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Abstract: Two-stage nonlinear  algorithms for the problem of identification in ,,~= are analyzed in terms of the Fourier transform of 
the window function. Conditions characterizing the robust convergence of the two-stage nonlinear algorithm are derived. The 
sufficiency of the conditions holds for a general  class of  window functions while the necessity is proved for robust convergence of 
the first stage of the algorithm under  the mild additional restriction that the window function is even symmetric. Some improved 
upper  bounds for the worst case identification error are also obtained. 
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I. Introduction 

An abstract framework for worst case system identification has been recently developed in [10]. A 
concrete problem which is a specific instance of this abstract framework is known as system identification 
in g¢'® [6,7]. A conceptual description of this problem is as follows. Suppose the experimental data are 
taken to be the noisy values of the frequency response of the unknown stable system at a finite set of 
frequencies. The problem is to find algorithms which map the experimental data into an identified model 
for which the worst case identification error (with respect to the noise and the unknown system) 
converges to zero in the ,,~¢'® norm as the noise level goes to zero and the number of data points goes to 
infinity. Further, it is of interest to derive explicit upper bounds on the worst case identification error in 
terms of the ~oo norm on the error system. In contrast to the prevailing stochastic approach of the theory 
of identification [16], this is a worst case deterministic formulation of the identification problem. (There 
are other  worst case deterministic formulations of the robust identification problem. See 
[12,14,13,15,21,23,27,29,28,30] and the references therein for some representative papers). 

This problem of identification in ~o~ has attracted much interest during the last couple of years and 
much progress has been made [1,6,7,8,9,10,4,5,24,20,25,26]. Several efficient algorithms [1,7,8,4,5,24,25] 
for solving the aforementioned identification problem have been developed. A common feature of these 
nonlinear algorithms is a 'two-stage' structure. Roughly speaking, in the first stage, one finds a good, 
possibly unstable, approximation to the given data, and in the second the Nehari theorem is used to find 
the identified model as the best stable approximation to this unstable approximation. A general class of 
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two-stage nonlinear algorithms was analyzed in [5]. Each algorithm in this class is characterized by a 
particular 'window function' which multiplies the inverse discrete Fourier transform of the given 
experimental data. In [5] a sufficient condition (on the window function) was obtained that guarantees 
the robust convergence of the resulting identification algorithm. A significant advantage of the approach 
developed in [5] is that one gets not one but a whole family of robustly convergent identification 
algorithms. This includes the previous algorithms in [7,4,24,25] as special cases. 

In this paper, we take a different approach to the analysis of the general two-stage identification 
algorithms. We analyze the performance of the identification algorithm in terms of the Fourier transform 
of the aforementioned window function. (This is in contrast to the approach taken in [5] where the 
analysis was directly in terms of the window function.) Here we establish conditions for the robust 
convergence of the two-stage nonlinear algorithm. These conditions are given in terms of properties of 
the Fourier transform of the window function. The sufficiency of the conditions holds for a general class 
of window functions while the necessity is proved for robust convergence of the first stage of the 
algorithm under the mild additional restriction that the window function is even symmetric. These results 
give tighter conditions than those in [5]. This approach also leads to improved error bounds, although 
they may be harder to compute in some cases. 

2. Preliminary 

Let X~ denote the Hardy space of bounded analytic functions in the open unit disc 2 .  For any 
function f ~ ~=, the ~= norm of f is defined as 

I[ f l l ~  := esssup{I f ( z )  l: z ~ } .  (2.1) 

Let zae denote the subset of ~ defined as 

d := { f :  f ~  ~'~, f is continuous on the unit circle}. (2.2) 

As is well known, ~¢ is a closed subalgebra of ~=. The transfer function of a linear, causal, gz 
BIBO-stable discrete-time shift invariant system can be viewed as an element in ~=. If such a transfer 
function has a continuous frequency response, then it is also in oa¢. In particular, if the system is /~ 
BIBO-stable, then its transfer function belongs to 5a¢. Transfer functions and Z-transform are defined such 
that stability corresponds to having no poles inside the unit disc. 

The problem of identification in ,,~= formulated by Helmicki, Jacobson and Nett [7] can be briefly 
described as follows. 

Problem. Assume that the 'true' unknown system to be identified is a stable, linear, shift invariant 
discrete-time system with transfer function /~ ~5~'c_~. Here ~ is a fixed subset of X~ containing the 
zero element; 

Given a finite number N of possibly noisy experimental frequency response data 

EU(/~, 4 ) : =  {EN(/~, 4 ) : = h ( e  j2~(k-l'/u) + 4k, 4 eBu(e ) ,  1 <k <N},  (2.3) 

where 

Bu(e) := {4 = (4 , ,  42 . . . . .  4N) e ~U: 14k [ < e  for k = 1, 2 . . . . .  N}; (2.4) 

Find an algorithm A N which maps the given i n f o r m a t i o n  EN(h, 4) into an identified model ^N h id ~ Y~ in 
such a way that the worst case model error 

eN( ,~ ,  
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satisfies 

lim eN(s  :, e) = 0. (2.6) 
e --'~ 0 

N--*~ 

In addition, derive explicit upper bound for worst case identification error eN(e) in term of Y~ norm. It 
is noted that if the data comes from a real physical system, then it is required to satisfy the familiar 

N ~ E N  complex conjugate symmetry condition. For example, for N even, we have t h a t  EN/2+I+ k N/2+l-k 
1 for l < k < T N  1 and E N, N 

_ _ - -  EN/2+ 1 are real where ~ denotes the complex conjugate of c. 

An algorithm that satisfies the above requirements is called 'convergent', and is called 'robustly 
convergent and (untuned)'  if in addition it does not depend on the a priori information contained in the 
set 2~' and the noise bound e. It turns out that in order to have a solution to this problem, we need to 
make some boundedness assumption on the set S :  of all possible systems. This implies a certain minimal 
amount of a priori information on the unknown system. This assumption is called admissibility in [5] and 
described below. 

Let P~ be the collection of all polynomials in z with degree not larger than n. Then, P~ ___~¢. Each 
/~, ~ P~ corresponds to a finite impulse response system. It is known [32] that for each ~t ~ ~¢, there exists 
a /~* ~ P~ such that 

eo< ) = = inf(ll - oL: ~ en). (2.7) 

Clearly,/~* is the optimal approximation to/~ in the set P~ and will be denoted as/~*(/~). The optimal 
error as in (2.7) is also a function of/~. Note that E~(/~) is a monotone non-increasing function of n. 

Definition 2.1. A subset S :  ¢__~¢ is called admissible, if 
(1) lim m ._.~8 m = 0, where 8,, := sup{Em(/~):/?t ~S:};  
(2) Ms:= sup{llhl~:/~ ~s~'} < ~ .  

Roughly speaking, admissibility requires that the set of systems be bounded and be uniformly 
approximable by polynomials. We will assume that S :  is an admissible set in the remainder of this paper. 
It can be shown that admissibility is equivalent to total boundedness of S#. We will also assume in the 
remainder of this paper that the set S :  is nontrivial as defined below. 

Definition 2.2. A set S # is called nontrivial if for k = 0, 1, 2 . . . . .  sup{I h k I: ]~ ~ }  ~ 0 where h k is the 
k-th component of the impulse response of/~. 

A mentioned in the introduction, several robustly convergent nonlinear algorithms have been 
proposed in [7,4,24,25]. These algorithms share the following 'two-stage' structure. At the first stage the 
inverse discrete Fourier transform and a window function are used to arrive at a good, possibly 
nonanalytic (i.e., unstable) approximation to the given frequency response data. Then in the second 
stage, Nehari 's theorem [2,22] is used to approximate this first stage approximation to obtain an analytic, 
i.e., stable, identified model. 

To be more specific, define the N-point inverse discrete Fourier transform of the given experimental 
data as 

1 N - 1  
[tN(k) = -~ • EN,(h,  ~) e -jk(2i~/N), j = V rL-- 1 ,  (2.8) 

i = 0  

where k = 0, 1, 2 . . . . .  N - 1. The sequence hN(k) can be extended into a periodic sequence as follows: 

f~e(k) =f~N(k + LN),  k, L ~.., ¢, (2.9) 

where J denotes the set of integers. 
In this paper, we will study identification algorithms having the following two-stage structure: 
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Two-Stage Nonlinear Algorithm. Stage 1: Let n(N) be any given monotone non-decreasing function 
from positive integers to positive integers such that l imN~n(N) = ~ (whenever there is no possibility of 
confusion, we will not show explicitly the dependence of n on N). Let w~.~, k = 0, + 1 . . . . .  + n, be any 
given bounded sequence (window function) of real numbers. Define pre-identified model hpEi;N as 

~/pEi;N= ~ Wn,k~ lN(k ) z  k . (2.10) 
k= -n 

Stage 2: Take identified model /~i N as 

h~a := argmin{ /~pe;N _ f : f i e  X~}. 

End. 

(2.11) 

It is clear that the above identification algorithm is completely determined by the window functions 
wn. k as in (2.10). Stage 2 involves solving an optimization problem to arrive at the identified model. This 
optimization problem is quite well known and is called the Nehari best approximation problem. There 
are many techniques for solving this problem. The book by Young [31] contains a nice expository 
treatment of this problem. The two-stage identification algorithm does not depend on 5 ~ or the noise 
bound e. It should be noticed that the two-stage identification algorithm is a nonlinear transformation of 
the given data because of the Stage 2 involving the Nehari best approximation. It is necessary to consider 
a nonlinear algorithm since Partington has shown that no linear robustly convergent algorithm exists [24], 
although it is shown in [4] that some linear algorithms are still quite effective. In [5], some sufficient 
conditions on the window function wn, k have been established that ensure the robust convergence of the 
two-stage nonlinear algorithm. In this paper, we will derive necessary and sufficient conditions for the 
robust convergence of the two-stage identification algorithm in terms of the Fourier transform of the 
window function. The result obtained in this paper complement the results reported in [5]. 

Definition 2.3. Stage 1 of the two-stage algorithm is said to be convergent if 

lira epU(s ~, e) = 0, (2.12) 
e--~0 

N,n -~ oc 

where 

ep~(~', e) := sup{ /~ _ /~e;N [ . ~ BN(e p . ~  ), ~ j .  (2.13) 

Stage 1 of the two-stage algorithm is called robustly convergent (and untuned) if it is convergent and 
does not depend on ,5 ~ and e. 

The importance of stage 1 of the nonlinear algorithm is shown in following lemma. 

Lemma 2.4. The two-stage nonlinear algorithm is robustly convergent if Stage 1 is robustly convergent. 
Moreover 

N eN ( ~ p, E) ~ 2epi(S a, e).  (2.14) 

The above bound was implicitly used in [7] to derive robustly convergent algorithm based on linear 
spline approximation, and a proof of the above lemma can be found in [5]. To analyze the identification 
error eN(e) in Stage 1, we follow the procedure developed in [5] and write f~N(k) in (2.8) as 

f~N(k) = h N ( k  ) + r/N(k ) (2.15) 
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where 

1 N-1  1 N-1 
: e - jk(2i ,rr/N).  

= E h N ( k )  - ~  E h ( e j ( 2 i ~ / N ) )  e - J k ( 2 i ' ~ / N )  and ~TN(k) -N i=o 
i=0  

The pre-identified model in Stage 1 of the nonlinear algorithm can thus be written as 

(2.16) 

~pE;N __-- h p  i^N qt_ npî N (2.17) 

where 

~pN= ~ wn,~hN(k)z  ~ and ,~RN= ~] W.,krlN(k)z k (2.18) 
k = - n  k = - n  

with hN(k),  ~N(k)  defined as in (2.16). Hence,/~p~ can be thought of as a pre-identified model in Stage 1 
for noise free case and ^ N r/pi as that due to noise. The following lemma is also taken from [5]. 

Lemma 2.5. Stage 1 of  the identification algorithm is robustly convergent if  and only if 

e N ( ~ ' ) : =  lim sup(ll  lL (i) lim noise 
e--,0 e ~ 0  

N,n ~ oo N,n ~ oo 

(ii) lim e~vPP(SP): = lim sup{ /~N_A : / ~ 5 ~ } = 0 .  
N,n --~ ~ N,n --~ oo 

That is, State 1 is robustly convergent if and only if  f~ = 0 ~ ~ can be identified robustly and for any model 
f~ ~ ga, it can be identified exactly as N, n ---> oo with noise absent. 

In the above lemma, e~v°ise(e) stands for the worst case noise error while e~v pp stands for the worst case 
approximation error. Lemmas 2.4 and 2.5 imply that that although the identification algorithm considered 
in this paper is nonlinear, the resulting identification error admits linear analysis. 

3. Main  result  

In this section, we will establish necessary and sufficient conditions on the Fourier transform of the 
window function which ensures the robust convergence of the first stage of the nonlinear algorithm. For 
each window function W,,k, define 

K , ( w )  ~ wn, ~ = e jk°'. (3.1) 
k - - n  

The main result of this paper is the following theorem. 

Theorem 3.1. Consider the two-stage nonlinear identification algorithm described in the previous section. 
Suppose that the set S "~ is admissible. Let Kn(to) be given in (3.1) with N > 2n. The two-stage nonlinear 
algorithm is robustly convergent if 

1 N - 1  
(1) lim - -  Y', K , ( 2 i a r / N )  e -jk~2i=/N)= 1 for k = O, + 1, + 2, . .  • 

N>2n---~oo N - - " "  i=0  

N - 1  } 
(2) M w = s u p  ~ ~ I K , ( w - 2 i w / N )  l: w ~ [ O ,  2"rr/N], N > 2 n > 0  < ~ .  

i=0  
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Conversely, suppose the set ~ is admissible and nontrivial, and window function is evensymmetric, i.e., 
w,,.k = wn, k for all k, n. I f  the first stage of  the two-stage nonlinear algorithm is robustly convergent then 
conditions (1) and (2) are satisfied. 

Proof. Since multiplication in the time domain is equivalent to (circular) convolution in the frequency 
domain, it can be easily verified that the pre-identified model is given by 

1 N-1 1 N - l  
. . . .  ^U j,o Y'. ¢Ti+~K,,(wi), (3.2) h E i ; N ( e J ' ° )  = h N ( e J ' ° )  + "r/pi(e ) = N iE=0 h(eJ2i¢/N)K"(wi)  + -~ i = 0  

^N ^N  with h p i  , "r/p i as in (2.18) and w i := w - 2i'rr/N. To show that the two conditions above are sufficient for 
robust convergence, we need to show that with the conditions given, the worst case identification error as 
defined in (2.13) converges to zero. 

noise Indeed, using condition (2), we have that the worst case noise error e N ( e )  a s  defined in Lemma 2.5 
satisfies 

e~v°ise(E) ~sup  E ~ i + l g n ( ° ° - 2 i ' r r / N )  : a ~  [ 0 , 2 w / N ] ,  ~ E B N ( e  ) <Mwe. (3.3) 
i = 0  

Thus, the worst case noise error converges to zero, i.e., 

lim e )  °ise (e )  = 0. 
e" ---~ 0 

Next consider the worst case approximation e r r o r  e~vPP( ,~) .  Let 6 > 0 be given. Since N > 2n, well 
known properties of the discrete Fourier transform (DFT) yield the equality 

1 N -  1 [ 2i'rr ~ ,k 

for k = 0 ,  +1,  +2,  +n .  Condition (1) implies that for k = 0 ,  +1,  + 2 , . . . ,  

lira wn, ~=  1. (3.5) 
N > 2 n --* o~ 

Now, for each function /~ ~ S p, we have that 

/ ]= /3*( / ] )  +~m with II(mll~=ll/]-/3~*(~)ll~=Em(~), (3.6) 

where m > 0 is any integer, and/3*(h) ,  E m ( t t  ) a r e  defined as in (2.7). Hence, even in this noise free case, 
we may still consider each/ ]  ~ S  P as the sum of polynomial/3"(/~) and a 'noise '  term (m =/~ --/3"(/~) with 
'noise level' Em(h). Let Pk be the coefficient of z ~ in /3*(/]). Then, 

Mp(/]) := sup{ [ p k 1:0 < k < m} _< II/3.. (h)I1  -< 2 [1/] II =. (3.7) 

Using the decomposition in (3.6), it is clear that 

^U Em(h ) + /3*(/]) - / ] o  N . (3.8) /] - h o ~  ~ _< 

Since /3*(/]) is a polynomial of degree no larger than m, we have that with N >  2n > 2m, (3.6) in 
combination with the linearity of the stage 1 yields 

1 N _ I  
/]pUi = Wn,kPk zk + - -  E C m ( e J 2 i r r / N ) K n (  m --  2i 'rr /N) ,  (3.9) 

k = 0  N i = 0  
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where Pk is the coefficient of/~*(/~). Hence, by (3.7) and the condition (2), we further obtain 

^N f / - h p i  <_(l+Mw)Em(h ) +Mp(h) ~ I i - w ~ , k l .  
k=O 

(3.10) 

Since S :  is admissible, there exists a positive integer M, such that (1 + Mw)6 m < 16 for all m >_ M 1. By 
the admissibility of 50 and (3.5), there exists an M 2 > M 1 such that for all 1N > n > M e, we have 

Ml } MI 
sup Mp(h)  ~ I I - w , , , k l : / ~  <_2M s ~  I i -w, , ,k l_<½6.  (3.11) 

k=0 k=0 

Hence, by setting m = M 1 in (3.10) and taking N > 2n > 2M2, the worst case approximation error at the 
first stage is bounded as 

e~PP(5  c') = sup hpi -- } _ ~-6 + ~-6 = 6. (3.12) 

Since 6 > 0 is arbitrary, the worst case approximation error e~v °° at the first stage also converges to zero. 
By combining this with (3.3) and using Lemma 2.5, we have established the sufficiency of the conditions 
(1) and (2). 

We show next that the conditions (1) and (2) are necessary for robust convergence at the first stage of 
the nonlinear identification algorithm. Since the set S :  is nontrivial, the robust convergence of the first 
stage implies that for each k > 0, lim,_..w~, k = 1. (See also the proof of Proposition (3.5) in [5].) Now 
taking limit N > 2n ~ oo in equation (3.4), we get that the condition (1) holds. 

To prove the necessity of the condition (2), set /~ = 0 in (3.2). Now using the facts that K,(to) is 
periodic with period 2rr and that the noise ~i÷1 satisfies the conjugate symmetry property, we have 

1 
~U(eJ"~) = ~ ( ~ l K n ( t o )  "}--'~N/2+lKn(to-~-"~)) 

1 ( 
- -  i+lgn to - -  - -  

+ N  i=1 

2i ) 
+-~i+lKn t o + - -  . 

N N 
(3.13) 

We set next 

1 
C..N(to) = ~ (  I K. ( to)  I + I K.( to  + a'r) I). (3.14) 

Since the window function is even symmetric, the kernel Kn(to) is a real function of w. Let ~ = 
sgn[K,,(w)]e and  ~U/2+l  = sgn[K,(to + "rr)]e. Here sgn is the sign function, i.e., sgn[x] = 1 if x > 0 and 
- 1 if x < 0 and 0 if x = 0. Then ~ and ~U/2+l are real as required. For the rest of noise data, if we set 

1 for 1 < i < 7N - 1, then (3.13) yields 

- -  K ~  w - - -  + K ~  t o + - -  . "rlpi(e ) = C n ' N ( t o ) E + N  i=1 N N 

On the other hand, if we set 

( 2i ,1 
~ i + , = j s g n  K, w -  -K, ,  w+---~-)]e, j = v : Z - 1 ,  
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1 for 1 < i < 5 N -  1, then (3.13) yields 

^N jw --~1 K,  w - -  - K ,  to + -  "qpi(e ) = C " N ( W ) e  + -N i= U U 

Hence, using the fact that l a + b I + I a - b I >/ I a l + I b l for any real numbers a and b, the worst case 
noise error at first stage of the identification algorithm satisfies 

e~v°ise(e) > Cn'N(to)6 - } - -  K~ t o - -  + K ,  to + . 
- 2 2N i=l N 

Now suppose M w is not finite. Then there exists a sequence of frequencies toK and integers NK, n~ 
satisfying N~ > 2n~, ~c = 1, 2 . . . . .  such that 

~im Cn~,N~(toK) q- ~ gn~ toK-  q- gn~ oK+ oo. 

It follows that for any e > 0, 

lim noise K_.~oeN~ (e )  = oo 

which contradicts the robust convergence of the first stage. [] 

If we compare Theorem 3.1 with Theorem 3.3 in [5], it is not difficult to see that the condition (1) of 
Theorem 3.1 is equivalent to conditions (i) and (iii) of Theorem 3.3 in [5]. However, the condition (2) 
here is weaker than the condition (ii) in [5] in general. In fact, if the window function is even symmetric 
with respect to k, i.e., w,,,_ k = wn,k, and wn, n = 0, then the following inequality can be shown: 

Mw<SU p n lAwn,~_l l+  ~ ( k +  l) lA2wn,kl: n > 0  , (3.15) 
k = 0  

where M w is as in condition (2) while the right hand side is from the condition (ii) of Theorem 3.3 in [5] 
and A denotes difference operator. In Theorem 3.3 of [5], condition (ii) requires that the right hand side 
of (3.15) be finite. 

We would like to point out that although the conditions in Theorem 3.1 are tighter than those in [5], it 
may be more difficult to compute the upper bound M w as in condition (2) above, except some special 
cases which is contrast to the time domain conditions as in [5] where error bounds can be easily 
established for many commonly used window functions. 

We will now apply the result in Theorem 3.1 to a parametrized window function proposed in [5]. We 
being with the triangular window 

Ikl  
t~ ,k= l  - - - ,  Ikl < n ,  w , ,k=0 ,  Ikl  >~n. (3.16) 

n 

This window function is analyzed in [4] to study the convergence of the Cesaro mean based two-stage 
nonlinear algorithm for identification in ,U~. The Fourier transform of this window function is given by 

n-1 ( I k l )  1 (sin(½nw) ) 2 
F~( to)=  E 1 - - -  e j k ' ° = -  (3.17) 

k= l -n  n n sin(loj)  

which is called the Fej6r kernel. The key properties of the Fej6r kernel are summarized in the following 
lemma. 



G. Gu et al. / Two-stage nonlinear algorithms for identification 261 

Lemma 3.2. Le t  F,(to) be defined as in (3.17). Then: 

(1) F,,(to) >__ O. 
(2) ( 1 / 2 ~ r ) f Z ~ F . ( t o )  dto = 1 
(3) For any positive integer L > n, 

- -  17. to 1, V t o ~ [ O ,  2 w / L ] .  
L k= 0 L 

(3.18) 

See [11] for a proof of the above lemma. 
The window function we are going to analyze is the trapezoidal window 

an, k = 

1, 0 _ < k < 2 m ,  
n + m - k  

, 2 m < k < _ n + m ,  
n - m  

k 
1 +  - -  m - n < k < O ,  

n - m '  

0, elsewhere, 

(3.19) 

with m < n. Although the trapezoidal window does not satisfy the even symmetry property, the shifted 
window w,. k := an.k+ m does and Theorem 3.1 still applies to the trapezoidal window (see also [5]). It is 
shown in [5] that with the above window, the worst case noise error eN(¢7) as defined in Lemma 2.5 is 
bounded by 

n + m  t noise (3.20) e N <_ - -  e .  
n - m /  

Using the result in Theorem 3.1, we obtain: 

Corollary 3.3. Let  the window funct ion be given as in (3.19) with m < n < N - m.  Then the worst case noise 
error as defined in L e m m a  2.5 can be bounded by 

noise ~ m 
e N < e (3.21) 

m 

(Note that the above bound is strictly smaller than the one as reported in [5].) 

Proof. Since the worst case noise error as defined in Lemma 2.5 is shift invariant, we need only to 
consider following window function: 

wng , = a,,k+ m (3.22) 

which is even-symmetric with respect to k. It is noted that the window function above can be written as 
the difference of two triangular window functions, 

n m 
Wn, k - - I n ,  k - -  t in,k,  (3.23) 

n - m  n - m  

where t~, k is given in (3.16). Using trigonometric identities, the Fourier transform of the above window 
can be written as 

IK,,(to) l= nF,,(to)-mF,,,(to)l ¢ ( n + m ~  
. . . .  n - m  p o + m ( t o ) F n - m ( t o ) '  (3.24) 
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where F~ is the k-th order  Fej6r kernel. The  fact that  F k is nonnegat ive implies that 

¢Fn+m(,o)Fo_,.(,o) _< ½(Fo +F. ,.(,o)). 

Using (3.3), we have 

eu(¢7 ) <_ -~ sup~o ~ , +m w N 

(3.25) 

- - - -  - ] - F n _ m O ) -  ~ . 

Hence,  by Lemma 3.2, the error  estimate as in (3.21) is easily obtained.  [] 

Corollary 3.4. Let  the window funct ion be given as in (3.19) with m < n < N - m.  Let E2m(~t) and r~Zm be 
defined similarly as in (2.7) and Definition 2.1. Then, the worst case identification error is bounded by 

eN(~, e) ~< 2 (62m + e) + 262m (3.27) 

where e N ( ~ ,  e) is defined as in (2.5). 

Proof. For  every /~ ~ 5  ~, there exists a /~*2m E ~J~Zm where "~2m is the collection of  all polynomials with 
degree not larger than 2m such that 

~/~---/~m(~/) q'-~Zm and 11~2m I I ~ = E 2 m ( h ) .  (3.28) 

Now take the ' t rue '  system to be /~m(/~), and the noise bound to be a2,  , + e. Then  the 'wors t  case 
approximation error '  is zero. Using Corollary 3.3, it now follows that the 'wors t  case noise error '  is no 
larger than 

~ (62,,, + e) .  (3.29) 

Further,  by noting that 

h - ~ g ' , , ( h )  I~ = E2m(h) ~a2m,  (3.30) 

the error  bound in (3.27) follows by using Lemma 2.4. [] 

The above result indicates that  if the window function (3.19) is used in two-stage nonlinear  algorithm, 
the computa t ion  of  the worst case identification error  bound requires the computa t ion  of  ~2m which is in 
fact a minimax functional optimization problem (see Definit ion 2.1). It is noted that in many cases, an 
upper  bound  on 82m can be easily estimated. 

References 

[1] H. Akc, ay, G. Gu and P.P. Khargonekar, A class of algorithms for identification in ~ :  continuous-time case, IEEE Trans. 
Automat. Control (Nov. 1992, to appear). 

[2] V.M. Adamyan, D.Z. Arov and M.G. Krein, Analytic properties of Schmidt pairs for a Hankel operator and the generalized 
Schur-Takagi problem, Math. USSR Sbornik 15 (1971) 31-73. 

[3] R.E. Edwards, Fourier Series, A Modern Introduction (Holt, Rinehart and Winston, New York, 1967). 
[4] G. Gu and P.P. Khargonekar, Linear and nonlinear algorithms for identification in ~-~® with error bounds, to appear in IEEE 

Trans. Automatic Control Abridged version in Proceedings of the American Control Conference (1991) 64-69. 
[5] G. Gu and P.P. Khargonekar, A class of algorithms for system identification in ~ ,  to appear in Automatica. Abridged version 

in Proceedings of the 30th IEEE Conference on Decision and Control (1991) 634-639. 
[6] A.J. Helmicki, C.A. Jacobson and C.N. Nett, Identification in Y/~: A robustly convergent nonlinear algorithm, Presented at 

the 1989 American Control Conference and the 1989 International Symposium on Mathematical Theory of Networks and 
Systems, Proceedings of the American Control Conference (1990) 386-391. 



G. Gu et aL / Two-stage nonlinear algorithms for identification 263 

[7] A.J. Helmicki, C.A. Jacobson and C.N. Nett, Control-oriented system identification: A worst-case/deterministic approach in 
~ ,  IEEE Trans. Automat. Control 36 (1991) 1163-1176. 

[8] A.J. Helmicki, C.A. Jacobson and C.N. Nett, Identification in ~ :  linear algorithms, Proceedings of  the American Control 
Conference (1990) 2418-2423. 

[9] A.J. Helmicki, C.A. Jacobson and C.N. Nett, Identification in ~ :  the continuous-time case, Proceedings of the American 
Control Conference (1990) 1893-1898. To appear in the IEEE Trans. Automat. Control. 

[10] A.J. Helmicki, C.A. Jacobson and C.N. Nett, Fundamentals of control oriented system identification and their application for 
identification in ~7~, Proceedings of  the American Control Conference (1990) 89-99. 

[11] K. Hoffman, Banach Spaces of  Analytic Functions (Prentice-Hall, Englewood Cliffs, NJ, 1962). 
[12] R.L. Kosut, M. Lau and S. Boyd, Identification of systems with parametric and nonparametric uncertainty, Proceedings of the 

American Control Conference (1990) 2412-2417. 
[13] J.M. Krause and P.P. Khargonekar, Parameter identification in the presence of nonparametric dynamic uncertainty, 

Automatica 26 (1990) 113-124. 
[14] J.M. Krause, P.P. Khargonekar and G. Stein, Robust parameter adjustment with nonparametric weighted-ball-in-~ uncer- 

tainty, IEEE Transactions on Automatic Control 35 (1990) 225-229. 
[15] M. Lau, R.L. Kosut and S. Boyd, Parameter set identification of systems with uncertain nonparametric dynamics and 

disturbances, Proceedings of  the 29th IEEE Conference on Decision and Control (1990) 3162-3167. 
[16] L. Ljung, System Identification, Theory for the User (Prentice-Hall, Englewood Cliffs, NJ, 1987.) 
[17] L. Ljung and Z.-D. Yuan, Asymptotic properties of black-box identification of transfer functions, IEEE Trans. Automat. 

Control 311 (1985) 514-530. 
[18] P.M. M~ikil~i, On Laguerre methods and , ,~ identification of continuous-time systems, to appear in the Internat. J. Control. 
[19] P.M. M~ikil~i, On ~,~ identification of stable systems and optimal approximation, to appear in Automatica. 
[20] P.M. M~ikil~i and J.R. Partington, Robust approximation and identification in ,,~, Proceedings" of  the American Control 

Conference (1991) 70-76. 
[21] M. Milanese, R. Tempo and A. Vicino, Strongly optimal algorithms and optimal information in estimation problems, Journal 

of  Complexity 2 (1986) 78-94. 
[22] Z. Nehari, On bounded bilinear forms, Ann. of Math. 65 (1957) 153-162. 
[23] P.J. Parker and R.R. Bitmead, Adaptive frequency response identification, Proceedings of the 28th IEEE Conference on 

Decision and Control (1987) 348-353. 
[24] J.R. Partington, Robust identification and interpolation in ~'~, to appear in the Internat. J. Control. 
[25] J.R. Partington, Robust identification in ,,~®, to appear in the J. Math. Anal. Appl. 
[26] J.R. Partington and P.M. M~ikil~i, Robust identification of stabilizable systems, Preprint, University of Leeds, 1991, in: 

Proceedings of  the 30th IEEE Conference on Decision and Control (1991) 629-633. 
[27] R. Smith and J.C. Doyle, Towards a methodology for robust parameter identification, Proceedings of the American Control 

Conference (1990) 2394-2399. 
[28] R. Tempo and G. Wasilkowski, Maximum likelihood estimators and worst case optimal algorithms for system identification, 

Systems and Control Letters 10 (1988) 265-270. 
[29] D.N.C. Tse, M.A. Dahleh and J.N. Tsitsiklis, Optimal asymptotic identification under bounded disturbances, Preprint, LIDS, 

MIT, Cambridge, MA. Abridged version in Proceedings of the American Control Conference (1991) 1786-1787. 
[30] R.C. Younce and C.E. Rohrs, Identification with non-parametric uncertainty, Proceedings of the 29th IEEE Conference on 

Decision and Control (1990) 3154-3161. 
[31] N.J. Young, An Introduction to Hilbert Space (Cambridge University Press, Cambridge, 1988). 
[32] A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 1959). 


