1 and 1.2 (Chapter 4) of Freidlin
and Wentzell (1984) that if

$$\inf_{u \in U_0(T,x_0)} S_{\text{OT}}(u) = \inf_{u \in U_0(T,x_0)} S_{\text{OT}}(u),$$  
(A1.6)

then uniformly with respect to all $x_0 \in R^m$,

$$\lim_{e \to 0} e^2 \ln \text{Prob} \{ \tau_{\text{OT}}^e < T \} = -\min_{u \in U_0(T,x_0)} S_{\text{OT}}(u).$$  
(A1.7)

However, since $S_{\text{OT}}(u)$ is differentiable with respect to $u$
(Kirk, 1970), it follows that (A1.6) and consequently (A1.7)
is true.

To solve the minimization problem of (A1.6) we observe that, as it follows from Freidlin and Wentzell (1984),

$$\inf_{u \in U_0(T,x_0)} S_{\text{OT}}(u) = \min_{0 \leq \phi \leq T} V(t, x_0, y),$$  
(A1.8)

where

$$V(t, x_0, y) = \min_{u \in U_0(T,x_0)} \int_{\tau_{\text{OT}}^e}^T u^T(s) u(s) ds,$$  
(A1.9)

$$\phi = A\phi + Cu, \quad \phi(0) = x_0, \quad \phi(t) = y.$$  
(A1.10)
Problem (A1.8)-(A1.10) can be solved using a standard variational approach. A straightforward calculation shows that
\[ V(t, x_0, y) = \frac{1}{2} (y - e^{At}x_0)^T X^{-1}(t) (y - e^{At}x_0), \]
where
\[ X = AX + XA^T + CC^T, \quad X(0) = 0. \]
Thus, according to (A1.6) and (A1.8), it follows from (A1.7) that
\[ \lim_{t \to 0} \epsilon^2 \ln \text{Prob}\{r_t^* \leq T\} = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^T X^{-1}(t) (y - e^{At}x_0). \]
To complete the proof consider
\[ P_{D_0} = \max_{\{r_t^* \leq T\}} \text{Prob}\{r_t^* \leq T\}, \]
where \(D_0 \subset D\) is an open set containing 0 with a smooth boundary \( \partial D_0\). Taking into account the continuity of \( \ln \text{Prob}\{r_t^* \leq T\}\), the uniformity of the limit in (A1.7), and the compactness of \(D_0\),
\[ \lim_{\epsilon \to 0} \epsilon^2 \ln P_{D_0} = \max_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^T X^{-1}(t) (y - e^{At}x_0). \]
\[ \text{APPENDIX 2: PROOFS FOR SECTION 3} \]
\[ \text{Proof of Theorem 2.1.} \]
\[ \phi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^T X^{-1}(t) (y - e^{At}x_0). \]
This invariant set is contained in \(D\). Therefore,
\[ \psi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \psi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{APPENDIX 3: PROOFS FOR SECTION 4} \]
\[ \text{Proof of Theorem 4.1.} \]
\[ \phi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Necessity.} \]
\[ \psi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Proof of Theorem 4.2.} \]
\[ \phi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Necessity.} \]
\[ \psi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Proof of Theorem 4.3.} \]
\[ \phi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Necessity.} \]
\[ \psi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \text{Proof of Theorem 4.4.} \]
\[ \phi(D_0) = \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
\[ \geq \frac{1}{2 \lambda_{\text{max}}(X(T))} \]
\[ \min_{y \in \mathbb{R}^T} \frac{1}{2} (y - e^{At}x_0)^2 \]
Combining (A3.1) and (A3.2) gives
\[
\sup_{K \in \mathcal{X}} \phi(D_0, \hat{K}) \leq \frac{nR^2}{2} \inf_{K \in \mathcal{X}[0, \tau]} \text{Tr} X(T, \hat{K}). \tag{A3.3}
\]

Finally, it was shown in O’Malley and Jameson (1975) that
\[
\inf_{K \in \mathcal{X}[0, \tau]} \text{Tr} X(T, \hat{K}) = \text{Tr} C_2^T P_{22}^*(0) C_2, \tag{A3.4}
\]
where \( P_{22}^*(t) \) is the positive definite solution of (4.5). Substituting (A3.4) into (A3.3) gives the upper bound.

To obtain the lower bound note that as in (A2.1)
\[
\min \min \| y - e^{\lambda^T \hat{K} y} x_0 \|_2^2
\]
\[
\phi(D_0, \hat{K}) \geq \frac{2 \lambda_{\max}(X(T, \hat{K}))}{2 \lambda_{\max}(X(T, \hat{K}))}. \tag{A3.5}
\]

Moreover, since
\[
\lambda_{\max}(X(T, \hat{K})) \leq \lambda_{\max}(X(\infty, \hat{K})) \leq \text{Tr} X(\infty, \hat{K}), \tag{A3.6}
\]
it follows that
\[
\min \min \| y - e^{\lambda^T \hat{K} y} x_0 \|_2^2
\]
\[
\phi(D_0, \hat{K}) \geq \frac{2 \lambda_{\max}(X(\infty, \hat{K}))}{2 \lambda_{\max}(X(\infty, \hat{K}))}. \tag{A3.7}
\]

Let
\[
P_\rho = \begin{bmatrix} P_{11} & \rho_{12} \\ P_{12} & P_{22} \end{bmatrix}
\]
be the positive definite solution of (4.4). It is shown in Kwakernaak and Sivan (1972) that
\[
\inf_{K \in \mathcal{X}} \text{Tr} X(\infty, \hat{K}) = \lim_{\rho \to 0} \text{Tr} X(\infty, \hat{K}_0)
\]
\[
= \lim_{\rho \to 0} \text{Tr} P_\rho C \hat{C}^T = \text{Tr} P_0 \hat{C} \hat{C}^T. \tag{A3.8}
\]

Furthermore, the limit
\[
\lim_{\rho \to 0} P_\rho \hat{C} \hat{C}^T P_\rho = \lim_{\rho \to 0} \frac{1}{P_{11}^2} \begin{bmatrix} P_{11}^2 & P_{11} P_{12} \\ P_{12} P_{11} & P_{12}^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & P_{22} \end{bmatrix}. \tag{A3.9}
\]
exists, and thus,
\[
P_0 = \lim_{\rho \to 0} P_\rho = \lim_{\rho \to 0} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & P_{22} \end{bmatrix}. \tag{A3.10}
\]

A straightforward calculation shows that \( P_{22} \) satisfies (4.6). Finally, by (4.5) and (4.6), the proof of Theorem 3.1 and (A3.5)
\[
\min \min \| y - e^{\lambda^T \hat{K} y} x_0 \|_2^2
\]
\[
\sup_{K \in \mathcal{X}} \phi(D_0, \hat{K}) \geq \sup_{K \in \mathcal{X}} \frac{2 \lambda_{\max}(X(\infty, \hat{K}))}{2 \lambda_{\max}(X(\infty, \hat{K}))}
\]
\[
\left( R - \frac{R_0}{\sqrt{\lambda_{\min}(M)}} \right)^2
\]
\[
= \lim_{\rho \to 0} \frac{R_0^2}{2 \lambda_{\min}(M)} \tag{A3.11}
\]

The proof is complete.

O.E.D.