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Abstract 

Blass, A., A game semantics for linear logic, Annals of Pure and Applied Logic 56 (1992) 
183-220. 

We present a game (or dialogue) semantics in the style of Lorenzen (1959) for Girard’s linear 
logic (1987). Lorenzen suggested that the (constructive) meaning of a proposition 91 should be 
specified by telling how to conduct a debate between a proponent P who asserts p and an 
opponent 0 who denies q. Thus propositions are interpreted as games, connectives (almost) as 
operations on games, and validity as existence of a winning strategy for P. (The qualifier 
‘almost’ will be discussed later when more details have been presented.) We propose that the 
connectives of linear logic can be naturally interpreted as the operations on games introduced 
for entirely different purposes by Blass (1972). We show that affine logic, i.e., linear logic plus 
the rule of weakening, is sound for this interpretation. We also obtain a completeness theorem 
for the additive fragment of affine logic, but we show that completeness fails for the 
multiplicative fragment. On the other hand, for the multiplicative fragment, we obtain a simple 
characterization of game-semantical validity in terms of classical tautologies. An analysis of the 
failure of completeness for the multiplicative fragment leads to the conclusion that the game 
interpretation of the connective @ is weaker than the interpretation implicit in Girard’s proof 
rules; we discuss the differences between the two interpretations and their relative advantages 
and disadvantages. Finally, we discuss how Godel’s Dialectica interpretation (1958), which was 
connected to linear logic by de Paiva (1989) fits with game semantics. 

1. Introduction to game semantics 

Classical logic is based upon truth values. To understand a sentence is to know 
under what circumstances it is true. The meaning of a propositional connective is 
explained by telling how the truth value of a compound formula is obtained from 
the truth values of its constituents, i.e., by giving a truth table. 

Intuitionistic logic is based upon proofs. To understand a sentence is to know 
what constitutes a proof of it. The meaning of a propositional connective is 
explained by describing the proofs of a compound formula, assuming that one 
knows what constitutes a proof of a constituent. 
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Lorenzen [lo] proposed a semantics based upon dialogues. To understand a 
sentence is to know the rules for attacking and defending it in a debate. 
(‘Dialogue’, ‘debate’ and ‘game’ are used synonymously.) The meaning of a 
propositional connective is explained by telling how to debate a compound 
formula, assuming that one knows how to debate its constituents. 

The proof-based semantics of intuitionistic logic can be viewed as a special case 
of game semantics, namely the case in which the opponent 0 has nothing to do. 
The ‘debate’ consists of the proponent P presenting a proof; the winner of the 
debate is P or 0 according to whether the proof is correct or not. The truth-value 
semantics of classical logic is the even more special case in which P has nothing to 
do either. The winner is P or 0 according to whether the sentence being debated 
is true or false. There is a suggestive analogy between truth-value, proof, and 
game semantics on the one hand and deterministic, nondeterministic, and 
alternating computation on the other. 

We describe informally Lorenzen’s semantics for the propositional connectives. 
To attack a conjunction, 0 may select either conjunct, and P must then defend 
that conjunct. To attack a disjunction, 0 may demand that P select and defend 
one of the disjuncts. To attack a negation -cp, 0 may assert and defend cp, with 
P now playing the role of opponent of rp. To attack an implication rp-, q, 0 may 
assert q; then P may either attack Q, or assert and defend I/J. (Negation can be 
viewed as the special case of implication where the consequent $J is an 
indefensible statement.) 

The simplicity of this description of the connectives is somewhat deceptive, for 
Lorenzen needs supplementary rules to obtain a game semantics for constructive 
logic. One supplementary rule is that atomic formulas are never attacked or 
defended, but P may assert them only if they have been previously asserted by 
0. The idea behind this rule is that the semantics is to describe logical validity, 
not truth in a particular situation, so a winning strategy for P should succeed 
independently of any information about atomic facts. Thus P can safely assert 
such a fact only if 0 is already committed to it; otherwise, it might turn out to be 
wrong. A consequence of this rule governing atomic statements is that negating a 
formula does not fully interchange the roles of the two players, because it is still P 
who is constrained by the rule. 

The remaining supplementary rules govern repeated attacks on or defenses of 
the same assertion. To see the need for such rules, observe that nothing in the 
preceding rules distinguishes - (- a A a), which is constructively valid, from 

LYV -a, which is not. Consider these two games in the simple case that (Y is 
atomic. In the debate about cr v -(Y, P must choose and assert one of cr and -(Y. 
He cannot assert (Y, an atomic formula that 0 has not yet asserted. So he asserts 
-(Y, and 0 attacks by asserting LY. Now that 0 has asserted LY, P would like to go 
back and revise his defense of D v -(Y by choosing (Y instead of --a: 
Unfortunately (for P, but fortunately for constructive logic) Lorenzen’s rules 
forbid such a revision. Now consider the debate about -(-a, A a). 0 attacks by 
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asserting -LY A LY. P can attack this assertion by demanding that 0 assert the 
conjunct (Y. Then, P re-attacks the same assertion by demanding that 0 assert the 
other conjunct -a. After 0 does so, P wins by attacking -LY with cu, which 0 has 
already asserted. The difference between the two debates is that Lorenzen’s 
supplementary rules allow P to re-attack -(Y A LY but not to re-defend cx v -(Y. 

Supplementary rules governing repeated attacks and defenses were devised by 
Lorenzen [lo] so that the formulas for which P has a winning strategy are exactly 
the intuitionistically provable ones. Subsequently, Lorenz [9] systematically 
analyzed many variations of these supplementary rules. 

Our game semantics differs from Lorenzen’s in two major ways. Together, 
these two changes will allow us to dispense with supplementary rules and work 
exclusively with very natural operations on games. 

The first change is that in our games a play takes infinitely many moves. In 
particular, assertions of atomic formulas are not terminal positions in the games 
but are debatable like any other formula. 

A well-known result of [4] says that, when games are allowed to be infinitely 
long, it is possible that neither player has a winning strategy. We can use such 
undetermined games as the interpretations of atomic formulas, to model the idea 
that the players (particularly P) do not know whether an atomic formula is true 
or not. Then we do not need Lorenzen’s supplementary rule that P cannot assert 
an atomic formula until 0 has asserted it. Consider, for example, the formula 
u v -LY, where atomic formula (Y is interpreted as an undetermined game, and 
where we keep Lorenzen’s supplementary rule prohibiting re-defense of a 
disjunction, but we drop the supplementary rule governing atomic formulas. 
Does P have a winning strategy for LY v -cr? If such a strategy begins by asserting 
a; then it must contain a winning strategy for P in cy. If it begins by asserting 
-a, then it must contain a winning strategy for P in -(Y, i.e., for 0 in w. As 
neither P nor 0 has a winning strategy in rx, P has no winning strategy in (Y v --a. 
Of course, if P (or 0) had a winning strategy in LY, then P could win cr v -(Y by 
asserting N (or -a) on his first move. From this point of view, Lorenzen’s 
supplementary rule prevents P from winning 1y and from winning -LY, at the cost 
of destroying the symmetry in -. By allowing infinite games, we achieve the same 
goal while preserving the symmetry. 

Our second change in Lorenzen’s rules concerns the issue of re-attacking and 
re-defending formulas. Rather than choosing supplementary rules to cover this 
question (rules that tend to introduce new asymmetries between the players), we 
take the more radical approach of having two sorts of conjunction (respectively, 
disjunction), one of which can be re-attacked (respectively, re-defended) while 
the other cannot. 

For one sort of conjunction, which we write a A 6, the debate consists of a 
choice by 0 of one of the conjuncts, followed by a debate about that conjunct. 0 
cannot go back to the other conjunct. 

For the other sort of conjunction, which we write (Y @ /3, the debate consists of 
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two debates, one for each conjunct, interleaved as follows. 0 chooses which of 
the two subdebates to begin first. Thereafter, at each of his moves, 0 may 
choose to continue the current subdebate or to switch to the other one. When 0 
returns to a previously abandoned debate, it is resumed at the position where it 
was abandoned. 0 wins the debate for a! (8 /3 if and only if he wins at least one of 
the subdebates. (This will be explained more precisely below.) 

Analogously, replacing ‘0’ with ‘P’ in the preceding two paragraphs, we define 
two sorts of disjunction, a: v /3 which cannot be re-defended, and (Y &I /3 which 
can. As negation consists of switching the roles of the two players, we have 
cuv/3=-(-a/\--p)and cr@/3=-(-(u@-_B). 

Our earlier discussion shows that, if CY is an undetermined game, then P has no 
winning strategy in (Y v - D = -(- a: A (u). On the other hand, P always has a 
winning strategy in & @ -a = -(-a C3J a), namely to start with the subdebate 
where 0 moves first, to switch subdebates at every move, and to copy in the new 
subdebate the move that 0 just made in the other subdebate. This mimicking 
strategy in effect makes 0 play CY against himself and ensures that P wins 
(exactly) one of the subdebates. 

It is clear that, with two sorts of conjunction and disjunction, we are not 
dealing with ordinary constructive (or classical) logic. Nevertheless, intuitionistic 
propositional logic can be embedded in this system by using a unary ‘repetition’ 
connective, called R in [2]. A debate for R(a) consists of many debates of (Y, 
interleaved like an iterated @, i.e., 0 may, at each of his moves, continue the 
current debate, start a new one, or resume a previously abandoned one. In any 
two of the subdebates, as long as 0 plays the same way, P is required to do the 
same. Finally, 0 wins the debate of R(a) if and only if he wins at least one of the 
subdebates of a: [2, Theorem 71 shows that one obtains an interpretation of 
intuitionistic propositional logic by interpreting implication as -R(a) @ /3 (hence 
interpreting negation as -R(a) instead of --LX) and using the nonrepeating 
versions A, v of conjunction and disjunction. 

Readers familiar with Girard’s linear logic [6] will have noticed many 
similarities between that system and the operations on games described above. 
Since we have used notation from [2], we indicate the correspondence with 
Girard’s notation and terminology in Table 1. 

Table 1 

Our notation Girard’s notation 
I (linear negation, duality) 

A & (with) 

& 
@ (plus) 
8 (times) 

C3 18 (Par) 
R ! (of course) 
R ? (why not) 
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To complete the correspondence with propositional linear logic, we associate to 
Girard’s two versions of ‘true’, 1 and T, a game which P always wins, and we 
associate to his two versions of ‘false’, I and 0, a game which 0 always wins. 

2. Games and operations 

In this section, we define games and the operations on them that correspond to 
the connectives of linear logic. We also point out some information about these 
operations that will be useful later. For analyzing games it will be very convenient 
to have them in a rather strictly normalized form (e.g., players move alterna- 
tively; the set of possible moves is the same at every position), but for describing 
games it will be very inconvenient to normalize the description. Accordingly, we 
shall define games with the strict normalization, but we shall also indicate ways in 
which the normalization can be relaxed and ways in which the resulting ‘relaxed 
games’ can be converted to equivalent ‘strict games’. 

A (strict) game (or debate or dialogue) between two players, P and 0, consists 
of the following data: a set M of possible moves, a specification of P or 0 as the 
player who moves first, and a set G of infinite sequences of members of M, 

namely the plays won by P. Thus, a game is an ordered triple (M, s, G), where 
s E {P, 0} and G E “M, but we often write simply G. We write d for the 
nonstarting player, the member of {P, 0) other than S. 

A position p in a game is a finite sequence of moves. It is a position with the 
starting player s E {P, 0) to move if its length is even; otherwise, it is a position 
with the other player S to move. A strategy for either player is a function u into 
M from the set of all positions where that player is to move. A player follows 

strategy u in a play x E “M if, for every position p in x (i.e., finite initial segment 
p of X) where that player is to move, the next term after p in x is a(p). A strategy 
u for P (respectively, 0) is a winning strategy if all (respectively, none) of the 
plays in which P (respectively, 0) follows o are in G. A game is defermined if 
there is a winning strategy for one of the players. It is well known [4] that games 
with plays of infinite length need not be determined; extensions of this result will 
play an important role in our analysis of game-semantical validity. 

It will often be convenient to describe games in a way that does not adhere to 
all the conventions built into our definition of strict games. In a relaxed game, we 
do not assume that the players move alternately; rather, the rules specify, for 
each position, who is to move next. We require, for technical reasons, that a 
player has only finitely many consecutive moves. Clearly, any game of this sort 
can be regarded as a strict game by declaring a block of consecutive moves by the 
same player in the relaxed game to be a single move in the strict game. This will, 
of course, require that the set M of possible moves in the strict game is a bit more 
complex than in the relaxed game. 
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We also allow, in relaxed games, rules of the sort ‘in position p , the next move 
must be in Mp' where M,, is some subset of M. In a strict game, where all moves 
in M are always legal, we regard such a rule as meaning that any play violating 
the rule is lost by the player responsible for the earliest violation. 

As an example for both sorts of relaxation, we mention the game CY A /3, where 
O’s first move, the choice of cr or /3, may be immediately followed by another 
move of 0 if he is the starting player in the chosen component. Furthermore, the 
first move is required to be a choice of (Y or /? and all subsequent moves are 
required to be in that component. Writing out the rules for (Y A /3 in strict form 
(assuming that CK and /I are strict) should convince the reader of the utility of 
relaxed descriptions of games. 

We are now ready to define and discuss the operations on games that will be 
used to interpret the connectives of linear logic. 

The negation of a game (M, s, G) is defined by 

--CM, s, G) = (M, 5, “M - G), 

which simply interchanges the roles of the two players. In particular, a winning 
strategy for either player in -G is the same as a winning strategy for the other 
player in G. Obviously --G = G. 

The (nonrepeating or additive) conjunction of two games (MO, so, G,) A 

(Ml, sl, Cl) has the following relaxed description. The set of moves is MO U Ml U 
(0, 1). The first move is by 0 and must be 0 or 1. If it is 0 (respectively, l), then 
subsequent play is governed-both as to whose move it is at any finite stage and 
as to who had won when the play is complete-by the rules of G,, (respectively, 
G,). A winning strategy for 0 in Go A G1 consists (essentially) of a choice of one 
constituent, G,, or Gi, and a winning strategy for 0 in that constituent. (The word 
‘essentially’ covers the technicality that a strategy includes responses to positions 
that cannot arise when the strategy is followed. If this irrelevant part of a strategy 
is ignored, then our description of strategies for Go A Cl is accurate.) A winning 
strategy for P in G,, A G1 consists of winning strategies for P in both constituent 
games. 

The (nonrepeating or additive) disjunction of two games is defined by reversing 
the roles of P and 0 in the preceding description of conjunction. Equivalently 
and more succinctly, 

Go v G1 = -(-Go A -G,). 

The repeating or multiplicative conjunction, also called the (tensor) product, 
G,, CO Cl of games (MO, so, Go) and (Ml, sl, G,) is somewhat more complex. We 
assume that Go and G1 are in strict form and that MO and Ml are disjoint 
(otherwise replace them with disjoint copies). We describe Go ‘$3 G1 in relaxed 
form. Its set of moves is M = MO U Ml. If p E <“M is any position, (P)~ and (P)~ 
are the subsequences of p consisting of moves in MO and Ml, respectively. We 
use similar notation (x)~ and (x)~ when x E “M is an (infinite) play of Go @ Gi. 
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Note that although x is infinite, one of (x),, and (x)~ could be finite. In any 
position p, 0 is to move if and only if 0 is to move in both (P)~ and (p), 

according to the rules of Go and Gi, respectively. (Any move in M is legal for 0.) 
So P is to move at position p in G,, C3 G1 if and only if P is to move at (P)~ or (P)~ 

(in Go or G,, respectively) or both; if he is to move at both (P)~ and (p),, then 
any move in M is legal, but if he is to move only at (p)i, then his next move must 
be in Mi. A play x E “M is won by 0 if at least one of the subsequences (x)~ is in 
“Mi - Gi, i.e., is infinite and is a win for 0 in the appropriate constituent game 
Gi. Thus, P wins the play x of Go C3 G1 if and only if (x)~ E 4oM U Gj for both 
i=Oandi=l. 

This completes the definition of Go C?J G1, but the following observations will 
clarify what can happen during the game and will be useful in several proofs 
below. 

First consider any move by P or by 0 in Go C3 Gi, and let p be the position 
after this move. Then 0 is to move in at least one of the two constituent games, 
i.e., at least one of the subsequences (p)i has 0 to move in Gj. Indeed, if the 
move in question was by P and was in Mi, then 0 is to move in Gi afterward. 
(Recall that Go and G1 are in strict form, so after a move of P in Gi it is O’s 
turn.) On the other hand, if the move in question is by 0, then, before this move, 
0 was to move in both constituent games; he moved in one, so it is still his move 
in the other. 

Thus the only time player P can be to move in both constituents is at the 
beginning of the game (if so = s1 = P). In this situation, P makes two consecutive 
moves, one in each constituent. (Of course, the strict version of G,, @ G, would 
combine these two into a single move.) In all other situations, the players move 
alternately in Go C0 G1 (even in our relaxed version). After 0 moves in a 
constituent Gi, P must reply in the same Gi, as it is not his move in the other 
constituent. Thus, if two consecutive moves are in different constituents, then the 
first is by P and the second by 0, unless the two moves are at the very beginning 
and are both by P. For any legal position p of length 32 in Go @I Gi, the 
subsequence (P)~ or (P)~ that does not contain the last term of p has 0 to move; 
in other words, a constituent game that has been abandoned (or has not been 
started after two moves) has 0 to move. 

The rules governing who is to move at a position p and who has won a play x 
can be conveniently summarized by the following device. Label the situations ‘P 

has won’ (for an infinite play X) and ‘0 is to move’ (for a finite position p) with 
the truth value True, and label the situations ‘0 has won’ and ‘P is to move’ by 
False. Then the truth value associated to any play x or position p in Go @ G, is 
obtained from the truth values associated to (x)~ or (P)~ in Go and to (x)i or (P)~ 

in G1 by applying the truth table for conjunction. We refer to this as the truth 
table description of 8. The verification that this description agrees with our 
definition of Go C3 Gi is routine, given the observation above that abandoned 
constituents have 0 to move. For example, an infinite play x is labeled False if 
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and only if 0 has won it, if and only if at least one of (x)” and (x), is infinite and 
won by 0, if and only if at least one of (x),, and (x), is labeled False (because a 
finite (.r& would have 0 to move and would therefore be labeled True). 

A winning strategy of P in Go @ G, must include winning strategies for P in 
both Go and G1, for 0 could choose to always move in the same constituent Gi 
and then P wins the play of Go 63 G, if and only if he wins in that Gi. Conversely, 
if P has winning strategies in both games Gi, then he can use them to win the 
‘simultaneous exhibition’ Go 8 G1 by playing the two constituent games inde- 
pendently. Thus, P has a winning strategy for Go @ G1 if and only if he has 
winning strategies for both G0 and Gi. This is why @ can be considered a form of 
conjunction. 

One might expect that 0 has a winning strategy for Go 03 G1 if and only if he 
has one in at least one Gi, but only half of this is true. With a winning strategy for 
one constituent, 0 can win Go 63 G, by never playing in the other constituent. But 
it is possible for 0 to have a winning strategy G,, @I G, without having one in 
either G, or G,. We shall discuss this possibility further after introducing the dual 
operation @. 

The operation dual to tensor product, the repeating or multiplicative 
disjunction, also called par, is defined by 

Go @ Cl = -(-Go ‘23 -Cl). 

Its definition can thus be obtained from the definition of 63 by interchanging P 
and 0. The same interchange, applied to our discussion of 63, gives information 
about @ that we will use without further explanation. For the truth-table 
description, however, we prefer to interchange not only P and 0 be also the two 
truth values. The effect of this is that the labeling rules (True when P wins or 0 
is to move, False when 0 wins or P is to move) are the same as for 63, but the 
truth table for conjunction is replaced by that for disjunction. 

Notice that the same labeling conventions also lead to a truth-table description 
of -, using (of course) the truth table for negation. It follows that, if a game is 
built from various subgames by means of -, @ and @, then the winner of an 
(infinite) play and the next player to move at a (finite) position can be computed 
from the corresponding information in all the subgames by means of our standard 
labeling rules and a truth table as follows. In the expression for the compound 
game in terms of its subgames, replace each subgame by the truth value 
describing the play or position there, replace the game operations -, @ and @ 
by negation, conjunction and disjunction, respectively, and evaluate the resulting 
Boolean expression. (Caution: if the same subgame has several occurrences in the 
compound game, then these occurrences can have different truth values assigned 
to them, as there may be different positions or plays there. Thus, although 
A @ -A corresponds to a tautology, it is not the case that, in a game of this 
form, 0 is always to move and P wins.) 
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To finish our discussion of the basic properties of 63 and @, we describe a 
game (from [2] but known earlier) G such that 0 has a winning strategy in G C3 G 
without having one in G; in fact, P will have a winning strategy in G @ G (which 
clearly implies 0 does not have one in G). Fix a nonprincipal ultrafilter U on the 
set w of natural numbers. G is played as follows. P moves first by putting into his 
pocket some finite initial segment [0, a] of w. (Formally, his move is just [0, a].) 
Then 0 puts into his own pocket a finite initial segment [a + 1, b] of what 
remains. Then P takes [b + 1, c] for some c > b, and so on. After infinitely many 
moves, w has been partitioned into two parts- the set in P’s pocket and the set 
in O’s pocket. One and only one of these sets is in U and the owner of that set 
wins the game. 

Here is a winning strategy for 0 in G @ G. As P moves first in G, he makes 
two consecutive moves to open G 60 G, one in each component. Suppose these 
moves are [0, a01 and [0, a,], and without loss of generality suppose a0 s a,. Then 
0 should play [al + 1, a, + l] (i.e., pocket just one number) in the latter 
constituent. When P replies, necessarily in the same constituent, with [a, + 2, b], 
then 0 should switch to the other constituent and play [a, + 1, b]. From now on, 
at each of his moves, 0 switches constituents and chooses the same interval that 
P just chose in the other constituent. This ensures that the set pocketed by 0 in 
the first constituent game and the set pocketed by 0 in the second constituent 
game are complementary, modulo a finite set (bounded by b). As the ultrafilter U 
is nonprincipal, it contains (exactly) one of these almost complementary sets, so 
0 wins (exactly) one of the constituent games and therefore wins G @ G. 

A similar argument shows that P has a winning strategy in G @ G, and 
therefore neither player has a winning strategy in G. 

We complete the definition of our operations on games by introducing the 
(unbounded) repetition Z?(G) of a game G. The definition of R(G) is slightly 
simpler if 0 moves first in G, so we begin with this case. 

Let (M, 0, G) be a strict game where 0 moves first. The set of moves of R(G) 
is M x w. (Referring to the description of R(G) in Section 1, we regard 
(m, i) E M x w as move m in the ith copy of G.) For a position p E <,(A4 x w) or 
a play XE~(MX~), and for any iEm, consider the subsequence of p or x 
consisting of all terms with second component i, and let (P)~ or (x)~ be obtained 
from this subsequence by deleting these i’s and keeping only the first 
components. Thus (P)~ E ‘“M and (x)~ E ““‘M. At position p, 0 is to move in 
R(G) if and only if 0 is to move at all the positions (P)~ in G; any move in 
M x o is legal for 0. Then P is to move in R(G) at p if and only if for some i, P 
is to move in G at (P)~. There are two constraints on P’s moves. First, he must 
move in a constituent game where it is his turn, i.e., the second component of his 
move must be an i such that P is to move in G at (P)~. Second, P must play 
consistently in the various constituent games in the sense that as long as 0 makes 
the same moves in the ith and jth copies of G, so must P. Formally, this means 
that, if P makes a move (m, i) and if (p), is a proper initial segment of (p);, then 
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the first term in (p)] after (P)~ must be m. (This consistency requirement is what 
distinguishes R(G) from an infinitary tensor product.) 0 wins a play x of Z?(G) if 
and only if at least one (x)~ is infinite and is a win for 0 in G. 

Since 0 moves first in G, it is easy to verify that the two players move 
alternately. After a move by P, it is O’s move in all copies of G ; after a move by 
0, it is P’s move in exactly one copy of G, so P never has a choice about which 
copy of G to move in. As with tensor products, a constituent game G in R(G) 
can be abandoned only in positions with 0 to move. It follows that the rules 
governing who is to move at p and who has won x in R(G) are given by a 
truth-table description using infinite conjunction. 

Now suppose G is a game (M, P, G) in which P moves first. If R(G) were 
defined as above, P would make the first move, say (m, i). Thereafter, he would 
have to keep playing (m, i) with the same m (by the consistency rule) and 
different i’s. 0 would never get to move, since it would take forever for P to 
make his opening moves in all of the copies of G. As the consistency rule requires 
all these opening moves to be the same, we adopt the convention that P's first 
move, made in any copy of G, is instantly duplicated in all the other copies, so 
that the play can proceed. Formally, this means that, for any nonempty p E ‘24 

and any x E "M, with first term (m, i), we define (P)j and (X)j as before, but for 
i #j we define (P)~ and (X)i to have an extra term m at the beginning. The rest of 
the definition of R(G) is then exactly as in the case where 0 moves first in G. 

We write R for the dual operation, R(G) = -R(-G). Thus, everything we 
have said about R applies to R if we reverse the roles of P and 0 (and, in the 
truth-table description, interchange True with False and conjunction with 
disjunction). 

Finally, we fix the notations T and l. for games in which P and 0, 
respectively, have winning strategies. It will not matter how these games are 
chosen, but for definiteness we let T be the game with set of moves M = {0}, 
with 0 moving first, and with the unique possible play being a win for P, and we 

define T to be -1. 

3. Linear logic, aifme logic and game semantics 

In this section, we present the formal systems, introduced by Girard [6], which 
our game semantics is intended to interpret. To avoid repeated references to 
Table 1, we present Girard’s system using a notation for the connectives that 
matches our notation in Section 2 (mostly taken from [2]) for the operations on 
games. This notational change is only for convenience in the present paper and 
should not be construed as recommending a new notation for linear logic. 

Propositional linear logic can be viewed as a standard sequent calculus for 
propositional logic minus the rules of contraction and weakening. The absence of 
these two rules means that classically equivalent formulations of the rules for 
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conjunction and disjunction are no longer equivalent. One formulation is used for 
A and v , the other for 43, and @. We follow the fairly standard convention of 
using linear negation to write all our sequents in one-sided form, i.e., with all 
formulas on the right of I. A sequent with formulas on the left of I- is to be 
identified with the result of applying - to these formulas while transposing them 
to the right. 

The formulas of linear logic are built from propositional variables, negated (by 
-) propositional variables, and the constants 1, I, T, 0 by means of the binary 
operations 8, @, A, v and the unary operations R and I?. A sequent is an 
expression t r, where r is a finite list of (not necessarily distinct) formulas. 
Negation of formulas is primitive for atomic formulas and is defined for other 

formulas by 

--A=A, 

-l= I, --I =l, 

-T=O, -o= I, 

-(A@B)=(-A)@(-B), -(A@,)=(-A)@(-B), 

-(A AB)=(-A)v(-B), -(A vB)=(-A)A(-B), 

-R(A)=@-A), -l?(A)=R(-A). 

(Strictly speaking, the first of these formulas, --A = A, is a definition only 
when A is a propositional variable; it is a trivial theorem for all other A.) 

The axioms and rules of linear logic are the following, 
represent arbitrary formulas and r and A represent arbitrary 
Logical axiom. 

I-A, -A. 

Structural rules. 

in which A and B 
lists of formulas. 

(Exchange) 
t-r, A, B, A 

(Cut) 
tr,A kA,-A 

tr, B,A, A' i-r,A . 

(Notice that the exchange rule lets us ignore the order of formulas in a sequent; 
we can work with multisets of formulas rather than lists.) 
Additive rules. 

kT,A tr,B 

tT,AhB ’ (A) 

w T, CT) 

w, A kl-, B 

kr,AvB' kI',AvB' (v) 

(There is no rule introducing 0.) 
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Multiplicative rules. 

tl-, A FA, B 

FI-,A,A@B’ 

bl, 

El-, A, B 

b&A&B’ 

w 
w, I’ 

Exponential rules. 

w, A 

br, l?(A) ’ 

A. Blass 

kr 
tr, l?(A) ’ 

tr, Z?(A), Z?(A) 

t-r, l?(A) ’ 

M(r), A 

M(r), R(A). 

(8) 

(1) 

(@o> 

(I) 

(Dereliction fi) 

(Weakening 8) 

(Contraction R) 

w 

(In the (R) rule, Z?(r) means the result of applying Z? to all members of I’.) 

Afine logic (see [7]) is obtained by adding to linear logic the structural rule of 
weakening: 

kr 
kl-,A' 

(Weakening) 

By including the rule of weakening, affine logic obliterates the distinction 
between 1 and T as well as the distinction between 0 and 1. To see this, note 
that kI, T is provable in linear logic (by (T)) and kl, 0 is provable in affine logic 
(by (1) and weakening). The former is (up to exchanges) both t I, -0 and 

IT, -1, while the latter is (up to exchanges) both tl, -T and I-O, -I. These 
sequents and the cut rule allow us to replace 0 by I, 1 by T , T by 1 and I by 0 in 
any deduction. 

Conversely, if we identify 1 with T and 0 with I in linear logic, the rule of 
weakening becomes derivable as 
and we have FA, T by (T). But 
the cut rule gives EI’, A. 

The preceding observations 
presentation of affine logic. 

follows. From kr, we obtain kr, _L by rule (I), 
T has been identified with --I (i.e., with l), so 

establish the following simplification of the 
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Proposition. Afine logic is equivalent to the system obtained from linear logic by 
deleting the primitive symbols 0 and 1, redefining - T as I and -I as T, and 

deleting rule (1). 

By a game interpretation of linear or affine logic, we mean a function assigning 
to each propositional variable a game. Such a function extends to arbitrary 
formulas by interpreting each of the symbols - (applied to atomic formulas), 
A, v , 63, &I, R, R of linear logic as the operation on games written with the same 
symbol in Section 2, and by using the games T and I defined at the end of 
Section 2 as the interpretations of T and I, respectively (and of 1 and 0, 
respectively, in the case of linear logic). Notice that all the clauses in the 
definition of negation for nonatomic formulas are correct when read as assertions 
about game operations. This ensures that negation in linear logic is interpreted as 
the operation - on games, even if the formula being negated is not atomic. A 
sequent is interpreted by applying @ to the interpretations of the formulas in it. 
When an interpretation has been specified, we can use the same symbol for a 
formula or sequent and its interpretation; this convention will cause no confusion 
and will facilitate reading. 

A sequent or formula is true in an interpretation if, in the game associated to 
the sequent by the interpretation, P has a winning strategy. A sequent or 
formula is (game-semantically) valid if it is true in all game interpretations. 

Soundness Theorem. For an arbitrary game interpretation, all axioms of afine 
logic are true and all rules of afine logic preserve truth. 

Corollary. All sequents provable in afine logic are valid. 

Proof of the Soundness Theorem. We work with the simplified system of affine 
logic described in the Proposition. Recall that sequents are interpreted by 
combining the interpretations of the formulas with @3; this makes soundness of 
the @ rule trivial. Recall also that, when games are combined by 64, P has the 
option of switching from one component game to another at any of his moves, 
and P wins the compound game if he wins at least one component. For the rest of 
this proof, we work with a fixed but arbitrary game interpretation, and we do not 
distinguish notationally between a formula or sequent and its interpretation as a 

game. 
Soundness of the exchange rule is trivial, as @ is a commutative operation on 

games. Rules (I) and (Weakening I?) are special cases of the general weakening 
rule, which is sound because if P has a winning strategy for r, then he can win 
r @A by using his strategy in r and never playing in A. This observation also 
shows that, since P has a winning strategy in T , he has one in r @ T, so (T) is 
also sound. We now verify the soundness of the remaining axioms and rules one 
by one. 
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Logical axioms. P wins A @ -A by a mimicking strategy as follows. Assume, 
with loss of generality, that P moves first in A (otherwise interchange the roles of 
A and -A). So a play of A @ -A starts with a move by 0 in -A. Let P 
immediately switch to the other constituent, A, and make the same move there. 
Whatever move 0 replies with in A is to be copied by P in -A. In general, after 
any move by 0, P should immediately switch to the other constituent and make 
the same move there. This strategy ensures that the plays in the two constituents, 
(x)~ and (.x)r in the notation of Section 2, are identical. As P is playing opposite 
roles in A and -A, he is sure to win one (and lose the other), thereby winning 
A&J--A. 

Cut. Suppose P has winning strategies o in r 6 A and r in A &I -A. Here are 
instructions by which P can win r & A. Pretend that, in addition to the 
components r and A, a game of A is being played; you will make the moves of 
both P and 0 in this imaginary A. Your actual moves in r and your moves as P 
in A will be played according to a; your actual moves in A and your moves as 0 
in A, i.e., P in -A, will be played according to r. The situation may be visualized 
in terms of two assistants of P, of whom one knows u and the other knows t. The 
former plays (as P) in the real r and the imaginary A; the latter plays (as P) in 
the real A and (as 0) in the imaginary A. Whenever P is to move in r @ A, 
hence in both r and A, one of the assistants, namely the one who is to move in A, 
is to move in his game, r @ A or A 63 -A. If that assistant’s move is in r or A, 
then it counts as P's move in the actual game r @ A. If it is in A, then afterward 
it is the other assitant’s turn; the assistants keep playing according to u and t until 
one makes a move in r or A. Notice that they cannot keep moving in A forever, 
for if they did, then whichever of them lost that play of A would also have lost his 
game r @ A or A @ -A (since only finitely many moves were made in r and A), 
an absurdity since cr and t are winning strategies. This observation shows that P 
(or his assistants) eventually produces a move in r 61 A, so we have described a 
strategy for P in r 6 A. It remains to verify that it is a winning strategy. 

Consider any play of r @ A where P used this strategy. Suppose first that, 
during this play, the assistant responsible for r @A made only finitely many 
moves (in r and in A). Then the other assistant made infinitely many moves (as 
every move by P is from one of the assistants) and therefore won A @ -A. As 
only finitely many moves were made in A, this assistant must have won A, and so 
P wins r6?1 A. An analogous argument applies if the assistant responsible for 
r &I -A made only finitely many moves. There remains the case that both 
assistants made infinitely many moves and therefore won their games r @ A and 
A @ -A. If the first assistant won r or the second won A, then P won r @ A, as 
desired. Otherwise, both assistants won A, which is absurd as they played A 
against each other. This completes the proof that the cut rule is sound. 

(A). Suppose P has winning strategies o for r @ A and t for r @ B. Here are 
instructions whereby P can win r @ (A A B). As 0 moves first in A A B (to pick 
a component), by the time it is P's move in r @ (A A B), 0 will have chosen A 
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or B, so the game being played is effectively r 60 A or r @ B, and P uses u or t 
accordingly. 

(v). Suppose P has a winning strategy o in r 63 A. Then P wins r& (A v B) 
by making his first move in the component A v B, choosing A there, and then 
following u. The other (v) rule is handled the same way. 

(8). Suppose P has winning strategies o in r @A and t in A 61 B. Here are 
instructions whereby P can win r& A @(A 03 B). Make sure that all your 
moves in r and A (respectively, in A and B) are played in accordance with o 
(respectively, r). Whenever it is P's move in r @ A (8 (A @B), it is (by the 
truth-table descriptions for @ and 63) P's move in r, in A, and in at least one of 
A and B. (By our discussion of 8, ‘at least one’ can be replaced by ‘exactly one’ 
as soon as some moves have been made in A f& B.) If it is P's move in A, then o 
provides a move in r or in A; otherwise, t provides a move in A or in B. In 
either case, P can move in accordance with our instructions, so we have a 
strategy. To see that it is a winning strategy, consider any play using it. If P wins 
either the ror the A component, then he wins r @I A @ (A 60 B). If not, then he 
wins A (because o must win at least one of r and A) and B (similarly) and 
therefore A @ B and therefore r @ A 6?l (A @ B). 

Dereliction I?. If P has a winning strategy in r @ A, then he can use it to win 
r @I l?(A) by never exercising his option to start a second copy of A in l?(A). 

Contraction I?. Suppose P has a winning strategy o in r@ &A) @l?(A). To 
win r @ l?(A), he should pretend that he is playing r @ l?(A) 6b l?(A), the even 
(respectively, odd) numbered constituents of the one actual l?(A) being identified 
with all the constituents of the first (respectively, second) imaginary Z?(A). Using 
o in the imaginary game gives, via this identification, a win for P in the real game. 

(In the imaginary game, the consistency rule constrains 0 only for pairs of A's 
within the same 8(A); in the real game, all pairs of A's are constrained. So the 
real game is actually a bit easier for P. In other words, o contains information 
that P will never need for the real game.) 

(R). Suppose P has a winning strategy u in R(r) @A, i.e., 

R(C,) (2 * . -@k(C,)@A. To win Z?(C,)@ -+ -@@C,)@R(A), he should 
proceed as follows. Within each R(C) there are countably infinitely many copies 
of Ci, indexed (according to the definition of R) by o. Use a pairing function to 
re-index them by w X w; the copies indexed by (k, I) for a fixed k and varying 1 

will be called the kth block of copies of Ci. The idea is that the kth blocks of 

5) 6 C, and the kth copy of A in R(A) will be treated as a copy of 
- * * @ k(C,) @A, and o will be applied to it. More precisely, when P is 

to move in R(C,) 63 - . * @ l?(C,) @ Z?(A), it is his move in all copies of all the Ci’s 
and in some copy, say the kth, of A. Then P should make the move prescribed 
by u for the current position in this kth copy of A and the kth blocks of all the 
C’s; this makes sense, as this is a position with P to move in 
R(C,) 63 - * dU?(C,)@A. T o see that this strategy is a winning one, consider 
any play where P uses it. If P wins any component of any B(C), then he wins 
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Z?(G) @ * - . @ l?(C,) 60 R(A), as desired. If not, then, for each k, as P has not 
won any copy of any Ci in the kth block, he must have won the kth copy of A, 
because o is a winning strategy. But then P has won Z?(A) and therefore 
R(C,) 6 * * * 60 l?(C,) ($6 R(A), as desired. q 

4. Additive completeness 

The Soundness Theorem proved in Section 3 makes it natural to ask about 
completeness. Are all valid sequents provable? We shall show in this section that 
the answer is affirmative when all the formulas in the sequent belong to the 
additive fragment of the language, defined as follows. Additive formulas are 
formulas built from propositional variables, their negations, T, and I by means 
of the additive connectives A and v. This definition is adapted to affine logic; in 
linear logic T and 0 are additive while 1 and I are not, but our definition 
incorporates the identification of 1 with T and 0 with I in affine logic. A sequent 
is additive if all the formulas in it are additive. Notice that, when a sequent has 
two or more formulas, they are interpreted as if joined by 0, so this nonadditive 
connective is implicit in additive sequents. 

Additive Completeness Theorem. An additive sequent is provable in afine logic if 
and only if it is game-semantically valid. 

Proof. ‘Only if’ is given by the Corollary of the Soundness Theorem, and does 
not require additivity. To prove ‘if’, we suppose that this an unprovable additive 
sequent, and we construct strict games to interpret the propositional variables in r 
so that P has no winning strategy in r. The game associated to a propositional 
variable p will have as its set of possible moves (0, l}, and P will move first. We 
have yet to specify the set GP c_ “(0, l} of plays won by P in the game associated 
to p, but what we have already specified is enough to determine the set of 
positions in the game r and the set of strategies for P. As there are only 
countably many positions, the number of strategies is the cardinality c of the 
continuum. Fix a well-ordering of the set of all strategies for P, having 
order-type the initial ordinal of cardinality c: thus, each strategy u has fewer 
than c predecessors in this well-ordering. 

We shall define the sets GP E “(0, 1) by transfinite recursion over this 
well-ordering. At the recursion step associated to a strategy o, we shall decide, 
for finitely many x E “(0, l}, which G,,‘s x will be in. We say that these x’s are 
decided at stage o. These decisions will be made in a way that ensures that o is 
not a winning strategy for P in r. As every possible strategy for P in roccurs in 
our well-ordering, the whole construction will ensure that P has no winning 
strategy for r. The rest of the proof consists of showing how to carry out one step 
in the induction, say the step associated to u. 
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There have been fewer than c previous steps, each deciding only finitely many 
x E (0, l}. We split each of these x’s into the two subsequences of moves 
attributable to the two players; thus, for each decided X, one subsequence 
consists of the even-numbered terms in x, the other of the odd-numbered terms, 
because we are dealing with strict games. There are fewer than c subsequences so 
obtained - two from each of fewer than c decided x’s- so we can fix a 
z E “(0, l} that is not such a subsequence. 

Let r be C1, Cz, . . . , C, where the Ci are additive formulas. Consider an 
arbitrary play of the game r, i.e., of C1 (8. . - @ C,. The moves in any 
component game Ci come in two phases. In phase 1, the players are choosing 
conjuncts or disjuncts in subformulas for Ci. For example, if Cj is (p A -4) v r, 

where p, q, r are propositional variables, then phase 1 contains P’s opening 
move, choosing p A -q or r, and, if he chooses the former, then phase 1 also 
contains O’s reply, choosing p or -4. Each phase 1 move replaces the ith 
component of r by one of its conjuncts or disjuncts, and phase 1 continues in the 
ith component until it is reduced to a literal, i.e., to a propositional variable or 
the negation of one or T or 1. Then comes phase 2, in which the players play 
(the game associated to) that literal. In any component, the phase 1 moves 
precede the phase 2 moves, but it is possible for phase 2 to begin in one 
component before phase 1 is finished in another component. It is also possible for 
a play of r to have only finitely many moves in some component, and then phase 
1 may not be finished there. 

At any stage of the play, we write r’ for the current list of component games. 
Initially, r’ is r, but every phase 1 move replaces some formula in r’ with one of 
its conjuncts or disjuncts. 

The preceding discussion concerned an arbitrary play of r. We now focus our 
attention on the particular play of r in which P follows strategy u (recall that we 
are describing step u in the inductive construction of the sets G,,) while 0 

(1) plays phase 1 so that I-T’ is never provable; 
(2) plays phase 2 moves in (the games corresponding to) literals of the form T 

or I in the only legal way; and 
(3) plays phase 2 moves in literals of the form p or -p by making the fixed 

sequence z of moves in each such literal. 
Recall that the set of moves for T and I is simply {0}, so ‘the only legal way’ 

in (2) means the moves are all 0’s. Recall also that z was chosen to be distinct 
from the subsequence of either player’s moves in every decided x. Thus, (3) 
ensures that the plays x in literals of the forms p and -p are not yet decided. 

Instructions (2) and (3) are unproblematic, but we must verify that 0 can play 
as required by instruction (1). Initially, t-r’ is lr, which is unprovable, by 
assumption. If kr’ is unprovable at some point during the play, and if P then 
makes a phase 1 move, then l-r’ will still be unprovable after this move. Indeed a 
phase 1 move of P replaces a component of the form A v B with A or with B, so, 
up to order of components, t-r’ before the move was tA,A v B and tr’ after 
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the move is either kA,A or IA, B. But if either FA, A or I-A, B were provable, 
then, by rule (v), I-A, A v B would also be provable, a contradiction. Thus, 
phase 1 moves of P cannot make l-r’ provable. A phase 1 move of 0 changes l-r’ 
from kA,A A B to I-A,A or to LA, B. By rule (A), if I-A, A A B is unprovable, 
then so is at least one of I-A, A and FA, B. So 0 can make his phase 1 moves in 
accordance with instruction (1). 

Consider a particular play of r where P follows strategy u while 0 obeys 
instructions (l)-(3) above. By the preceding discussion of (l), I-T’ never becomes 
provable. In particular, by rule (T), the literal T never occurs in kr’. Also, by 
the logical axioms and weakening, the literals in r’ never include both a 
propositional variable p and its negation -p. 

For each occurrence of a literal p (respectively, -p) that eventually appears in 
r’, if infinitely many moves are made in that component of r’, let x E “(0, l} be 
the sequence of phase 2 moves in that component, and declare x to be out of 
(respectively, in) GP. As we noticed earlier, instruction (3) ensures that the x’s 
involved here are different from the previously decided x’s, so the decisions just 
made (for stage a) do not conflict with earlier decisions. Nor do they conflict with 
each other, even if the same x arises in several components, for p and -p cannot 
both occur in r’. If (as is likely) some x has just been put into or out of certain 
GP’s but remains undecided for other Gg’s, then make these other decisions 
arbitrarily. 

This completes stage u in the construction of the sets G,. Notice that the 
particular play of r used in the construction, with P following u while 0 follows 
(l)-(3), is won by 0. Indeed, 0 won components of the form p (respectively, 
-p) where infinitely many moves were made, because we put the corresponding 
x’s out of (respectively, into) GP; 0 wins components of the form I automatically 
(if infinitely many moves are made there); and there are no componnts of the 
form T. So every component where infinitely many moves are made is won by 0. 
Thus, o is not a winning strategy for P in r. 

After the inductive construction of the GP’s in complete (with arbitrary 
conventions for any x’s not decided at any stage), we have a game interpretation 
for the propositional variables in rsuch that no strategy for P wins r. Thus Uris 
not game-semantically valid. 0 

Remark. In the special case where rconsists of two formulas, one containing no 
negated variables, the other containing no unnegated variables, and netiher 
containing T or I (so r amounts to AkB, where A and B are built from variables 
by means of A and v), the Additive Completeness Theorem is a special case of 
[2, Theorem 41. The proof there is essentially the same as the proof just given. 
Notice that, in this special case, the deduction rules for A and v are equivalent to 
Whitman’s description [ll] of the inequalities that hold in free lattices. 
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5. The multiplicative fragment 

A multiplicative formula is one built from propositional variables, negated 
propositional variables, T, and I by means of the multiplicative connectives @ 
and @. A sequent is multiplicative if every formula in it is. In this section, we 
shall characterize, in terms of classical propositional logic, the valid multiplicative 
sequents. 

We observe first that validity of a sequent kC1, . . . , C, is equivalent to validity 
of the formula Cr @ . * + 63 C,. Since & is a multiplicative connective, we need 
only characterize validity of multiplicative formulas. 

Multiplicative formulas can be read as formulas in classical propositional logic, 
with 60 and 63 read as conjunction and disjunction, respectively (and -, T and 
I read as a negation, truth and falsity, respectively). We do not speak of 
translating multiplicative formulas into the standard symbolism of classical logic 
(replacing 8 with A, etc.), as this might lead to confusion with the additive 
connectives. Instead, we pretend that classical logic is formulated with -, 8 and 
@ as its connectives, so that multiplicative formulas of affine logic are also 
formulas of classical logic. So it makes sense to speak of a multiplicative formula 
being a tautology, or of a positive or negative occurrence of a variable in a 
multiplicative formula, or of any other concept familiar from classical proposi- 
tional logic. In particular, by an instance or (substitution instance) of a 
multiplicative formula A, we mean a formula obtained by replacing the 
propositional variables in A uniformly by some multiplicative formulas; if 
negations of nonatomic formulas result, these are to be understood according to 
the definition of such formulas in linear logic, so that the result is a multiplicative 
formula. 

We call a multiplicative formula binary if each propositional variable has at 
most one positive and one negative occurrence. 

Multiplicative Validity Theorem. A multiplicative formula is game-semantically 
valid if and only if it is an instance of a binary tautology. 

Proof. ‘If’. Since any instance of a valid formula is clearly also valid, it suffices to 
prove that all binary tautologies are valid. In fact, it will suffice to consider binary 
tautologies in which every variable occurs exactly twice (once positively and once 
negatively) and T and _L do not occur. For brevity, we call such tautologies 
special. 

To see that we may confine attention to special tautologies, suppose these 
were known to be valid, and consider an arbitrary binary tautology C. Starting 
with C, we repeatedly replace subformulas according to the following rules as 
long as any of the rules apply. 

(1) Any propositional variable having only a positive occurrence (respectively, 
only a negative occurrence) is replaced by L (respectively, T). 
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(2) A subformula of the form T 63 A or I & A is replaced by A. 
(3) A subformula of the form T @A (respectively, _L @A) is replaced by T 

(respectively I). 
It is clear that all the formulas produced are binary tautologies, that the process 

terminates (because each replacement reduces the total number of occurrences of 
propositional variables, @ , and @), and that the final result C’ is either a special 
tuatology or simply T . So by our assumption (and the obvious validity of T), C’ 
is valid. We intend to infer from this that C is valid, as desired. It suffices to 
consider the replacement process one step at a time and show that, if a valid 
formula B’ is obtained from a formula B by a single replacement of the form (l), 
(2) or (3), then B is also valid. In fact, we shall show that tB, -B’ is provable; 
since this and FB’ yield kB by the cut rule, the desired conclusion will follow by 
the Soundness Theorem. To show that I-B, -B’ is provable, we use the following 
elementary lemma. 

Lemma 1. Let B and B’ be multiplicative formulas. Suppose B’ is obtained from 
B by replacing positive occurrences of a subformula X by X’. Then I-B, -B’ is 

deducible from FX, -X’. 

Proof. The result is obvious if B is X or if no occurrences of X are replaced. If B 
is B1 03 B2 # X, then we may assume inductively that both FB,, -Bi and 

k&, -B; are deducible from t-X, -X’ . But from these we obtain by the 8 rule 
FBI ‘23 BZ, -B;, -B; and then by the @I rule kB1 ‘$3 B2, -B; @ -B& which is 
kB, -B’. The case of @I is handled the same way. Cl (Lemma 1). 

The lemma applies to the situation at hand, namely replacements according to 
(l)-(3), provided we remember that, in a multiplicative formula, compound 
subformulas as in (2) and (3) can occur only positively, and provided we regard 
the replacement of a negative p by T in (1) as replacement of the positively 
occurring -p by 1. (A negative occurrence of p in a multiplicative formula can 
only be in the context -p.) We must check that EX, -X’ is provable whenever X 
is replaced by X’, i.e., we must check provability of 

tA, --I, i-T @A, -A, tl @A, -A, 

tT @A, -T, t-l @A, -I, 

but all of these are easy. This completes the verification that we can safely confine 
our attention to special tautologies. 

Fix a special tautology C and fix a game interpretation. We assume that the 
games assigned to variables are strict games. (As usual, we shall use the same 
symbol for a formula and for the game assigned to it by this interpretation.) We 
shall complete the proof of the ‘if half of the theorem by describing a winning 
strategy for P in the game C. 
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By the literals in C, we shall mean the occurrences of variables and negated 
variables from which C is built by @ and &. Thus, a negative occurrence of a 
variable p does not count as a literal; rather its context -p is a literal. As C is 
special, the literals come in pairs, each containing p and -p for some variable p. 

The game C consists of subgames, one for each literal, and the rules governing 
who is to move in a given position and who has won a given play are summarized 
by the truth-table description in Section 2. It will be convenient to think in terms 
of the parse tree of C, with C at the root, literals at the leaves, and 63 or @ 
labeling the internal nodes. A position or play gives a labeling of the leaves as in 
Section 2 (True if P has won or 0 is to move, False if 0 has won or P is to 
move), and the truth values propagate from the leaves to the other nodes 
according to the truth tables for conjunction (63) and disjunction (@). Since C is 
a tautology, the root will have label True provided each pair of literals, p and 
-p, have opposite truth values, so that the labeling is really a truth assignment 
(in the sense of ordinary logic). In fact, since only positive connectives are used in 
the tree, the root will also have label True if some p and -p are both labeled 
True. But it is, of course, entirely possible that p and -p are both labeled False 
in a particular position or play (e.g., if P is to move in both of these subgames), 
and then the root C may well be labeled False. 

Whenever P is to move at a certain position in game C, i.e., when C is labeled 
False, his move consists of choosing a path through the parse tree from the root 
to a leaf 1, such that all the nodes along the path are labeled False, and then 
making a move in 1. (The choice of path will involve a real choice at @ nodes, 
where a False label means that both successors are also labeled False. At @ 
nodes, usually (i.e., expect at the first visit to this node) only one successor will 
be labeled False; see the discussion of @ in Section 2.) 

The essential idea for P’s winning strategy is to make sure that the plays in 
paired subgames p and -p are identical. Since he plays opposite roles in these 
two subgames, he will (if infinitely many moves are made in each of them) win 
one and lose the other, so the final labeling of the tree will be a real truth 
assignment, C will be labeled True, and so P will win C. We must still show that 
P can carry out the proposed strategy and that he will win even if some of the 
subgames are unfinished (i.e., have only finitely many moves made in them). For 
this purpose, we must describe the strategy in somewhat more detail. 

P is to ensure that, at each moment during the play of the game, for each pair 
p, -p of literals, either the positions (=sequences of moves already played) in p 

and -p are identical or else one of them equals the other plus one subsequent 
move made by 0. This condition is certainly satisfied initially, as all positions are 
initially the empty sequence. 

Furthermore, this condition cannot be destroyed by a move of 0. To see this, 
suppose the condition is satisfied at a certain moment, which we call ‘before’, and 
that 0 then moves, say in subgame p. If the positions in p and -p were identical 
before, then afterward the position in p is that in -p plus the single move just 
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made by 0, so the condition remains satisfied. If the position in p before were 
that in -p plus a move by 0, then 0 could not have moved in p as it would be 
P’s turn there. 

Finally, if the position in -p before were that in p plus a move of 0, then the 
presence of that move of 0 in -p means that the position without the move, the 
‘before’ position in p , is a position with 0 to move in -P, hence is a position with 
P to move in p; so again 0 could not move in p. This shows that a move of 0 in p 
(or, for symmetrical reasons, in -p) cannot destroy the condition that P is trying 
to maintain. 

The preceding discussion shows furthermore that, as long as the condition is 
satisfied, whenever the positions in p and -p are different, it is P’s turn to move 
in both of them, whereas of course if the positions in p and -p are equal, then P 
is to move in one and 0 in the other. 

We show next that if the condition holds at a certain position and if P is to 
move, then he can move so as to maintain the condition. More precisely, we 
show that there is a literal I such that (1) the path from 1 to the root in the parse 
tree of C is labeled entirely with False, so that P can legally move in the subgame 
1, and (2) the position in -1 is one move longer than that in 1. Here (2) means 
that 0 has made a move in -1 which P can simply copy in 1, thereby maintaining 
the desired condition. We call a literal 1 good at a given position if (1) and (2) 
hold. 

Lemma 2. Let the parse tree of C be labeled, using the appropriate truth tables at 
the interior nodes but arbitrary labels at the leaves. If C is labeled False, then there 
is a pair p, -p of literals such that the paths joining them to the root are both 
labeled entirely with False. 

Proof. Suppose we had a labeling that is a counterexample to the lemma. We 
saw earlier that, because C is a tautology yet labeled False and because the 
connectives at interior nodes are monotone, there must be a pair of literals p, -p 
both labeled False. As the labeling is a counter-example to the lemma, the path 
from one of p, -p, say p, to the root contains a label True. Alter the labeling of 
the leaves by changing p from False to True, and consider the resulting new 
labeling of the parse tree (in accordance with the connectives, as always). The 
change at the leaf p can affect only the labels along the path from p to the root 
and indeed can only increase these labels (i.e., change False to True) because the 
connectives are monotone. There was already a True label somewhere on this 
path. That label will therefore be unchanged. But then all labels between that 
True and the root are also unaffected by our change at p. In particular, the root C 
retains its previous label, False. This fact, and the fact that no True has been 
changed to False, means that our modified labeling is still a counterexample to 
the lemma. It has strictly fewer leaves labeled False than the original 
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counterexample. So, by repeating the process, we have a contradiction. 
q (Lemma 2) 

The lemma shows that whenever P is to move, thre is a pair of subgames p, 

-p such that P can legally move in either of them. In particular, the positions in p 

and -p cannot be identical, for then it would be P’s move in only one of them. If 
the condition that P wants to maintain holds, then the position in one of p, -p is 
one move longer than in the other. But then the latter is a good subgame. 

We have seen that if P is to move and the condition holds, then there is a good 
subgame and P can move in any good subgame so as to maintain the condition. 
Once the good subgame is chosen, the appropriate move for P is unique; it 
consists of copying O’s last move in the paired subgame. We specify P’s strategy 
more completely by requiring that if there are several good subgames, then he 
should move in one where the sequence of previous moves is as short as possible. 
If several are equally short, choose arbitrarily between them. 

Having described P’s strategy and verified its feasibility, we show that it is a 
winning strategy. Suppose x were a play in which P used this strategy but lost. 
For each literal 1, we let (x)~ be the subsequence of moves in n in subgame 1. We 
indicated a proof earlier that P wins if each (x)~ is infinite; the possibility of some 
(x)[‘s being finite necessitates a subtler argument. 

Label the nodes of the parse tree of C in the usual way for the play X. As P 
lost, C is labeled False. Apply Lemma 2 to obtain p and -p such that the paths 
joining these literals to the root are both labeled entirely with False. Then (x), 
and (x), cannot both be infinite, for then they would be identical, thanks to P’s 
strategy, and would have opposite labels (by definition of -). Nor can one be 
finite and the other infinite, for P’s strategy ensures that their lengths never 
differ by more than one. So both are finite, and one, say (x), without loss of 
generality, is one move shorter than the other. Fix such a p. 

While playing the game C, leading to the play X, the players arrive after finitely 
many moves at a position with the following properties for every literal 1. 

(1) If (x)[ is finite, then all moves that will ever be made in subgame 1 have 
already been made. (Subgames that will remain unfinished have been per- 
manently abandoned.) 

(2) If (x)~ is infinite, then the number of moves already made in subgame 1 
exceeds the number that have been (or ever will be) made in any finite (x)~,. 

Of course, once (1) and (2) hold, they continue to hold at all later positions. 
Call a position 1,2-late if conditions (1) and (2) hold. 

Consider any 1 ,Zlate position with P to move. By (l), P’s move is in some 1 
such that (x), is infinite. But, by his strategy, P moves in a good literal where the 
current move sequence is as short as possible. By (2), the current move sequence 
in p is shorter than in I, since (x), is finite and (x)[ infinite. So if p were good, P 
would not have moved in 1. Therefore, p is not good. But the position in -p 

(which is (x), by (1)) is one move longer than the position in p (which is (x),), 
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because of our choice of p. So the only way for p not to be good is that, on the 
path from p to the root, there is a node labeled True. 

We claim that, from some moment on, the positions leading to the play x 
satisfy 

(3) Some node between the root and p is labeled True. 
We have just shown this for positions where P is to move. When P moves, 

however, labels only increase. (One leaf goes from False (with P to move) to 
True (with 0 to move), the other leaves are unchanged, and internal nodes are 
given by monotone connectives.) So P’s move cannot destroy (3). Thus, all 
1,Zlate positions, except possibly the first, are in fact 1,2,3-late (in the obvious 
sense). 

At any 1,2,3-late position, consider the location of the True label nearest p on 
the path from p to the root. Consider how this location changes as the play 
proceeds. A move of P is always at a good literal, is therefore never at a leaf 
beyond this (or any) True label, and therefore never affects either this True label 
or the False labels between it and p. So the location is unchanged when P moves. 
A move of 0 can only decrease labels (from True to False), by the dual of the 
argument in the preceding paragraph. So the False labels between p and the 
location being studied are not changed; the True label at this location may 
change to False, and in this case the new location of the True nearest p (which 
still exists by (3)) is nearer the root. In summary, the location of the True nearest 
p moves, at 1,2,3-late stages of the play, only toward the root. As the path on 
which it moves is finite, it must eventually stop moving. Let X be its final 
location. Thus, at all sufficiently late stages of the play, we have 

(4) X is labeled True. 
At such stages, P will never move in literals that are beyond X in the parse 

tree (i.e., are subformulas of X), because he only moves in good literals and 
these have only False labels between them and the root. Therefore, at 1,2,3,Clate 
stages, 0 moves at most once in any literal beyond X, for once he moves in such 
a literal, it is P’s turn there, and it remains P’s turn there forever since P does not 
move there any more. Therefore, from some stage on, we have 

(5) No moves are made in literals beyond X. 
But this means that the labeling of leaves beyond X does not change any more. 

This labeling is therefore the same for any 1,2,3,4,5-late stage as for the final 
(infinite) play x. The same therefore holds for the label of X. But X is labeled 
True at a 1,2,3,4,5-late stage, by (4), and is labeled False for x, by our choice of 
p. This contradiction shows that, when he uses the strategy we described, P 
cannot lose C. This completes the proof of the ‘if’ half of the theorem. 

‘Only if. Let the multiplicative formula C not be an instance of a binary 
tautology. We shall construct, for each variable p occurring in C, a strict game, 
with set of moves (0, l} and with P moving first, such that C is not true in this 
game interpretation. As in the proof of the Additive Completeness Theorem, 
there are c (the cardinality of the continuum) strategies for P in C, and we 
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well-order them so that each has fewer than c predecessors. We define the sets 
G, c_ “(0, 1) of plays won by P in the games associated to the variables p, by 
transfinite induction along this well-ordering. At the stage corresponding to 
strategy a, we decide membership in the GP’s for finitely many x E “(0, l}, so as 
to ensure that o is not a winning strategy for P in C. 

For a tixed o, here is how stage o of the construction is to proceed. For each 
occurrence 1 of a literal (i.e., a positive occurrence of a variable or negated 
variable) in C, choose a different sequence q E “(0, l} that does not occur as the 
sequence of moves of either player in any previously decided x. Note that the 
same variable or negated variable may have several occurrences, corresponding 
to several subgames of C; these count as different literals 1 and have different 2,‘s 
assigned to them. 

Construct a play of C as follows. P uses u. 0 chooses, at each of his moves, a 
subgame (=occurrence of literal) 1 in which (1) he can legally move (i.e., the 
current labels between 1 and the root of the parse tree are all True), and (2) the 
current position in 1 contains as few moves as possible, subject to (1). In 1, 0 uses 
.zl as his sequence of moves. 

If 1 and 1’ are two occurrences of the same literal, and if the play x that we have 
just produced has infinite subsequences (x), and (x),, of moves in these two 
subgames, then (x)! # (x),, because O’s moves in these two plays are zl # +. 

On the other hand, it is possible that 1 and 1’ are occurrences of p and -p, 
respectively, and that (x)( = (x)[, and these subsequences are infinite. Indeed, O’s 
moves z! in (x)~ might match P’s moves in (x)[, (since 1’ is the negation of 1, the 
players have reversed roles) and vice versa; for example, P’s strategy u might 
involve copying O’s moves between 1 and 1’. If this occurs, we say that 1 and 1’ are 
matched. Notice that, by the preceding paragraph, any 1 is matched with at most 
one 1’. 

Consider the formula C* obtained from C by changing all occurrences of 
variables to distinct variables except that matched occurrences of literals p and 
-p retain the same variable. Clearly, C is an instance of C* and C* is binary. But 
we assumed that C is not an instance of a binary tautology. So C* is not a 
tautology. Fix a truth assignment making C* false. 

We regard this truth assignment as assigning truth values as labels to the leaves 
of the parse tree of C. This labeling, which we extend in the usual way to the 
whole parse tree and call the preferred labeling, need not be a real truth 
assignment for C, since different occurrences of the same variable in C became 
different variables in C*, and may thus have received different truth values. 
However, if 1 and 1’ are matched literals in C, then one remained the negation of 
the other in C*, so they received opposite truth values. Summarizing the 
properties of the preferred labeling that we shall need later, we have 

(1) matched literals have opposite truth values, and 
(2) the root C is labeled False. 
For each literal occurrence 1 such that (x)[ is infinite in the play x described 
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above, we note that (x)~ is a member of “(0, 1) that was not decided at any 
previous stage of the definition of the GP’s. Indeed, q, the subsequence of O’s 
moves in (x)!, was chosen to differ from the subsequence of either player’s moves 
in any previously decided sequence. We can therefore freely choose which GP’s to 
put any such (x)[ into. We use this freedom to try to make the labeling of the 
parse tree associated to x match the preferred labeling. Thus, if 1 is an occurrence 
of p (respectively, -p) and is labeled True (respectively, False) in the preferred 
labeling, then we put (x)! into GP. On the other hand, if 1 is an occurrence of p 

(respectively, -p) and is labeled False (respectively, True) in the preferred 
labeling, then we decide that (x)~ is not to be in GP. (Other decisions, about 
membership of (x)[ in GP when 1 is neither p nor -p, can be made arbitrarily.) 
The decisions just described do not conflict with one another. Indeed, the only 
possibility for conflict would be if (x)[ = (x)[. for two distinct occurrences of 
literals, 1 and 1’. But then 1 and 1’ are matched and therefore get opposite truth 
values in the preferred labeling. Since one of 1 and 1’ is an occurrence of some p 

and the other of -p, opposite labels ensure the same decision about (x)~ E G, and 

@)I. e Gp. 
This completes the description of stage o of the construction of the GP’s. It 

remains to verify that this stage ensures that o is not a winning strategy for P in 
the game C. For this purpose, we consider the play x used for stage 0. It was 
defined as a play where P uses strategy u, so we need only check that 0 wins this 

play. 
If the sequence (x), of moves in (the game corresponding to) 1 were infinite for 

every occurrence 1 of a literal in C, then our task would be trivial. The decisions 
made at stage o would ensure that the labeling of the parse tree of C associated to 
the play x agrees, at all leaves and therefore at all other nodes as well, with the 
preferred labeling. Since the latter makes the root false, it follows (by the 
truth-table descriptions of 8 and 63 games) that 0 wins the play x. 
Unfortunately, there is no reason to expect each (x)~ to be infinite, and a finite 
(x)~ may give 1 a label (as always, True if 0 is to move, False if P is to move) 
different from the preferred label. So a subtler argument is needed. This 
argument is quite similar to one already used in the ‘if’ part of this proof, so we 
omit some details. 

In the play of the game C, at all sufficiently late stages, we have, for each literal 
occurrence 1, 

(1) if (x)[ is finite, then all moves that will ever be made in subgame 1 have 
already been made, and 

(2) if (x), is infinite, then the number of moves already made in subgame 1 

exceeds the length of every finite (x),,. 
At moves of 0 this late in the game, he does not move in any subgame 1 for 

which (x)~ is finite (by (l)), but he would move in such a subgame if he legally 
could (by the second clause in the description of how 0 chooses his moves in x, 
and by (2)). So, when 0 is to move this late in the game, the path from each such 



Game semantics for linear logic 209 

1 to the root must contain a label False. A move of 0 only decreases labels, so 
such a False is still present afterward, when P is to move. So, at all sufficiently 
late stages 

(3) if (x)[ is finite, then the path from I to the root contains at least one label 
False. 

If we temporarily fix an I such that (x)[ is finite and if we consider, on the path 
from 2 to the root, the False nearest 1, we see that its location is unaffected by 
moves of 0 and can move only toward the root at moves of P. So this False is 
always at the same location X from some stage on. At such late stages, 0 will 
never move in subgames 1 beyond X in the parse tree (i.e., occurrences of literals 
within the subformula X), and therefore P will move there only finitely often. 
Waiting until all these moves have been made, we see that, at all sufficiently late 
stages in the play, nothing happens beyond X, so the labeling of the subtree with 
root X remains unchanged. In particular, as X was chosen to have label False at 
all sufficiently late stages, it also has label False in the final labeling associated to 

the play x. 
We have shown that every 1 for which (x), is finite is within a subformula X(I) 

whose final label is False. We complete the proof by considering the following 
three labelings of the parse tree of C. 

(a) The preferred labeling. 
(b) The final labeling associated to the play x. 
(c) The labeling that agrees with (a) and (b) at all 1 for which (x)[ is infinite but 

assigns False to all I for which (x), is finite. 
Notice that (c) makes sense, because we already know that (a) and (b) agree at 

1 when (x)[ is infinite. We also know that (a) labels the root C with False; by 
monotonicity of @I and @, (c) also labels the root with False. Now consider what 
happens if we change labeling (b) to (c). The only changes at leaves of the parse 
tree are decreases (from True to False) at some Z’s for which (x), is finite. The 
only changes at interior nodes are decreases (by monotonicity again) along the 
paths from such l’s to the root. But every such path contains a node X(I) that was 
already labeled False in (b) and that is therefore unaffected by the decreases in 
going from (b) to (c). But if the change at 1 does not affect the label at X(I), it 
cannot affect labels nearer the root. In particular, C has the same label in (b) as 
in (c), and we already know that the latter is False. So C is False in the labeling 
associated to x, i.e., 0 wins the play x. 

This shows the stage u of our construction prevents CT from being a winning 
strategy for P in C. The whole construction therefore ensures that P has no 
winning strategy in (this interpretation of) C, and so C is not valid. 0 

We close this section by pointing out a curious consequence of the theorem just 
proved and the soundness of the cut rule. If A @ C and B @ -C are instances of 
binary tautologies, then so is A @ B. Notice that this consequence has (except 
for the notation @ for disjunction) nothing to do with linear logic or with games; 
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it is a result about classical propositional logic. Notice also that it is not entirely 
trivial, for the binary tautologies of which A & C and B & -C are instances need 
not have the form A’@ C’ and B’ 6 -C’; the C parts need not match. 
Nevertheless, the result has (as might be expected) a direct proof, which we leave 
as an exercise for the reader with the hint that it is related to the involution 
principle of [5]. 

6. Incompleteness and the meaning of tensor products 

The Multiplicative Validity Theorem proved in the preceding section enables us 
to show that the completeness theorem fails for the multiplicative fragment. 
Specifically, the formula 

[(-A @ -A) @ (-A 6 -A)] 6 [(A @A) ‘23 (A @A)] 

is an instance of (in customary notation) 

(1) 

[(A A B) v (C A WI + [(A v C) A (B v o)l, 

a binary tautology. Hence, (1) is game-semantically valid. But the sequent k(1) is 
not provable in affine logic. Probably the easiest way to see this is to use the 
Cut-Elimination Theorem and observe that, in a cut-free proof of t(l), the last 
step must be a @ inference from 

t( -A @ -A) 8 (-A @ -A), (A @I A) GQ (A da A), 

and the step leading to this must be a (8 inference. But a @ inference leading to 
this sequent has as one of its premises !-A @I A or t-A @I -A, neither of which is 
provable because neither is a tautology. 

The unprovability of l-(l) or equivalently of 

(A@A)@(A@A)tfA@A)@(A63A) (2) 

can also be verified using the phase semantics of [6]. Specifically, consider the 
six-element commutative monoid (1, a, a2, b, b2, 0} with multiplication defined 
in the obvious way (e.g., 1 . x =x, 0 * x = 0, a - a = a2) subject to ab = a3 = b3 = 

0, and let I = (0). This is a model for affine logic because I is an ideal. If A is 
interpreted as the ideal (a) generated by a, then the left and right sides of (2) are 
interpreted as (a, 6) and (a’, b’), respectively. As the former is not a subset of 
the latter, (2) is not phase-semantically valid, and hence not provable. 

The failure of completeness for the multiplicative fragment suggests that the 
‘meanings’ given to the multiplicative connectives by the inference rules of linear 
logic do not match the ‘meanings’ given to the same connectives by game 
semantics. To analyze the difference, it is useful to regard inference rules as a sort 
of game (see [l, Section 1.51) which can then be directly compared to game 
semantics. 
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The game associated to a sequent tT is played as follows. P claims that br is 
provable, and as justification for this claim he specifies, as his first move, a 
particular inference having kr as its conclusion; he thereby implicitly claims that 
all the premises of this inference are provable. 0, on the other hand, claims Eris 
unprovable, so he cannot accept the provability of all the premises of P's first 
move. As his first move, 0 chooses one of these premises bA and disputes P's 
claim that it is provable. From this point on, the players proceed as above, but 
with tA in place of br. If a player is unable to move at some stage (in P's case 
because no inference has the desired conclusion; in O’s case because P's last 
move was an axiom, i.e., a zero-premise inference), then that player loses. If the 
game continues forever, 0 wins. Since the game is open for P (i.e., if P wins, he 
does so at some finite stage), it is determined [4]. Player P has a winning strategy 
if and only if bris provable. 

We propose to compare the ‘proof-theoretic’ game, using a cut-free axiomati- 
zation for affine logic, for the sequent l-Cl, . . . , C, with the game C, QD - . * 631 CT 

associated to this sequent by a game interpretation as defined in Section 2. And, 
in view of the purpose of this comparison, we intend to concentrate on the 
handling of connectives, particularly multiplicative connectives. Let us consider 
P's opening move and O’s response in the proof-theoretic game for a sequent 
t-Cl,. . . , C,. For example, P's opening move might be to cite a logical axiom (in 
which case 0 has no response, so P wins) or weakening (in which case 0 must 
respond with tC2, . . . , C,_,) or exchange (in which case 0 must respond with the 
permuted version of lC1, . . . , C, specified by P). These possibilities have no 
direct counterpart in the game semantics of C1 (8. * . @ C,, nor do they shed light 
on the meanings of connectives (except for -). More interesting situations arise 
when P invokes one of the rules associated to connectives. In such a case, P can 
arbitrarily choose any compound formula among the Ci as the principal formula 
of an inference; P's move and O’s reply replace this formula with another (or two 
others in the case of Contraction fi) and may remove some of the side formulas 
in the case of 8. P's freedom to choose Ci and, if he wishes, to choose different 
Cj’s on subsequent moves corresponds to his freedom to choose which subgame 
of cr @ - * * @ C, to move in at each of his moves. In other words, the commas in 
a sequent are treated by the proof-theoretic semantics similarly to the game 
interpretation of 63. 

If P chooses a Ci of the form A A B, then his move provides the two premises 
FA, A and FA, B (where A consists of the Cj’s other than Ci and where we have 
ignored exchanges); 0 must then choose one of these, i.e., he must decide 
whether to replace A A B with A or with B. This corresponds precisely to the 
opening move in the game interpretation of A. 

If P chooses a Ci of the form A v B, then he has the option of providing 
FA, A or IA, B as the (only) premise, and 0 must accept this choice. So in this 
case, P chooses whether to replace A v B with A or with B, just as in the game 
interpretation of v . 
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If P chooses a Ci of the form A @ B, then his and O’s moves together replace 
it with the two formulas A, B. We have already seen that the proof-theoretic 
game treats commas like the game interpretation of @. So it treats @ the same 
way. 

If P chooses a Ci of the form A @ B, however, the situation is more 
complicated. According to the rule of inference @, P must partition the set of 
side formulas into two sets, r and A, and then 0 is allowed to choose between 
tT, A and FA, B. No such partitioning occurs in the game interpretation of @, so 
it appears that the meanings of @ in the proof rules and in game semantics do 
not quite agree. (It is ironic that the discrepancy should concern the one 
connective for which [2] and [6] use the same symbol.) 

What happens in the game interpretation for formulas of the form A @B in 
contexts like r @ A @ (A @ B)? Since 0 may switch freely between A and B at 
his moves in the component A 8 B, P must, if he is to win, be prepared to answer 
O’s moves in both A and B. A splitting into r @ A and A @ B is a rather simple 
way for P to do this; he decides that O‘s moves in A should be answered in A or 
in r, while O’s moves in B should be answered in B or in A. (See the proof of the 
@I case of the Soundness Theorem for details.) 

But there are more complicated ways for P to handle A @3 B, and our 
counterexample to multiplicative completeness rests on just such a possibility. It 
will be convenient to consider the counterexample in its binary form 

k(-A@-B)@(-C&-D),(A@C)'8(B@DD). 

P can handle the first 8 here as follows. When 0 plays in (-A 6 -B), P 
responds using either the A component of A @ C (along with the -A component 
in -A @ -B) or the B component of B @ D (along with the -B component in 
-A @I -B). Which of the two options he takes depends on which component of 
the second 8 has been chosen by 0. (The other case, where 0 plays in 
-C @ -D, is handled similarly.) In a sense, P is partitioning the side formula 
(A 6?1 C) 63 (B @I D) into a part (r) to be used with -A @ -B and a part (A) to 
be used with -C @ -D, but (in contrast to what is required in the proof- 
theoretic game) r and A are not simple constituents, the two sides of a &J or 
rather of a comma, but noncontiguous fragments. 

The 8 of game semantics allows P more (and subtler) ways to defend a 
formula than the @ of the proof system. In other words, my A 63 B is a weaker 
(=easier to defend) assertion than Girard’s A 8 B. But it is not too weak. 
Specificially, my A 8 B is strong enough to serve as the negation of -A @ -B for 
the purposes of the cut rule; the inference 

tr,A@B Ed,-A@-B 

kr,A 

is, as we saw in Section 3, game-semantically correct. This situation seems 
peculiar, since Girard’s rule of inference for 0 is exactly what is needed for 
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cut-elimination with the @ rule. So how can cut still work for my weaker 
version of @? The answer seems to be that there is no rule of inference for my 
version of @; more precisely, no rules of inference for @ will make the 
proof-theoretic game behave like the game-semantical 8. Less precisely (and 
less truthfully, perhaps), my 63 is entirely foreign to proof theory. Yet, from the 
game-theoretic point of view, my @ is very natural, being obtained by reversing 
the roles of the players in the construction @ (which interprets the commas in 
sequents), while the proof-theoretic 8 seems to put an artificial restriction on P. 

7. Quantifiers 

Universal and existential quantification of a formula amount to (possibly 
infinite) conjunction and disjunction of instances of that formula. Girard’s 
inference rules for quantifiers [6], 

II’. A 

tl-, /jxA ’ 

where x is not free in r, and 

are analogous to the rules for the additive connectives, 

kl-, A 
and 

kr, B 

tT,AvB FZ-,AvB’ 

(A) 

<v> 

(VI 

In (A), the premise can be viewed as giving each instance of A (each ‘conjunct’ 
in l\xA), always with the same side formulas r, which is similar to what happens 
in (A) and quite different from (8). Again, in (V), the premise has a single 
instance of A, analogously to ( v ) and not to (@). 

We digress for a moment to speculate about the possibility of ‘multiplicative 
quantifiers’ V and 3 related to A and V as 63 and 63 are to A and v. There is a 
plausible analog of the C3 rule, namely 

tr, A 

l-3xI’, VxA ’ w 

where 3xr means the result of quantifying by 3x every formula in r. But I see 
no plausible analog of the @ rule with the current notion of sequent. What would 
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be needed is a way for all the instances of a formula to be ‘joined by commas’, 
like the various formulas in a sequent. 

Such generalized sequents would also allow us to avoid using 3 in the 
conclusion of the V rule, which seems most desirable since a rule ‘should not’ 
introduce new connectives or quantifiers on the side formulas. 

Returning to the ‘sensible’ additive quantifiers A and V, we introduce game 
semantics for them in analogy to the game semantics for A and v. Thus, a 
game-structure ‘t132 consists of (1) a nonempty universe of discourse M (or, for 
many-sorted logic, a universe for each sort), (2) functions to serve as 
interpretations of function symbols, and (3) for each predicate symbol R and each 
appropriate list a of elements of the universe, a game to serve as the 
interpretation of Ra. Given such a structure a and given an assignment s of 
values (in the universe) to all variables, we interpret terms t as elements t,Js] of 
M as in the usual semantics of first-order logic, and we interpret formulas A as 
games A&s] as follows. An atomic formula Rf is interpreted as the game 
associated (by part (3) of the structure n) to R(t,,[s]). The propositional 
connectives are interpreted as in Section 3 above. 

(l\-4d4 and W%M are interpreted by first forming the family of 
instances A& but x em] for m E M (where ‘s but x H m’ is the function that 
agrees with s except that it sends x to m) and then applying the game-theoretic 
operations of infinitary A and V (cf. [2]) to obtain &,,., (A& but x I+ m]) and 
VmEM (A&s but x -ml). These infinitary operations are defined in general as 
follows. In /\iccAi (respectively, Vi,,Ai), the first move is by 0 (respectively, 
P) and consists of choosing some i E I; subsequent moves constitute a play of Ai, 
and the winner is determined by the rules of Ai. Thus, P has a winning strategy in 
&Ai (respectively Vis,Ai) if and only if he has one in every (respectively, 
some) Ai. 

As in propositional logic, we interpret a sequent ECi, . . . , C, as the game 
ci 60 * * * @ C, (literally, as C&s] 6 * . * @ C&s], but we omit ?lX and s when no 
confusion results). A sequent FZ is true in a model YX if, for every assignment s of 
values to variables, P has a winning strategy in the game Zm[s]. Validity means 
truth in all structures. 

The Soundness Theorem for proportional game semantics carries over to the 
case of quantificational logic. The new steps in the proof are as follows. For the 
A rule, suppose FZ, A is true in m132; we must show that I-Z, /\xA is also true in 
rol. So let any assignment s be given; we exhibit a winning strategy for P in 

By definition of @, whenever P is to move in this game, 0 has already made 
his first move,the choice of m, in the component /jmEMAW[s but x H m]. So P 
can simply use his winning strategy (given by hypothesis) in (r&A)& but 
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x -ml. Of course we are using here that T[s but x HM] = T[s] because x is not 
free in r in the A rule. 

For the V rule, suppose tr, A[t/x] is true in 92, and let s be given; we need a 
winning strategy for P in 

&r[s] @ &” A& but x * m]. 

Let m,, = t&s] and notice that (just as in classical logic) 

A[t/x]&] =A& but x ++m,]. 

Thus, by hypothesis, P has a winning strategy (J in Tm[s] @Am [s but x I+ mo], 
and he can therefore win 

I&$] @ V A& but x -ml 
rnEM 

by choosing m0 in the V component and thereafter using 0. This completes the 
verification that quantified affine logic is game-semantically sound. 

The Completeness Theorem for the additive fragment also carries over from 
propositional logic to quantificational logic. Given an unprovable sequent I-r, we 
construct a model 2X and an assignment s such that P has no winning strategy in 
I&&]. The universe M of YR consists of all the terms in the language, and function 
symbols are interpreted in the obvious way. The assignment s sends each variable 
to itself (viewed as a member of M). The games associated to Ra are strict games 
with (0, 1) as the set of moves and with P moving first; they are constructed by a 
transfinite recursion over all strategies u. The construction and the proof that it 
succeeds are exactly as in Section 4, with the following additional steps in the 
verification that, at phase 1 moves, P must play and 0 can play so that I-T’ 
remains unprovable. There are two new cases to consider. First, a phase 1 move 
of P may select a particular m. E M in a component VmeMA[Sbut x I+ m]. But 
this has the effect of replacing VxA in r’ with A[m,/x] (since m, is, like every 
element of M, a term and A[s but x urn,] = A[mo/x][s]), a replacement that 
preserves unprovability, thanks to the V rule. Second, 0 may need to choose an 
m, E M in a component A\msM A[s but x em]. In this situation, 0 should choose 
as m. a variable not occurring in I”. The effect is to replace AxA in r’ with 
A[mo/x], which preserves unprovability, thanks to the A rule and the easily 
verified fact that renaming bound variables (to get from ll\m&[m,/x] to 
l\xA) is a derived rule of Girard’s system. With these additions to the proof in 
Section 4, we obtain the Additive Completeness Theorem for quantificational 
logic. 

8. Dialectica interpretation 

Godel’s Dialectica interpretation [8] transforms arithmetical formulas into 
formulas with rather simple quantifier structure -existential quantifiers followed 
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by universal ones- but with quantifiers ranging over objects of higher type. 
(Unlike Skolemization, which achieves the same quantifier form and which raises 
types by only one, the Dialectica interpretation behaves well with respect to 
proof-theoretic structure and allows the higher-type variables to range only over 
relatively simple functionals.) In developing a category-theoretic approach to the 
Dialectica interpretation, de Paiva [3] found a connection with linear logic. This 
connection suggests looking at the Dialectica interpretation, in de Paiva’s 
category-theoretic version, from the point of view of game semantics, and this is 
the purpose of the present section. 

Under the interpretations given to the quantifiers in Section 6, the quantifier 
prefix VA attained by the Dialectica interpretation represents a move of P 
followed by a move of 0. Subsequent moves, in the game corresponding to the 
rest of the formula, behave like (interpretations of) additional quantifiers (over 
the set of moves). To genuinely capture, in game semantics, the idea that there 
are no quantifiers beyond the initial VA, we should interpret the rest of the 
formula, the quantifier-free part, by a game in which the players do not move. 

We did not allow such degenerate games in previous sections, insisting instead 
that plays of games must be infinite sequences. But there is no difficulty in 
extending the definitions so that some (finite) positions in a game are allowed to 
be terminal; the game would then include specifications of which positions are 
terminal and which player has won in each of these situations. In particular, the 
truth-table descriptions of 8 and & still work, and they indicate that to lose a 
game at a finite stage is just like being to move and having no (legal) move. (For 
more details, see [2], where terminal positions were systematically permitted.) 
This modification of the notion of game allows simpler definitions of T and I ; 

they are the games with no moves that are won by P and 0, respectively, and 
they are the only games with no moves. So these are the games that should 
interpret the quantifier-free parts of our VA formulas. 

There is a straightforward way to convert any game G into a game S(G) in 
VA form, i.e., consisting of only two moves, the first by P and the second by 0. 
The opening move of P in S(G) is a strategy for P in G; O’s reply is a play of G 
in which P uses this strategy. (An alternative view of S(G) is that P begins by 
divulging his strategy o for G, and then the players play G with P required to 
follow cr. The previous description recognizes that P has no real choices after 
divulging u and therefore the whole play, after the choice of u, amounts to a 
move by 0.) In terms of quantifier structure, S(G) amounts to Skolemization of 
G. 

We shall compare de Paiva’s operations on (what amount to) V/\ formulas, in 
her version of the Dialectica interpretation, with our standard operations on 
games followed by an application of S to restore VA form. 

De Paiva constructs, for an arbitrary category C with finite limits, a new 
category DC whose objects are relations a:A H U x X. (We shall describe the 
morphisms later.) For comparison to game semantics, we take C to be the 
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category of sets; otherwise we would have to deal with games having an object in 
C (rather than a set) of moves. A relation A s U x X, an object of DC, 
corresponds to the formula Vu l\x A(u, x), where u and x range over ZJ and X, 
respectively. It thus corresponds to the two-move game where P chooses a 
member u of U, then 0 chooses a member x of X, and finally P or 0 is declared 
the winner according to whether or not A(u, x) holds. We now consider the 
result of applying the (game interpretation of the) connectives of linear logic to 
such games and then restoring the two-move form by means of the ‘divulge P’s 
strategy’ operation S described above. 

For this purpose, one of the simplest connectives is 63, because S is not 
needed. The game 

is, when viewed as a strict game, already in VA form. Indeed, in this game, since 
it is initially P’s move (label False) in both components, P must begin by choosing 
both u and V. (Technically, he may choose them in either order, but this will not 
matter for the rest of the play.) Then (with both labels now true) it is O’s turn, 
and he must choose x or y. If he chooses x so that -A(u, x) or chooses y so that 
-B(v, y), then he has won (as it is P’s move and P has no move); otherwise, it is 
still O’s move (as both labels are still True), and he must move in the other 
subgame, winning if and only if his choice makes -A(u, x) or -B(v, y) hold. 
Thus, all of P’s moves are made before any of O’s, which means that this 8 
game, viewed as a strict game, is in VA form. If we simplify the game by (1) 
insisting that 0 choose both an x and a y, even if he could have stopped after the 
first choice (which will not affect play if X and Y are nonempty), and (2) ignoring 
the relative order in which P chooses u and v as well as the relative order in 
which 0 chooses x and y, then the @ game becomes 

which agrees with the tensor product in DC. 
For contrast with 8, let us next consider A. In the game 

0 moves first, choosing one of the components, and then P and 0 make the two 
moves constituting a play of that component. This is a three-move game, so we 
apply S to convert it to VA form. In the resulting game, P’s opening move is a 
strategy o, which in this case amounts to a choice of a reply (u or v) for each of 
O’s two possible opening moves in the A game. So u amounts to a pair (u, v). 
O’s reply to this is a choice of subgame and a choice of x or y in the chosen 
subgame; thus, 0 chooses an element of the disjoint union X + Y (which we can 
view as ({0} XX) U ((1) X Y), so O’s move codes in its first component his 
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choice of subgame). Thus, we obtain the VA game 

V A [(z E X and A(u, z)) or (z E Y and B(v, z))], 
(u,v)EuxvrEX+Y 

which agrees with the product in DC. 
Instead of considering & next, we consider the closely related connective of 

linear implication defined by 

c-D=(-C)goD, 

since this corresponds to a construction treated in [3]. In the game 

i.e., 

(A V -A(u, 4) @ (V A WV Y$ 
I4 * lJ Y 

play proceeds as follows. Initially (labels True on the left of @ and False on the 
right) it is O’s move, and he must choose U. Then it is P’s move, and he can move 
in either component. 

Case 1. P chooses x. If -A(u, x), P wins. On the other hand, if A(u, x), then P 
must choose v and 0 must reply by choosing y. Then P wins if and only if 
B(v, y). As long as the sets V and Y are nonempty, play is essentially unchanged 
if we require P and 0 to choose 2) and y even if P has already won by virtue of 
-A(u, x). With this modification, Case 1 is: P chooses x and V, 0 chooses y and 
P wins if and only if A(u, x) implies B(v, y). 

Case 2. P chooses v. 0 must reply by choosing y , and if B(v, y ), then P has won. 
On the other hand, if -B(v, y), then P must choose x, and P wins if and only if 
-A(u, x). Again, we modify this by making P choose x even if he has already 
won because B(v, y). So now Case 2 is: P chooses V, 0 chooses y, P chooses x 
and P wins if and only if A(u, x) implies B(v, y). 

The only difference between the two cases is in the order in which x and y are 
chosen. From the point of view of P, Case 2 is preferable, because P can see y 
before having to choose x. More precisely, any strategy for P that uses Case 1 
yields an equivalent strategy using Case 2. If we make a (third) inessential 
modification by insisting that P use his preferred approach, Case 2, then a 
strategy for P amounts to two functions, one giving v as a function of U, and one 
giving x as a function of u and y. So applying S to the (modified) game yields 

V A 
(v,~)VWX(UX” (u.y)EuxY 

[A(u, C(u, Y)) implies B(~u), ~11, 

which is the internal Horn construction in [3]. 
A winning strategy (Y, 5) for P in this modified game is, by definition, a 

morphism from A G U x X to B c_ V x Y in DC. 
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In our discussions of ‘8 and - above, after applying the connective to two 
VA games and before applying S, we applied some inessential simplifications to 
the games in order to match the constructions in [3]. I have not checked what 
happens if one abstains from such simplifications, so that a morphism from 
A c U x X to B c V x Y would be a strategy for P in the unmodified - game. 

Continuing with the list of connectives, we consider the v game 

(v lb+, 4) v (V A B(v, ~$7 
u x u Y 

which needs no S as it is already in VA form: P chooses a subgame and u or v, 
i.e., he chooses from U + V. Then 0 chooses from X + Y (losing if he chooses 
from the wrong component), P wins if A(u, x) or B(v, y) (or 0 chose from the 
wrong component). This corresponds to the relation 

A+B+(UxY)+(VxX)c(UxX)+(VxY)+(UxY)+(VxX) 

=(U+V)x(X+Y). 

In contrast to what happened for the other connectives, this does not correspond 
to any of the operations in [3]. In particular, de Paiva’s weak coproduct @ 
(corresponding to v) is quite different. 

Although de Paiva did not present an interpretation of @ -she worked with 
intuitionistic linear logic where @ occurs only in the context of linear 
implication - we record that, in 

y 0 A(u, x) @ \! /J B(u, Y), 

modified as before by requiring the players to continue choosing even if P has 
already won, a strategy for P is an element of (V X V”) + (V x U'), so S 

produces the game 

V /j [(z = (u, Y) E U x Vx and A(u, x) or B(Y(x), y)) 
rE(UXV~)+(VXU~) (X,J)EXXY 

or (z = (v, p) E V x Uy and A(,u(y), x) or B(v, y))]. 

Finally, we turn to the exponential operators R and Z? (or ! and ? in standard 
notation), of which only the former occurs in [3]. Recalling the definition of R for 
games where P moves first, we find that in a play of 

P begins by choosing a value of U, which serves as his opening move in all of the 
(infinitely many) copies of VU Ax A(u, x). Then 0 chooses (possibly different) 
x’s in all these copies, and 0 wins if and only if he wins in at least one copy. 
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Thus, this game is already in VA form, and S does nothing to it. Formally, it is 

V A 
U (X”,X,,...)E”X 

[A(u, x,) for all n]. 

This resembles de Paiva’s interpretation of ! in that there is a single u but many 

x’s and in that the original A is to hold for the one u and every x; it differs, 

however, in that we have infinitely many x’s where de Paiva has finitely many. 

We could modify the game semantics of R by adding the rule that, if 0 moves 

in infinitely many of the subgames, then he loses. This would bring our 

construction into agreement with de Paiva’s, and it would not damage the 

soundness proof for game semantics. 

The game interpretation of 

is a game where P and 0 alternately choose Ui’S and xi’s, each xi being chosen by 

0 just after P chooses ui and just before P chooses ui+,. P wins if and only if 

A(ui, xi) holds for some i. Applying S, we obtain the game 

V A 
(IrO,lr,....)ErI,U” c%.x,,...)tUX 

[for at least one i, A(pi(xO, . . . , x~_~), xi)]. 

References 

111 

PI 
[31 

141 

PI 

[61 
[71 

PI 

PI 

WJI 

WI 

P. Aczel, An introduction to inductive definitions, in: J. Barwise, ed., Handbook of 

Mathmetical Logic Stud. Logic Found. Math. 90 (North-Holland, Amsterdam, 1977) 739-782. 

A. Blass, Degrees of indeterminacy of games, Fund. Math. 77 (1972) 151-166. 

V.C.V. de Paiva, The Dialectica categories, in: J.W. Gray and A. Scedrov, eds, Categories in 

Computer Science and Logic, Contemp. Math. 92 (Amer. Math. Sot., Providence, RI, 1989) 

47-62. 

D. Gale and F.M. Stewart, Infinite games with perfect information, in: Contributions to the 

Theory of Games, Ann. of Math. Stud. 28 (Princeton Univ. Press, Princeton, NJ. 1953) 

245-266. 

A. Garsia and S. Mime, Method for constructing bijections for classical partition identities, Proc. 

Nat. Acad. Sci. U.S.A. 78 (1981) 2026-2028. 
J.Y. Girard, Linear Logic, Theoret. Comp. Sci. SO(l) (1987) l-102. 

J.Y. Girard, Towards a geometry of interaction, in: J.W. Gray and A. Scedrov, eds., Categories 

in Computer Science and Logic, Contemp. Math. 92 (Amer. Math. Sot., Providence, RI, 1989) 

69-108. 
K. Godel, Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunktes, Dialectica 

12 (1958) 280-287. 
K. Lorenz, Dialogspiele als semantische Grundlage von Logikkalkiilen, Arch. Math. Logik 

Grundlag. 11 (1968) 32-55; 73-100. 
P. Lorenzen, Ein dialogisches Konstruktivitatskriterium, in: Infinitistic Methods (PWN, Warsaw, 

1959) 193-200. 
P. Whitman, Free lattices, Ann. of Math. 42 (1941) 325-330. 


