Existence of Particle-like Solutions of the Einstein-Yang/Mills Equations

J. A. SMOLLER AND A. G. WASSERMAN*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003

Received September 10, 1990

DEDICATED TO THE MEMORY OF LAMBERTO CESARI

1

In the paper in Ref. [2], we struggled to prove the existence of a bounded, smooth solution to the Einstein-Yang/Mills equations with SU(2) gauge group. Bartnik and McKinnon in [1] derived these equations, and obtained numerical evidence for the existence of such solutions. The equations reduce to a system of two ordinary differential equations for the unknown functions A(r) and w(r) in the region r > 0 (cf. [1, 2]),

$$rA' + (1 + 2w'^2)A = 1 - \frac{(1 - w^2)}{r^2},$$
 (1)

$$r^{2}Aw'' + \left[r(1-A) - \frac{(1-w^{2})^{2}}{r}\right]w' + w(1-w^{2}) = 0,$$
 (2)

with initial conditions

$$A(0) = 1,$$
 $w(0) = 1,$ $w'(0) = 0.$ (3)

The solutions of (1)-(3) are parametrized by $\lambda = -w''(0)$. Furthermore, for any compact λ -interval, there is an R > 0 such that the one-parameter family of smooth solutions $(A(r, \lambda), w(r, \lambda))$ is defined for $r \leq R$, and the solution depends continuously on λ . The problem is to show that for some λ

$$\lim_{r \to \infty} (w(r, \lambda), w'(r, \lambda)) = (-1, 0). \tag{4}$$

^{*} Both authors supported by the NSF, Contract DMS 89-0525.

One difficulty in dealing with these equations is that they are highly nonlinear, and they become singular at \bar{r} if $A(\bar{r}) = 0$. The purpose of this note is to show how the methods which we have recently developed in [3], (where we prove the existence of infinitely many λ for which (4) holds), allow us to simplify considerably the proof of the result in [2].

2

In [2], we have shown that for λ near 0, the solution of (1)–(3) satisfies the following:

there is an "exit-time" $r_e(\lambda)$ such that

(i)
$$w(r_{e}(\lambda), \lambda) = -1$$

(ii)
$$w(r, \lambda) < 1$$
 if $0 < r < r_e(\lambda)$ (5)

(iii)
$$w'(r, \lambda) < 0, A(r, \lambda) > 0$$
 for $0 < r \le r_e(\lambda)$.

Moreover, if $\lambda \ge 2$, we proved that the λ -orbit "crashes" in the sense that $A(\bar{r}, \lambda) = 0$ for some finite \bar{r} (depending on λ), and $0 < w(\bar{r}, \lambda) < 1$.

Now define $\bar{\lambda}$ to be the supremum of those λ which satisfy (5); clearly $\bar{\lambda} < 2$. In [2] we proved that the $\bar{\lambda}$ -orbit is a connecting orbit; i.e., satisfies (4). This was done by eliminating all alternative behavior for this orbit. Namely, if $\Gamma = \{(w, w', A, r) : w^2 \le 1, w' \le 0\}$, then by an easy transversality argument, the $\bar{\lambda}$ -orbit cannot exit Γ through w = -1, w' < 0, nor can it exit Γ through w = 0, $w^2 < 1$, for otherwise orbits with smaller λ would also exit Γ in the same manner. We also showed in [2] that the $\bar{\lambda}$ -orbit cannot stay in Γ for all r > 0 without satisfying (4). Hence we only had to rule out crashing for the $\bar{\lambda}$ -orbit.

In order to rule out crash, we considered several cases. Thus assume that $A(\bar{r}, \bar{\lambda}) = 0$, and $A(r, \bar{\lambda}) > 0$ for $r < \bar{r}$, and let $\bar{w} = w(\bar{r}, \bar{\lambda}) \equiv \lim_{r \to \bar{r}} w(r, \bar{\lambda})$; the three cases for the $\bar{\lambda}$ -orbit are $\bar{w} > 0$, $\bar{w} = 0$, and $\bar{w} < 0$. The first case, $\bar{w} > 0$ was ruled out by [2, Proposition 5.8]. The two other cases were quite difficult, and involved a complicated complex-plane argument.

In this paper we show how to avoid these difficulties via the methods which we have developed in [3]. The idea is to find a point P in \mathbb{R}^4 , where the $\bar{\lambda}$ -orbit would be if it did not crash, $(P = \lim_{\lambda \to \lambda} (w(\tilde{r}, \lambda), w'(\tilde{r}, \lambda), A(\tilde{r}, \lambda), \tilde{r}))$, and then work backwards in r; i.e., we show that the orbit through P for $r < \tilde{r}$ arrives at the "starting point" (w, w', A, r) = (1, 0, 1, 0).

3

We shall show now that the $\bar{\lambda}$ -orbit does not crash. For this we note that we have proved in [3], that there are numbers $\tau > 0$, $R_1 > 0$, and $w_1, -1 < w_1 < 0$, satisfying for all λ , $0 \le \lambda \le 2$, the following:

if either
$$r \ge R_1$$
 or $-1 \le w(r, \lambda) \le w_1$, then $-\tau \le w'(r, \lambda) < 0$, and $A(r, \lambda) > 0$. (6)

Next, choose w_2 such that $-1 < w_2 < w_1$, and for $\lambda < \overline{\lambda}$, define $r_{w_2}(\lambda)$ by $w(r_{w_2}(\lambda), \lambda) = w_2$. We now consider two cases:

- (i) there is a sequence $\lambda_n \nearrow \bar{\lambda}$ for which the corresponding "times" $\{r_{w}, (\lambda_n)\}$ are bounded, or
 - (ii) no such sequence as in (i) exists; i.e., $\underline{\lim} r_{w_2}(\lambda_n) = \infty$.

Suppose first that we are in case (i). We consider the points P_n in \mathbb{R}^4 defined by

$$P_n = (w_2, w'(r_{w_2}(\lambda_n), \lambda_n), A(r_{w_2}(\lambda_n), \lambda_n), r_{w_2}(\lambda_n)).$$

Because we are in case (i), there exists a B>0 such that $R \leqslant r_{w_2}(\lambda_n) \leqslant B$, where [0,R] is the interval of local existence discussed in Section 1 above. Using (6), we have $-\tau < w'(r_{w_2}(\lambda_n), \lambda_n) < 0$, and from [3, Proposition 3.7], there exists an $\alpha > 0$ such that $1 \geqslant A(r_{w_2}(\lambda_n), \lambda_n) \geqslant \alpha$. It follows that the sequence $\{P_n\}$ has a limit point $P = (w_2, \tilde{w}', \tilde{A}, \tilde{r})$, where $-\tau \leqslant \tilde{w}' \leqslant 0$, $\alpha \leqslant \tilde{A} \leqslant 1$, and $R \leqslant \tilde{r} \leqslant B$.

Now consider the backwards orbit from P; i.e., the solution (w(r), w'(r), A(r), r) of (1)–(2), with $(w(\tilde{r}), w'(\tilde{r}), A(\tilde{r}), \tilde{r}) = (w_2, \tilde{w}', \tilde{A}, \tilde{r})$, defined for $0 < r < \tilde{r}$. We claim that this orbit cannot crash in the region $\mathcal{R} = \{(w, w'): -1 \le w \le 0, w' \le 0\}$, and that it meets the line w = 0 at a point where w' < 0. In fact, if there were a crash in \mathcal{R} at some $r_1 < \tilde{r}$, then defining v = Aw', we would have $v(r_1) = 0$, and $-1 < w(r_1) \le 0$, $w'(r_1) \le 0$ (see [2, Proposition 3.3]). Since $v' = -2w'^2v/r - (1-w^2)w/r^2$, the meanvalue theorem yields the contradiction $0 > (r_1 - \tilde{r}) v'(\xi) = v(r_1) - v(\tilde{r}) =$ $-v(\tilde{r}) \ge 0$. Therefore this backward orbit cannot crash in \mathcal{R} . It cannot cross the line w' = 0 at a point where w < 0, since at such points, w'' > 0 (as follows from (2)), nor can it go to the point (0,0) in finite r. We next show that the backward orbit through P can not stay in \Re for all r > 0. Assume the contrary. We have by definition, $\lim w(r, \lambda_n) = \tilde{w}$, so by continuous dependence of the solution on parameters, $\lim w(r, \lambda_n) = w(r)$ for $r < \tilde{r}$, as long as w(r) does not crash. Choose r' > 0 such that $w(r', \lambda) > \frac{1}{2}$ for all λ , $0 \le \lambda \le 2$; (recall $w(0, \lambda) \equiv 1$). Then $\frac{1}{2} \le \lim w = w(r')$, and this is a contradiction. Hence the orbit leaves \Re for some r > r'. Therefore the

backwards orbit from P reaches the line w = 0 at some $r_0 < \tilde{r}$, where $w'(r_0) < 0$ and $A(r_0) > 0$.

Now since $A(r_0) > 0$, the solution (w(r), w'(r), A(r), r) through the point $(0, w'(r_0), A(r_0), r_0)$ can be continued backwards in r, to a point $Q = (w(r_\varepsilon), w'(r_\varepsilon), A(r_\varepsilon), r_\varepsilon)$, where $w(r_\varepsilon) > 0$, $w'(r_\varepsilon) < 0$, and $A(r_\varepsilon) > 0$, for some $r_\varepsilon < r_0$, r_ε near r_0 . Thus we have traced the point P backwards into the region $\mathscr{S} = \{(w, w') : w > 0, w' < 0\}$. Now from [2, Proposition 5.14], the $\bar{\lambda}$ -orbit (starting at w = 1, w' = 0, A = 1, r = 0) cannot crash in \mathscr{S} in forward time. Since

$$w(r_{\varepsilon}, \bar{\lambda}) = \lim w(r_{\varepsilon}, \lambda_n) = w(r_{\varepsilon})$$

it follows that the $\bar{\lambda}$ -orbit reaches Q without crashing and joins up with the backwards orbit from P. Thus the $\bar{\lambda}$ -orbit arrives at P without crashing in forward time. In view of (6), this orbit cannot crash for $r > \tilde{r}$. This completes the proof in case (i).

Suppose now that (ii) holds. Then we can find a sequence $\lambda_n \nearrow \bar{\lambda}$ such that $r_{w_2}(\lambda_n) > R_1 + 1$; i.e., $w(R+1, \lambda_n) > w_2 > -1$. Define points P_n in \mathbb{R}^4 by

$$P_n = (w(R_1 + 1, \lambda_n), w'(R_1 + 1, \lambda_n), A(R_1 + 1, \lambda_n), R_1 + 1).$$

We have $1 \ge w(R_1+1,\lambda_n) \ge w_2$, and from (6), $-\tau < w'(R+1,\lambda_n) \le 0$. Furthermore, from [3, Proposition 3.9], there is an $\alpha > 0$ such that $\alpha \le A(R_1+1,\lambda_n) \le 1$. Thus $\{P_n\}$ has a limit point $P = (\tilde{w},\tilde{w}',\tilde{A},R_1+1)$, where $1 \ge \tilde{w} \ge w_2 > -1$, $-\tau \le \tilde{w}' \le 0$, and $\alpha \le \tilde{A} \le 1$. The special case $P = (0,0,\tilde{A},R_2+1)$ is ruled out in [3]. Now if $\tilde{w} \ge 0$, then the same argument as given above in case (i) will work to show that the $\tilde{\lambda}$ -orbit does not crash. We may thus assume that $\tilde{w} < 0$. If $\tilde{w}' = 0$, then an easy transversality argument would show that for large n, the λ_n -orbits would cross the line w' = 0 at points near \tilde{w} , and this is impossible. Thus we may assume that $\tilde{w}' < 0$, and now the same argument as given in case (i) applies to show that the $\tilde{\lambda}$ -orbit cannot crash.

REFERENCES

- 1. R. BARTNIK AND J. McKinnon, Particle like solutions of the Einstein-Yang-Mills equations, *Phys. Rev. Lett.* 61 (1988), 141-144.
- J. SMOLLER, A. WASSERMAN, S.-T. YAU, AND J. B. McLEOD, Smooth static solutions of the Einstein/Yang-Mills equations, Comm. Math. Phys. 143 (1991), 115-147.
- 3. J. SMOLLER AND A. WASSERMAN, Existence of infinitely-many smooth, static, global solutions of he Einstein/Yang-Mills equations, to appear.