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1

In the paper in Ref [2], we struggled to prove the existence of a
bounded, smooth solution to the Einstein—Yang/Mills equations with
SU(2) gauge group. Bartnik and McKinnon in [1] derived these equa-
tions, and obtained numerical evidence for the existence of such solutions.
The equations reduce to a system of two ordinary differential equations for
the unknown functions A(r) and w(r) in the region r>0 (cf. [1, 2]),

1-—- 2
rA’+(1+2w’2)A=1——( rzw ), (1)
1— 252
rzAw"+[r(1—A)—ﬂ] W+ w(l—w?) =0, )
r
with initial conditions
A0)=1, w(0)=1, w'(0)=0. (3)

The solutions of (1)—(3) are parametrized by 1 = —w"(0). Furthermore, for
any compact A-interval, there is an R>0 such that the one-parameter
family of smooth solutions (A(r, 1), w(r, 1)) is defined for r < R, and the
solution depends continuously on A. The problem is to show that for
some A

lim (w(r, ), w'(r, 1))=(—1,0). (4)

r— o
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One difficulty in dealing with these equations is that they are highly
nonlinear, and they become singular at 7 if A(F)=0. The purpose of this
note is to show how the methods which we have recently developed in [3],
(where we prove the existence of infinitely many A for which (4) holds),
allow us to simplify considerably the proof of the result in [2].

In [2], we have shown that for 4 near 0, the solution of (1)-(3) satisfies
the following:

there is an “exit-time” r,(A) such that
(1) w(rg(4), 4)= —1
(ii) w(r, Ay <1 if O<r<r,(d) (5)
(iii) w'(r, 1) <0, A(r, 1)>0 for O0<r<r,(4)

Moreover, if 1> 2, we proved that the A-orbit “crashes” in the sense that
A(F, ) =0 for some finite 7 (depending on 1), and 0 < w(F, 1) < 1.

Now define 4 to be the supremum of those A which satisfy (5); clearly
A<2. In [2] we proved that the f-orbit is a connecting orbit; i.e., satisfies
(4). This was done by eliminating all alternative behavior for this orbit.
Namely, if I'={(w,w’,4,r):w?*<1,w <0}, then by an easy trans-
versality argument, the Ai-orbit cannot exit I” through w= —1, w' <0, nor
can it exit I" through w=0, w?< 1, for otherwise orbits with smaller 1
would also exit I” in the same manner. We also showed in [2] that the
A-orbit cannot stay in I for all r >0 without satisfying (4). Hence we only
had to rule out crashing for the A-orbit.

In order to rule out crash, we considered several cases. Thus assume that
A(F, 2)=0, and A(r, 1)>0 for r<7, and let w=w(7, )=lim, , . w(r, 1);
the three cases for the A-orbit are w>0, w =0, and w <0. The first case,
w>0 was ruled out by [2, Proposition 5.8]. The two other cases were
quite difficult, and involved a complicated complex-plane argument.

In this paper we show how to avoid these difficulties via the methods
which we have developed in [3]. The idea is to find a point P in R* where
the A-orbit would be if it did not crash, (P=1lim, , ;(w(7, 1), w'(F, 1),
A(F, 1), 7)), and then work backwards in r; i.e., we show that the orbit
through P for r <7 arrives at the “starting point” (w, w', 4, r)=(1,0, 1, 0).
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We shall show now that the Z-orbit does not crash. For this we note that
we have proved in [3], that there are numbers 1>0, R, >0, and w,, -1 <
w, <0, satisfying for all 4, 0<4<2, the following:

if either r> R, or —1 < w(r, 1)< w,, then
—t<wir, A)<0, and A(r, A)>0. (6)

Next, choose w, such that —1<w,<w,, and for A<, define r,,(4) by
w(r,,(4), 1) =w,. We now consider two cases:

(i) there is a sequence 4, » A for which the corresponding “times”
{r.,(4,)} are bounded, or

(ii) no such sequence as in (i) exists; ie, lim r,(4,) = .

Suppose first that we are in case (i). We consider the points P, in R*
defined by

Py=(wa, w(r,(A,), An)s A(r,(Aa)s 20)s 10(2,)):

Because we are in case (i), there exists a B>0 such that R<r,(4,)< B,
where [0, R] is the interval of local existence discussed in Section 1 above.
Using (6), we have —1 <w'(r,,(4,), 4,) <0, and from [3, Proposition 3.7],
there exists an a>0 such that 1> A(r,(4,), 4,) >« It follows that the
sequence {P,} has a limit point P=(w,, ¥, A4, 7), where —1< W <0,
a<A<1, and RSF<B.

Now consider the backwards orbit from P; ie., the solution
(w(r), w'(r), A(r), r) of (1)~(2), with (w(F), w'(F), A(F), F)) = (w2, W', 4, F),
defined for 0 < r <7 We claim that this orbit cannot crash in the region
A={(w,w'):—1<w<0, w <0}, and that it meets the line w=0 at a
point where w' < 0. In fact, if there were a crash in & at some r, <7, then
defining v = Aw’, we would have v(r;) =0, and —1 <w(r,)<0, w'(r;)<0
(see [2, Proposition 3.3]). Since v’ = —2w'v/r — (1 — w?) w/r?, the mean-
value theorem yields the contradiction 0> (r, —F)v'(&)=v(r,)—v(F)=
—v{F) = 0. Therefore this backward orbit cannot crash in #. It cannot
cross the line w’ =0 at a point where w <0, since at such points, w” >0 {as
follows from (2)}, nor can it go to the point (0, 0) in finite . We next show
that the backward orbit through P can not stay in £ for all » > 0. Assume
the contrary. We have by definition, lim w(r, 4,)=Ww, so by continuous
dependence of the solution on parameters, lim w(r, 1,) = w(r) for r <F¥, as
long as w(r) does not crash. Choose r’ >0 such that w(r’, 1)> } for all 4,
0<A<2; (recall w{0,2)=1). Then ;< limw=w(r'), and this is a
contradiction. Hence the orbit leaves # for some r>r. Therefore the
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backwards orbit from P reaches the line w=0 at some r, <7, where
w'(ry) <0 and A(ry)>0.

Now since A(rq) >0, the solution (w(r), w'(r), A(r), r) through the point
(0, w'(ro), A(ry), ro) can be continued backwards in r, to a point Q=
(w(r,), w'(r,), A(r,), r,), where w(r,) >0, w'(r,) <0, and A(r,)> 0, for some
r,<ro, r, near ro. Thus we have traced the point P backwards into the
region & = {(w, w'):w>0,w’ <0}. Now from [2, Proposition 5.14], the
J-orbit (starting at w=1, w'=0, 4=1, r=0) cannot crash in ¥ in
forward time. Since

w(r,, A)=limw(r,, 1,)=w(r,)

it follows that the 1-orbit reaches Q without crashing and joins up with the
backwards orbit from P. Thus the A-orbit arrives at P without crashing in
forward time. In view of (6), this orbit cannot crash for r>7 This
completes the proof in case (i).

Suppose now that (ii) holds. Then we can find a sequence 4, ~ 4 such
that r,(4,)> R, +1; ie, w(R+ 1, 1,)>w,> —1. Define points P, in R*
by

P,=(w(R, +1,4,),w(R +1,4,), A(R,+1,4,), R{+1).

We have 12w(R,+1,4,)2w,, and from (6), —t<w'(R+1,4,)<0.
Furthermore, from [3, Proposition 3.91, there is an ¢ >0 such that ¢ <
A(R,+1,4,)< 1. Thus {P,} has a limit point P= (W, W', 4, R, + 1), where
1>2Ww2w,>—1, —t<w <0, and a<A<1. The special case P=
(0,0, 4, R, + 1) is ruled out in [3]. Now if # >0, then the same argument
as given above in case (i) will work to show that the Z-orbit does not crash.
We may thus assume that w<O. If W' =0, then an easy transversality
argument would show that for large n, the A,-orbits would cross the line
w’ =0 at points near W, and this is impossible. Thus we may assume that
W' <0, and now the same argument as given in case (i) applies to show
that the A-orbit cannot crash.
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